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a b s t r a c t

The Turán function ex(n, F ) denotes the maximal number of
edges in an F-free graph on n vertices. We consider the function
hF (n, q), the minimal number of copies of F in a graph on n
vertices with ex(n, F ) + q edges. The value of hF (n, q) has been
extensively studied when F is bipartite or colour-critical. In this
paper we investigate the simplest remaining graph F , namely,
two triangles sharing a vertex, and establish the asymptotic value
of hF (n, q) for q = o(n2).
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1. Introduction

The Turán function ex(n, F ) of a graph F is the maximum number of edges in an F-free graph
on n vertices. In 1907, Mantel [22] proved that ex(n, K3) = ⌊n2/4⌋, where Kr denotes the complete
graph on r vertices. The fundamental paper of Turán [35] solved this extremal problem for cliques:
the Turán graph Tr (n), the complete r-partite graph on n vertices with parts of size ⌊n/r⌋ or
⌈n/r⌉, is the unique maximum Kr+1-free graph on n vertices. Thus the Turán function satisfies
ex(n, Kr+1) = |E(Tr (n))|.

Stated in the contrapositive, this implies that a graph with ex(n, Kr+1) + 1 edges (where, by
default, n denotes the number of vertices) contains at least one copy of Kr+1. Rademacher (1941,
unpublished) showed that a graph with ⌊n2/4⌋ + 1 edges contains not just one but at least ⌊n/2⌋
copies of a triangle. This is perhaps the first result in the so-called ‘‘theory of supersaturated graphs’’
that focuses on the supersaturation function

hF (n, q) = min{#F (H) : |V (H)| = n, |E(H)| = ex(n, F ) + q},
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the minimum number of F-subgraphs in a graph H on n vertices and ex(n, F ) + q edges. (We say
that G is a subgraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H); we call G an F-subgraph if it is isomorphic
to F .)

One possible construction for graphs with the minimal number of copies of F is to add some q
edges to a maximum F-free graph. Denote by tF (n, q) the smallest number of F-subgraphs that can
be achieved this way. Clearly, hF (n, q) ≤ tF (n, q). In fact, this bound is sharp for cliques, when q is
small. Erdős [3] extended Rademacher’s result by showing that hK3 (n, q) = tK3 (n, q) = q⌊n/2⌋ for
q ≤ 3. Later, he [4] showed that there exists some small constant εKr > 0 such that hKr (n, q) =

tKr (n, q) for all q ≤ εKr n. Lovász and Simonovits [20,21] found the best possible value of εKr as
n → ∞, settling a long-standing conjecture of Erdős [3]. In fact, the second paper [21] completely
solved the hKr (n, q)-problem when q = o(n2). The case q = Ω(n2) of the supersaturation problem for
cliques has been actively studied and proved notoriously difficult. Only recently was an asymptotic
solution found: by Razborov [28] for K3 (see also Fisher [9]), by Nikiforov [25] for K4, and by
Reiher [29] for general Kr .

The supersaturation problem was also considered for general graphs F . If F is bipartite, then
there is a beautiful (and still open) conjecture of Erdős–Simonovits (see [33]) and Sidorenko [31]
whose positive solution would determine hF (n, q) asymptotically for q = Ω(n2). We refer the reader
to some recent papers on the topic, [2,13,15,18,34], that contain many references.

For non-bipartite F , the value of hF (n, q) has also been considered for general colour-critical
graphs. A graph is called r-(colour)-critical if its chromatic number is r + 1 while the removal of
some edge from the graph reduces its chromatic number. Simonovits [32] established that if F is
r-critical, then for large enough n the unique maximal F-free graph is Tr (n). Pikhurko and Yilma [27]
extending the results of Mubayi [24] established that, similarly to cliques, for every colour-critical
graph F there exists εF > 0 such that when q ≤ εFn, we have hF (n, q) = tF (n, q). In addition, they
established the asymptotic size of hF (n, q) when q = o(n2).

As far as we know, the supersaturation problem has not been considered for graphs which have
chromatic number at least 3 and are not colour-critical, apart from some general (and rather weak)
bounds by Erdős and Simonovits [7]. In this paper, we investigate a ‘simplest’ such graph, namely
the bowtie which consists of two copies of K3 merged at a vertex. We refer to this vertex as the
central vertex of the bowtie.

Despite the simple nature of the bowtie, bowtie-free graphs have been crucial in several areas,
such as in countable universal graphs [1,16], in Ramsey theory [14] and Hrushovski property [8],
etc.

From this point on F denotes the bowtie and we will assume that n is sufficiently large. The
main contribution of this paper is twofold. First we establish that when q = o(n2) any graph on n
vertices and ex(n, F )+ q edges with minimal number of copies of F contains the Turán graph T2(n).
Based on this we establish the asymptotic value of hF (n, q) when q = o(n2).

2. Main results

The Turán function of the bowtie F has been established by Erdős, Füredi, Gould and Gunder-
son [6], namely ex(n, F ) = ⌊n2/4⌋ + 1 for n ≥ 5. In addition, the extremal graphs are also known
when n is large enough, each being T2(n) with an arbitrary edge added; this follows from more
general results in e.g. Glebov [11] or Liu [19]. When n is odd, this leads to two non-isomorphic
versions of the extremal graph. Our first result shows that, when n is large enough and q = o(n2),
the only way to construct a graph containing as few bowties as possible is to add edges to T2(n).

Theorem 1. There is δ > 0 such that every graph H with n ≥ 1/δ vertices, ex(n, F )+q ≤ (1/4+ δ)n2

edges and hF (n, q) copies of the bowtie F contains T2(n) as a subgraph.

Theorem 1 implies that tF (n, q) = hF (n, q) when q = o(n2). Once this structural property of the
graph has been established, we deduce the asymptotic number of bowties present.
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Theorem 2. For every c > 0 there is δ > 0 such that for all natural numbers n ≥ 1/δ and q ≤ δn2

the following holds. If we write 2(q + 1) = dn + m for d,m ∈ N with 0 ≤ m < n and set

e1 =

⌊
dn
4

+
min{m, n/2}

2

⌋
and e2 = q + 1 − e1,

then

hF (n, q) = (1 ± c)
n
2

[(
e1
2

)
+

(
e2
2

)
+ m

(
d + 1
2

)
n
2

+ (n − m)
(
d
2

)
n
2

+ 4e1e2

]
.

Note that if n → ∞ and q/n → ∞ in Theorem 2, then d + 1 = (1 + o(1))d = (1 + o(1))2q/n
and e1, e2 = (1 + o(1))q/2, resulting in a simpler formula

hF (n, q) = (1 + o(1))
9
8
q2n.

Proof outline of Theorems 1 and 2. We start by showing an upper bound on hF (n, q). This can
be achieved by counting the number of bowties in an arbitrary graph on n vertices with ex(n, F )+q
edges (Lemma 4). Therefore the number of bowties in any extremal graph H is small and the Graph
Removal Lemma (Theorem 5) allows us to conclude that H can be made bowtie-free by removing
a small number of edges. In addition, since the chromatic number of the bowtie is 3, the Erdős–
Simonovits Stability Theorem (Theorem 6) implies that the vertex set of the obtained bowtie-free
graph can be partitioned into two sets, V1 and V2, such that almost |E(T2(n))| edges are present
between the two parts. Therefore the original graph H also has almost all edges between V1 and V2
(Lemma 7).

The key step is to establish that every edge between V1 and V2 is present (Proposition 3). In
order to achieve this we need to determine the number of bowties containing a given edge and
the number of bowties created by inserting an edge. In particular we need to compare the number
of bowties containing an edge in V1 or V2 and the number of bowties created by inserting an edge
between V1 and V2. When the number of edges spanned by V1 and V2 is small, the number of bowties
has to be counted very precisely in order to determine which is smaller (Lemma 11). On the other
hand, when the number of edges spanned by V1 and V2 is large, a simpler and less accurate estimate
suffices (Lemma 15). In both cases there is an edge in V1 or V2 which is contained in more bowties
than the number of bowties the insertion of any edge between V1 and V2 would create. Since H is
minimal, with respect to the number of copies of bowties, every edge between V1 and V2 must be
present.

Let us ignore the triangles spanned by V1 and V2 for the moment, later we will see that no such
triangles exist in any extremal graph (Lemma 16). We shall express the number of bowties using
an explicit formula. A bowtie can be formed in three different ways (see Fig. 1). Since we ignore
triangles spanned by V1 and V2, any triangle in the graph contains exactly one edge spanned by V1
or V2. As a bowtie consists of two triangles, it must have exactly two edges spanned by V1 or V2.
We distinguish the following cases, depending on whether both edges are spanned by the same set
or not, in addition if they are spanned by the same set we consider the cases when the two edges
are adjacent or non-adjacent.

Recall that every edge between V1 and V2 is present. Therefore, any pair of disjoint edges in V1 is
contained in |V2| bowties and similarly any pair of disjoint edges in V2 is contained in |V1| bowties.
If the two edges are adjacent, then they are contained in |V2|(|V2| − 1) and |V1|(|V1| − 1) bowties
respectively. Finally any two edges, where one edge is spanned by V1 and the other edge is spanned
by V2, are contained in 2(n − 4) bowties.

The previous argument implies that the number of bowties depends only on the size of V1 and
V2 and the degree sequence of the graphs spanned by these sets. In fact, in the optimal degree
sequence the degrees of any two vertices in the same part Vi may differ by at most one. Due to the
small number of edges spanned by V1 and V2 one can rearrange the edges inside these parts so that
each part spans an almost regular and triangle-free graph (Lemma 16). Destroying triangles inside
a part decreases the number of bowties, justifying our earlier decision to ignore them.

In order to finish the proof of Theorem 1 we only need to show that |V1| = ⌈n/2⌉ or |V1| = ⌊n/2⌋.
Note that if |V1| = ⌈n/2⌉ and |V2| = ⌊n/2⌋, the number of edges spanned by V1 and V2 is exactly
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Fig. 1. Types of bowties.

q + 1. If we increase the number of vertices in V1 by a and, in order to keep the total number of
vertices unchanged, at the same time we decrease the number of vertices in V2 by the same amount,
then the number of edges spanned by V1 and V2 increases by at least a2. In addition, the number
of bowties containing edge pairs in V1 decreases (as any such bowtie is either Type 1 or Type 2),
while for edge pairs in V2 the number of bowties increases. On the other hand, for a fixed pair of
edges, one in V1 and the other in V2, the number of bowties containing both these edges remains
unchanged. Roughly speaking, the number of bowties created by adding the a2 new edges has to
be counterbalanced by the decrease in the number of Type 1 and Type 2 bowties. This would be
possible only if there was a large difference between the number of edges in V1 and V2. However,
we show that this is not the case (Lemma 18) and thus a must be 0.

Bounding the difference between the number of edges spanned by V1 and V2 has an additional
advantage. Together with the exact size of V1 and V2 it also implies that, disregarding a couple of
vertices, when looking at the graphs spanned by V1 and V2 the difference in the degree of any pair
of vertices is at most 1 (Lemma 19). In fact, in one of the partitions almost every vertex has the
same degree (Lemma 21). These provide us with a good approximation on the degree sequence of
the graphs spanned by V1 and V2 and thus also on the total number of bowties.

Organisation of the paper. The remainder of the paper is divided into four parts. In Section 3 we
show that any extremal graph H contains a complete spanning bipartite subgraph (Proposition 3).
Section 4 states any additional lemmas needed for Theorems 1 and 2 and gives the proofs of these
results. The proof of the remaining technical lemmas can be found in Section 5. Section 6 contains
some concluding remarks.

3. Complete bipartite subgraph: proof of Proposition 3

Throughout this section let H be a graph on n vertices and ex(n, F ) + q edges containing the
minimal number of bowties. Let V := V (H) denote the vertex set of H and E := E(H) its edge set.
The following proposition is vital in proving Theorem 1.

Proposition 3. For an arbitrary graph H on n vertices and ex(n, F ) + q edges containing hF (n, q)
bowties, where q = o(n2) and n is large enough, admits a partition V = V1∪V2 such that E(K (V1, V2)) ⊆

E, |V1|, |V2| = (1+ o(1))n/2 and the number of edges spanned by each of V1 and V2 is at most 4q+ 4.

The remainder of this section is devoted to proving Proposition 3. Let {V1, V2} be a max-cut of
H . The crucial part of the proof is to show that both parts have size (1 + o(1))n/2 and every edge
between the parts is present, i.e. E(K (V1, V2)) ⊆ E.

The key tools used for the proof are the Graph Removal Lemma (Theorem 5) and the Stability
Theorem (Theorem 6). Roughly speaking, the graph removal lemma states that if a graph contains
only a few copies of bowties, which holds for H (Lemma 4), then removing a few edges makes it
bowtie-free. Together with the Stability Theorem this implies that V1 and V2 both have size roughly
n/2 and most edges between the parts are present (Lemma 7).

For i = 1, 2 let vi = |Vi|. Denote the edges spanned by V1 or V2 by B and set b = |B|. We call
the edges in B bad. The degree sequence of several graphs on V plays a crucial role in counting the
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number of bowties. For any v ∈ V and E ′
⊆

(V
2

)
let dE′ (v) be the degree of vertex v in (V , E ′) (the

graph with vertex set V and edge set E ′). In the special case when E ′
= B we call dB(v) the bad

degree.
Our proof strategy is to show that there exists a bad edge which is contained in more bowties

then inserting an edge between the parts would create, should such an edge be missing. Therefore
removing the bad edge destroys more bowties than inserting the edge between the parts creates
leading to a graph with fewer bowties and implying that every edge between V1 and V2 is present.
Showing this requires a very precise analysis, when the number of bad edges is small (Lemma 11).
However this fails once the number of bad edges becomes large and an alternate proof is required
(Lemma 15).

In order to prove the above lemmas we need a lower bound on the maximal number of bowties
a bad edge is contained in (Lemma 12) and an upper bound on the number of bowties created
when an edge between the parts is inserted (Lemma 13). The latter is more difficult. Roughly
speaking an upper bound on the bad degree leads to an upper bound on the number of triangles
containing the inserted edge, which leads to an upper bound on the number of bowties. At first
we can only prove a weak upper bound on the bad degree (Lemma 9). However if the vertex has
many neighbours in the other part, which is true for the majority of the vertices, a significantly
better bound exists (Lemma 10). In fact, once we show that every vertex has many neighbours in
the other part (Lemma 14) the tighter bound applies to every vertex.

As mentioned earlier we need to show that the number of bowties in H , i.e. hF (n, q), is small.

Lemma 4. For q ≤ n2/20 we have that

hF (n, q) ≤ (q + 1)2 (13n/4 + 13) .

Proof. In order to prove the statement we construct a graph G satisfying |V (G)| = n, |E(G)| =

ex(n, F ) + q and #F (G) ≤ (q + 1)2(13n/4 + 13). Partition the vertex set of G into two parts U1 and
U2 such that |U1| = ⌈n/2⌉ and |U2| = ⌊n/2⌋. Every edge between U1 and U2 will be included in the
graph, i.e. K (U1,U2) ⊆ G. This determines ⌈n/2⌉⌊n/2⌋ edges in G and thus we only need to establish
the position of the remaining q + 1 edges.

Denote by n′
= ⌊n/4⌋. Let W1,W2 be disjoint subsets of U1 of size n′. The remaining q+ 1 edges

are placed between W1 and W2 such that the degrees are as equal as possible. In particular, for
i = 1, 2, (q + 1) mod n′ vertices in Wi have ⌈(q + 1)/n′

⌉ neighbours in W3−i, while the remaining
vertices have ⌊(q+1)/n′

⌋ neighbours inW3−i. Note that such a construction is possible by Lemma 22,
as ⌊(q + 1)/n′

⌋ < n′ for sufficiently large n.
In order to determine the number of bowties we count for every vertex v the number of bowties

in G where the central vertex is v. For v ∈ V (G) any two edge disjoint triangles containing v form a
bowtie. Since no edges are spanned by U2, every triangle must contain an edge in U1 and any such
edges must be between W1 and W2. Therefore for v ∈ U2 there are at most

(q+1
2

)
bowties centred

at v.
Now consider bowties centred at v ∈ Wi for i = 1, 2. Recall that any triangle must contain an

edge in U1 and a vertex in U2. Therefore any bowtie centred at v must contain two different vertices
in N(v) ∩ U1 and two vertices in U2. These can be selected in at most(

|N(v) ∩ U1|

2

)
n2

4
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ways, giving an upper bound on the number of bowties. Let k ≡ q + 1 (mod n′). Then we have

#F (G) ≤ 2k
(

⌈(q + 1)/n′
⌉

2

)
n2

4
+ 2(n′

− k)
(

⌊(q + 1)/n′
⌋

2

)
n2

4
+

n
2

(
q + 1
2

)
≤

n
2

[
k
(

⌈(q + 1)/n′
⌉

2

)
n + (n′

− k)
(

⌊(q + 1)/n′
⌋

2

)
n +

(q + 1)2

2

]
≤

n
4

[
n′

(
q + 1
n′

)2

n + kn
2(q + 1)

n′
+ (q + 1)2

]
.

Note that k ≤ q + 1 and n′
≥ n/4 − 1, therefore

#F (G) ≤
n
4
(q + 1)2

[
3n

n/4 − 1
+ 1

]
≤ (q + 1)2 (13n/4 + 13)

for large enough n. □

Next we state the Graph Removal Lemma and the Stability Theorem. Using them we show that
the vertex set of the extremal graph H can be partitioned into two sets V1, V2 such that both sets
contain roughly n/2 vertices and most edges between V1 and V2 are present.

Theorem 5 (Graph Removal Lemma, see e.g. [17]). Let Γ be a graph with f vertices. Then for every
ε1 > 0 there exists ε2 > 0 such that every graph H with n ≥ 1/ε2 vertices and at most ε2nf copies of
Γ can be made Γ -free by removing at most ε1n2 edges.

Theorem 6 (Stability Theorem [5,32]). Let r ≥ 2 and Γ be a graph with chromatic number r +1. Then
for every ε1 > 0 there exists ε2 > 0 such that every Γ -free graph on n ≥ 1/ε2 vertices with at least
|E(Tr (n))| − ε2n2 edges contains an r-partite subgraph with at least |E(Tr (n))| − ε1n2 edges.

Lemma 7. Let {V1, V2} be a max-cut of H. For every δ1 > 0 there exist δ2 > 0 and n0 such that for
every n > n0 and q + 1 < δ2n2 we have

|E(H)△E(K (V1, V2))| ≤ δ1n2
+ q + 1

and

n/2 − 2
√

δ1n ≤ |V1|, |V2| ≤ n/2 + 2
√

δ1n.

Proof. First we show that the number of edges between V1 and V2 is at least ⌈n/2⌉⌊n/2⌋ − δ1n2.
Since {V1, V2} is a max-cut, this follows if H contains a bipartite graph with at least ⌈n/2⌉⌊n/2⌋−δ1n2

edges. Note that the chromatic number of the bowtie is 3. Therefore, Theorem 6 implies that there
exists a constant ε1 > 0 such that every bowtie-free graph with at least ⌈n/2⌉⌊n/2⌋ − ε1n2 edges
contains a bipartite subgraph with at least ⌈n/2⌉⌊n/2⌋ − δ1n2 edges.

Therefore, H contains such a bipartite graph if it has a bowtie-free subgraph with at least
⌈n/2⌉⌊n/2⌋ − ε1n2 edges. Theorem 5 implies that there exists an ε2 > 0 such that every graph
with at most ε2n5 copies of bowties can be made bowtie-free by removing at most ε1n2 edges. This
holds for every q satisfying q + 1 <

√
ε2n2/2 because by Lemma 4 the number of bowties in H is

at most

(q + 1)2 (13n/4 + 13) ≤ ε2n5.

In fact, after the removal of these edges the graph still contains at least

⌈n/2⌉⌊n/2⌋ + q + 1 − ε1n2
≥ ⌈n/2⌉⌊n/2⌋ − ε1n2

edges.
Thus we have a bipartite subgraph with at least ⌈n/2⌉⌊n/2⌋−δ1n2 edges and the first statement

follows. Note that a complete bipartite graph on n vertices where one part has size at least
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n/2 + 2
√

δ1n contains at most

n2

4
− 4δ1n2 δ1n2>1/8

≤ ⌈n/2⌉⌊n/2⌋ − 2δ1n2

edges, implying the required bounds on the size of the individual parts. □

Let ε > 0 be sufficiently small. Apply Lemma 7 for δ1 = ε2/4 which gives some δ2 > 0. Since
q = o(n2), we have that q + 1 ≤ δ2n2, for large enough n. Thus {V1, V2}, a max-cut of H , satisfies

n/2 − εn ≤ |V1|, |V2| ≤ n/2 + εn

and

|E(H)△E(K (V1, V2))| ≤ ε2n2/4 + q + 1 ≤ ε2n2.

Note that

b ≤ |E(H)△E(K (V1, V2))| ≤ ε2n2. (1)

In order to establish bounds on dB(v) we need to determine the number of bowties any edge is
contained in.

Lemma 8. Every edge in H is contained in less than 13bn bowties.

Proof. Assume for contradiction that there exists an edge f contained in at least 13bn bowties.
We will show that there exists a pair of non-adjacent vertices w1, w2 ∈ V such that inserting the
edge {w1, w2} creates less than 13bn bowties. Thus the graph created by removing f and inserting
{w1, w2} has less bowties and contradicts the minimality of H .

Note that the number of vertices w ∈ V1 with dB(w) ≥ 6b/n is at most 2b/(6b/n) = n/3. This
implies that the number of vertices in V1 with dB(w) < 6b/n is at least (1 − 2ε) n2 −

n
3 ≥ n/8. Since

for each of these vertices dB(w) < 6b/n ≤ 6ε2n, two of them must be non-adjacent.
Let w1, w2 ∈ V1 be a pair of non-adjacent vertices with dB(w1), dB(w2) ≤ 6b/n and we count

the bowties which would be created if we would insert this edge. Note that any such bowtie must
contain at least one more edge in B. We start with the bowties which contain an edge in B adjacent
to {w1, w2}. In order to count the number of these bowties we first count the number of triangles
containing an edge in B adjacent to w1 or w2. Note that for w1 there are dB(w1) such edges and
each of these edges creates a triangle with at most v2 + dB(w1) vertices. Therefore there are at
most ((1 + 2ε)n/2 + 6b/n)6b/n such triangles, and similarly for w2. Thus the number of triangles
containing an edge in B adjacent to w1 or w2 is at most ((1 + 2ε)n/2 + 6b/n)12b/n. Note that the
codegree of w1, w2 is at most n. Consequently the total number of bowties created in this fashion
is at most(

(1 + 2ε)
n
2

+
6b
n

)
12b
n

n
(1)
< 8bn.

Now consider the case when the bowtie contains an edge in B which is not adjacent to {w1, w2}.
Select an edge e ∈ B, this can be done in b ways. The final vertex of the bowtie can be picked in
at most n ways. Note that once the central vertex of the bowtie has been selected the structure of
the bowtie has been determined, as it has to contain the edges e and {w1, w2} and these two edges
have to be disjoint. Therefore we create at most 5bn bowties this way.

In total we created less than 13bn bowties, leading to a contradiction. □

Using Lemma 8 we obtain an upper bound on dB(v).

Lemma 9. For every v ∈ V we have dB(v) < 5ε2/3n.

Proof. Assume for contradiction that there exists a vertex v ∈ V such that dB(v) ≥ 5ε2/3n.
Without loss of generality assume that v ∈ V1. Because {V1, V2} is a max-cut of H we have that
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|N(v) ∩ V2| ≥ 5ε2/3n. Let N1 ⊆ N(v)∩ V1 and N2 ⊆ N(v)∩ V2 be sets of size exactly 5ε2/3n. Since at
most ε2n2 edges are missing between V1 and V2, there can be only ε2n2 edges missing between N1
and N2. Therefore, there are at least (25ε4/3

− ε2)n2
≥ 24ε4/3n2 edges between N1 and N2 and each

of these edges is adjacent to at most 10ε2/3n other edges in this set. In addition, by the pigeonhole
principle there must exist a vertex u ∈ N1 such that |N(u) ∩ N2| ≥ 2ε2/3n.

Next we count the number of bowties containing the edge {u, v}. Note that any pair of disjoint
edges between N1 and N2 creates a bowtie, where the central vertex is v. Recall that u is contained
in at least 2ε2/3n edges, where the other end is in N2. In addition, each of these edges is disjoint
from at least 24ε4/3n2

− 10ε2/3n edges between N1 and N2. Therefore, {u, v} is contained in at least

2ε2/3n(24ε4/3n2
− 10ε2/3n) > 25ε2n3

bowties, when n is large enough.
On the other hand, Lemma 8 implies that any edge can be contained in at most 13bn bowties

and by the bound (1) giving b ≤ ε2n2, we have 13bn ≤ 13ε2n3, leading to a contradiction. □

However, for vertices which have many neighbours in the opposite part, which holds for most
vertices, we establish a tighter bound on dB(v). Let

M = E(K (V1, V2)) \ E(H).

We call the edges in M missing. Recall that dM (v) is the degree of vertex v in the graph (V ,M). Let
Si ⊆ Vi be the set of vertices v ∈ Vi satisfying dM (v) ≥ ε1/4n. Since q + 1 + |M| ≤ b, we have

|Si| ≤
|M|

ε1/4n
≤

b
ε1/4n

. (2)

Next we will consider the properties of the graph spanned by V ′
= V\(S1 ∪ S2), denoted by H ′.

Let V ′

1 = V1 \ S1 and V ′

2 = V2 \ S2. The set of edges spanned by V ′

1 and V ′

2 are denoted by B′

1
and B′

2 respectively. Also let B′
= B′

1 ∪ B′

2. Note that for i = 1, 2, for any vertex v ∈ V ′

i we have
dB(v) ≤ dB′ (v) + |Si|. Since |Si| is bounded from above by b/(ε1/4n), any upper bound on dB′ (v) also
provides an upper bound on dB(v).

Lemma 10. For every v ∈ V ′ we have dB′ (v) ≤ 80b/n + 1.

Proof. Assume for contradiction that there exists v ∈ V ′ such that dB′ (v) > 80b/n+1. Without loss
of generality assume v ∈ V ′

1. We will show that in this graph there is an edge which is contained
in at least 13bn bowties which together with Lemma 8 leads to a contradiction.

Note that any vertex in V ′

1 has at least v2 − ε1/4n neighbours in V2 and thus any pair of vertices
in V ′

1 has at least v2 − 2ε1/4n ≥ (1 − 2ε)n/2 − 2ε1/4n common neighbours. Therefore every edge
in B′

1 is contained in at least (1 − 2ε)n/2 − 2ε1/4n triangles. Any pair of triangles each containing
a different edge in B′

1 and a vertex in V2 is edge disjoint if the vertex in V2 differs. Therefore, any
edge in B′ adjacent to v is contained in at least

(dB′ (v) − 1)
(
(1 − 2ε − 4ε1/4)

n
2

− 1
)2

≥ 16bn

bowties, a contradiction. □

Recall that q + 1 + |M| ≤ b. When b is small, we have S1, S2 = ∅, implying H = H ′ and
dB′ (v) = dB(v). Therefore, the upper bound on the degree in the graph (V , B′) in Lemma 10 is actually
an upper bound on the degree in (V , B). This enables us to show that K (V1, V2) is a subgraph of H .

Lemma 11. When b < ε1/4n we have that M = ∅.

Proof. Assume for contradiction that M ̸= ∅. Since b < ε1/4n, by (2) we have |S1|, |S2| < 1, implying
that S1 = S2 = ∅. Together with Lemma 10 we have dB(w) ≤ 80b/n+ 1 < 80ε1/4

+ 1 < 2 for every
w ∈ V . Therefore, dB(w) is at most one, which in turn implies that the edges in B are disjoint.
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Without loss of generality assume b1 ≥ b2. For every edge {w1, w2} ∈ B1 let t{w1,w2} denote the
number of triangles containing either w1 or w2 and an edge in B2.

We show that if B2 ̸= ∅, then there exists an edge e ∈ B1 with te ≥ b2 + 1. Assume for
contradiction that there is no such edge. For any {w1, w2} ∈ B1 consider the 2b2 potential triangles
which could contribute to t{w1,w2}. Since the edges in B2 are disjoint, these triangles are edge disjoint
except for the edge in B2. In order for t{w1,w2} ≤ b2 we must have that b2 of these triangles are
missing at least one edge and thus dM (w1) + dM (w2) ≥ b2. Since the edges in B1 are also disjoint,
we have

|M| ≥

∑
{w1,w2}∈B1

(dM (w1) + dM (w2)) ≥ b1b2.

Note that because |M| ≤ b − q − 1 and q ≥ 1, we have |M| ≤ b − 2 = b1 + b2 − 2. However, no
positive integer pair b1 ≥ b2 ≥ 1 satisfies b1 + b2 − 2 ≥ b1b2, resulting in a contradiction.

Select {w1, w2} ∈ B1 such that t{w1,w2} is maximal. We will give a lower bound on the number
of bowties destroyed when {w1, w2} is removed. First we consider bowties which have an edge
in B2. Note that a triangle w1, x, y, where x, y ∈ V2, forms a bowtie with any triangle containing
both w1 and w2, but not x and y. Also the codegree of w1, w2, not including x and y, is at least
(1 − 2ε)n/2 − |M| − 2 ≥ (1 − 2ε)n/2 − b. Since b2 + 1B2 ̸=∅ = 0, when b2 = 0 we have
t{w1,w2} ≥ b2 + 1B2 ̸=∅. Thus removing {w1, w2} destroys at least

(b2 + 1B2 ̸=∅)
(
(1 − 2ε)

n
2

− b
)

such bowties. Now we consider the case when the bowtie contains a second edge in B1. Note that
any four vertices in V1 have at least (1− 2ε)n/2− b common neighbours. Recall that the edges in B
are disjoint. Thus any pair of edges in B1 are contained in at least (1−2ε)n/2−b bowties. Therefore,
at least

(b1 − 1)
(
(1 − 2ε)

n
2

− b
)

additional bowties are destroyed when {w1, w2} is removed. In total, this leads to at least

(b − 1 + 1B2 ̸=∅)
(
(1 − 2ε)

n
2

− b
)

≥ (b − 1 + 1B2 ̸=∅)
(
(1 − 2ε)

n
2

− ε1/4n
)

destroyed bowties.
Since M ̸= ∅, there exists {u, v} ∈ M . Without loss of generality assume u ∈ V1 and v ∈ V2. Now

we analyse the number of bowties created when {u, v} is added to the graph.
We first consider the case when B2 = ∅. Since B2 = ∅, v has no neighbours in B2 and thus

inserting {u, v} can create at most one triangle, with the third vertex being z ∈ V1, if it exists. The
number of bowties created is equal to the number of triangles containing exactly one of u, v, z as
these form a bowtie with the triangle u, v, z. The only neighbour of u in V1 is z and vice versa. This
means that the only way these vertices can be in a triangle is if the triangle contains an edge in B2.
However as B2 = ∅ no such triangles exist. Similarly, the only way v can be in a triangle is if the
triangle contains an edge in B1, so there are at most b1 = b such triangles. Thus removing {w1, w2}

destroys at least

(b − 1)
(
(1 − 2ε)

n
2

− ε1/4n
)

bowties, while inserting {u, v} creates at most b. Since b ≥ |M| + q + 1 ≥ 3 we destroy more
triangles than we created, which leads to a contradiction.

On the other hand, if B2 ̸= ∅, then u can have a neighbour in V1 and v can have a neighbour in V2.
Denote these vertices by z1 and z2 respectively, if it exists. Similarly as before, we are interested
in the number of triangles containing exactly one of u, v, z1 or one of u, v, z2. We start with the
u, v, z1 triangle. Similarly as before, for each of u and z1 there are at most b2 such triangles where
the additional vertices of the triangle are in V2, and for v there are at most b1 such triangles where
the additional vertices are in V1. Now the only neighbour of u in V1 is z1 and vice versa, so we have
counted every triangle containing u or z1. However, v has a neighbour z2 ∈ V2 and every vertex in
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V1\{u, z1} can form a triangle with {v, z2}. Therefore, the total number of bowties containing the
{u, v, z1} triangle is at most b1 + 2b2 + v1. Analogously, one can show for the {u, v, z2} triangle that
the number of bowties it is contained in is at most 2b1 + b2 + v2. So in total at most 3b+n bowties
have been created, by adding the edge {u, v}. Now this has to be more than the number of triangles
destroyed, so

3b + n ≥ b
(
(1 − 2ε)

n
2

− ε1/4n
)

,

which leads to a contradiction as b ≥ 3. □

In the remainder of this section we prove that M = ∅ when b is large. We start by showing that
S1 = S2 = ∅ holds in this case as well. Namely, should there exist a vertex v ∈ S1 ∪S2 we show that
removing many edges from B and inserting them between V1 and V2 such that they are adjacent
to v decreases the number of bowties in the graph. As a first step we need to find a suitable set of
edges, which when removed from the graph destroy many copies of bowties.

Lemma 12. For every integer k ≤ |B′
|/2 there exists D ⊆ B′ with |D| = k such that removing all edges

in D destroys at least

k
bn
8

−
nk2

2
bowties.

Proof. Note that∑
v∈S1

dB(v) +

∑
v∈S2

dB(v)
Lemma 9

≤ (|S1| + |S2|)5ε2/3n

= 10ε5/12(|S1| + |S2|)ε1/4n/2
(2)
≤ 10ε5/12b. (3)

Thus

|B′
| ≥ b −

∑
v∈S1

dB(v) −

∑
v∈S2

dB(v)
(3)
≥ (1 − 10ε5/12)b > 0. (4)

Therefore, B′ is non-empty. Without loss of generality we assume that V1 spans at least as many
edges in B′ as V2. Note that any four vertices in V ′

1 have at least (1 − 2ε)n/2 − 4ε1/4n common
neighbours. Select an arbitrary pair of edges {w1, w2}, {w3, w4} ∈ B′

1. If {w3, w4} is disjoint from
{w1, w2}, then for every shared neighbour of w1, w2, w3, w4 we have a bowtie. On the other hand,
if {w3, w4} intersects {w1, w2}, then every pair of shared neighbours results in a bowtie. Thus the
number of bowties containing {w1, w2} and {w3, w4} is at least

(1 − 2ε − 8ε1/4)
n
2
.

Therefore, removing arbitrary k edges from B′

1 destroys at least

(1 − 2ε − 8ε1/4)
n
2

(
k
(

|B′
|

2
− k

))
(4)
≥ (1 − 2ε − 8ε1/4)

n
2

(
k
(
(1 − 10ε5/12)

b
2

− k
))

≥ k
bn
8

−
nk2

2
bowties. □

Next we analyse the number of bowties created if we insert edges between V1 and V2.
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Lemma 13. Assume {u, v} ∈ M with u ∈ V1 and v ∈ V2. Let G be a graph created from H by removing
an arbitrary set of edges D ⊆ E(H) and inserting an arbitrary set of edges from M \ {u, v}. If

|NG(u) ∩ V ′

1|, |NG(v) ∩ V ′

2| ≤ 80b/n + 1, (5)

then inserting {u, v} into the graph G creates at most 4ε1/4bn + 6n bowties.

Proof. Note that adding the edges in M \ {u, v} leaves B unchanged and removing the edges in D
can only decrease the size of B.

We start by determining an upper bound on the number of triangles in G a given vertex is
contained in. Consider an arbitrary vertex w ∈ V . Without loss of generality let w ∈ V1 and
we consider the triangles depending on the number of neighbours it contains in V2. Should the
additional vertices of the triangle both be in V1 or V2, they form an edge in B and thus there are at
most b such triangles. On the other hand, if the triangle contains two vertices in V1 and one vertex
in V2, then the second vertex in V1 has to be a neighbour of w, which can be chosen in dB\D(w) ways
and the vertex in V2 can be chosen in at most n ways. Therefore, the number of triangles containing
v is at most b+dB\D(v)n. This together with Lemma 9 implies that the number of triangles containing
any vertex can be bounded from above by

b + 5ε2/3n2. (6)

However, for w ∈ V ′
∪ {u, v} a stronger bound holds. Note that for a vertex w ∈ V1 the value

of dB\D(w) is determined by the number of neighbours w has in V ′

1 and in S1. For w ∈ V ′

1 ∪ {u},
Lemma 10 and (5) imply that the first of these two terms can be bounded from above by 80b/n+1,
while the second term is at most ε−1/4b/n by (2). An analogous argument holds for w ∈ V ′

2 ∪ {v}.
Thus the number of triangles that w ∈ V ′

∪ {u, v} is contained in is at most

b +

(
80b
n

+ 1 +
b

ε1/4n

)
n = 81b + n + ε−1/4b ≤ 3ε−1/4b + n. (7)

Inserting the edge {u, v} creates two types of triangles, depending on whether the third vertex
is in V ′ or not. We first consider the case when the third vertex is in V ′. Note that due to our
conditions there are at most |NG(u) ∩ V ′

1| + |NG(v) ∩ V ′

2| ≤ 2(80b/n + 1) such triangles. Due to (7)
every vertex of these triangles is contained in at most 3ε−1/4b + n triangles, thus the number of
bowties is bounded from above by

2
(
80b
n

+ 1
)
3(3ε−1/4b + n) = 1440ε−1/4 b

2

n
+ 18ε−1/4b + 480b + 6n

(1)
≤ εbn + 18ε−1/4b + 6n

≤ 2εbn + 6n, (8)

where the last inequality holds, since n is large enough.
In addition, inserting {u, v} also creates at most |S1| + |S2| triangles with the third vertex in

S1 ∪ S2. Thus, by (2) and (6) an upper bound on these bowties is

2
b

ε1/4n
3
(
b + 5ε2/3n2)

=
6b2

ε1/4n
+ 30ε5/12bn

(1)
≤ 2ε1/4bn.

This together with (8) implies that at most

4ε1/4bn + 6n

bowties have been created. □

Now we can show that both S1 and S2 are empty and thus H = H ′.

Lemma 14. We have S1, S2 = ∅.
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Proof. Assume for contradiction that S1 or S2 is non-empty. Without loss of generality assume v ∈

S1. Then we have that dM (v) ≥ ε1/4n. In addition, by (1) and (2) we have |S2| ≤ bε−1/4n−1
≤ ε7/4n

and thus there exists U ⊆ V ′

2 of size ε1/3n such that no vertex in U is adjacent to v.
Now we will remove ε1/3n edges from the graph H and insert the edges {v, u} for every u ∈ U . In

particular, we will first remove every edge in B\B′ which is adjacent to v. By Lemma 9 the number
of such edges is dB(v) ≤ 5ε2/3n < ε1/3n. In addition ε1/3n ≤ ε1/4n/3 ≤ |M|/3 ≤ |B|/3, which is
at most |B′

|/2 by (4). Therefore 0 < ε1/3n − dB(v) ≤ |B′
|/2 and the remaining ε1/3n − dB(v) edges

can be removed from B′ in accordance to Lemma 12. Denote the set of ε1/3n removed edges by D.
Removing the edges in D destroys at least

(ε1/3n − dB(v))
bn
8

−
ε2/3n3

2
Lemma 9

≥
ε1/3bn2

30
bowties, where we use b ≥ dM (v) ≥ ε1/4n.

Let G be the graph obtained after removing the edges in D. Note that |NG(v) ∩ V1| = 0 and for
u ∈ V ′

2 we have by Lemma 10 that |NG(u) ∩ V ′

2| ≤ 80b/n + 1. In addition, inserting edges into M
keeps these values unchanged. Thus, Lemma 13 is applicable for each of the ε1/3n edges inserted,
and thus at most

ε1/3n(4ε1/4bn + 6n)

bowties are created. Since b ≥ ε1/4n

ε1/3bn2

30
> ε1/3n(4ε1/4bn + 6n),

contradicting the minimality of H . □

Since H = H ′ we have that dB(v) = dB′ (v). Thus, Lemma 10 implies that the conditions of
Lemma 13 are satisfied for any pair {u, v} ∈ M , enabling us to prove M = ∅.

Lemma 15. When b ≥ ε1/4n we have M = ∅.

Proof. Assume for contradiction M ̸= ∅ and let {u, v} ∈ M . Since |B′
| = |B| ≥ 2, by Lemma 12

there exists an edge {w1, w2} such that removing this edge destroys at least bn/8 − n/2 bowties.
In addition, Lemma 13 implies that we create at most 4ε1/4bn + 6n bowties when inserting {u, v}.
Since b ≥ ε1/4n we have

bn
8

−
n
2

> 4ε1/4bn + 6n,

which is a contradiction. □

We conclude this section with the proof of Proposition 3.

Proof of Proposition 3. The first statement follows trivially from Lemmas 7, 11 and 15.
Next we show that b1 ≤ 4q + 4. Assume for contradiction that b1 > 4q + 4. Taking any two

disjoint edges e1, e2 in B1 and a vertex in V2 creates a bowtie. In addition if e1, e2 ∈ B1 are adjacent
then any pair of vertices in V2 creates a bowtie. Thus the number of bowties in the graph is at least(

4(q + 1)
2

)
v2 ≥

(
4(q + 1)

2

)
(1 − 2ε)

n
2

>
27
8

(q + 1)2n > (q + 1)2 (13n/4 + 13)

for large enough n. This together with Lemma 4 contradicts the minimality of H . An analogous
argument shows b2 ≤ 4q + 4.

Let v1 = ⌈n/2⌉ + a and v2 = ⌊n/2⌋ − a. Without loss of generality assume a ≥ 0 i.e. v1 ≥ v2.
Then the total number of pairs between V1 and V2 is

|V1||V2| = ⌈n/2⌉⌊n/2⌋ − a2 + (⌊n/2⌋ − ⌈n/2⌉)a ≤ |E(T2(n))| − a2

implying that b1 +b2 = b ≥ q+1+a2. Together with b1 +b2 ≤ 8q+8 = o(n2) this implies a = o(n)
completing the proof. □
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4. Proof of Theorems 1 and 2

4.1. Proof of Theorem 1

Throughout this section let H be a graph on n vertices and ex(n, F ) + q edges containing the
minimal number of bowties. In the previous section we proved Proposition 3 stating that there
exists a partition of the vertex set of H into two sets V1, V2, such that every edge between the two
sets is present. In addition, both sets contain approximately n/2 vertices and the number of edges
spanned by each of these sets is small.

Once the partition of Proposition 3 has been established, we only need to examine the structure
of the graphs spanned by V1 and V2. Denote the edges spanned by V1 and V2 by B1 and B2,
respectively. Set B = B1 ∪ B2 and b = |B|. In addition, for i = 1, 2 let

vi = |Vi| and bi = |Bi|.

We start by investigating the number of bowties in such graphs. Let H̃ be a graph on V containing
ex(n, F ) + q edges such that the vertex set of H̃ can be partitioned into two parts Ṽ1, Ṽ2 with
E(K (Ṽ1, Ṽ2)) ⊆ E(H̃). Denote the set of edges spanned by Ṽ1 and Ṽ2 by B̃1 and B̃2, respectively,
also let B̃ = B̃1 ∪ B̃2.

Recall that for any v ∈ V and E ′
⊆

(V
2

)
dE′ (v) denotes the degree of vertex v in the graph (V , E ′).

Since H̃ contains a complete bipartite subgraph we can express a lower bound on the number of
bowties found in H̃ via an explicit formula. Recall that bowties are formed of two triangles, and
note that any triangle in H̃ must contain at least one edge in B̃. In particular, we restrict ourselves to
bowties formed from two triangles which have exactly one edge in B̃ and thus two edges between
Ṽ1 and Ṽ2. Any such bowtie belongs to one of the 3 types of bowties seen in Fig. 1. Any pair of
disjoint edges in Ṽ1 is contained in |̃V2| bowties. In addition a pair of adjacent edges in Ṽ1 can be
found in |̃V2|(|̃V2| − 1) bowties. Similarly, two disjoint edges in Ṽ2 create |̃V1| bowties, while two
adjacent edges create |̃V1|(|̃V1|−1) bowties. Finally any two edges, where one is spanned by Ṽ1 and
the other is spanned by Ṽ2, are contained in 2(n− 4) bowties. This implies that the total number of
bowties in H̃ is at least

2∑
i=1

⎛⎝∑
v∈Ṽi

(
d̃B(v)
2

)
|̃V3−i| (|̃V3−i| − 1) +

⎛⎝(
|̃Bi|

2

)
−

∑
v∈Ṽi

(
d̃B(v)
2

)⎞⎠ |̃V3−i|

⎞⎠
+ 2(n − 4)|̃B1||̃B2|.

After trivial simplifications, this lower bound can be rewritten as

#F (H̃) ≥ f ((d̃B(v))v∈Ṽ1 , (d̃B(v))v∈Ṽ2 ), (9)

where f is the following function. It takes as input two sequences of non-negative integers,
(d1,1, . . . , d1,v∗

1
) ∈ Nv∗

1 and (d2,1, . . . , d2,v∗
2
) ∈ Nv∗

2 such that v∗

1 + v∗

2 = n and b∗

i =
1
2

∑v∗
i

j=1 di,j is
an integer for i = 1, 2. Then the value of the function f is defined as

f ((d1,j)
v∗
1

j=1, (d2,j)
v∗
2

j=1) = 2(n − 4)b∗

1b
∗

2

+

2∑
i=1

⎛⎝ v∗
i∑

j=1

(
di,j
2

)
v∗

3−i(v
∗

3−i − 2) +

(
b∗

i

2

)
v∗

3−i

⎞⎠ . (10)

Note that the bound in (9) is sharp if neither Ṽ1 nor Ṽ2 contains a triangle. On the other hand,
the following lemma gives us some converse to the above inequality, by replacing B̃i by a graph B∗

i
that has the same number of edges and, additionally, is triangle-free and almost regular.

Lemma 16. The following holds for all sufficiently large n. Let V ∗

1 ∪ V ∗

2 = V be a partition of V and
for i = 1, 2 set v∗

i = |V ∗

i |. Let φ : V → N be a function such that, for i = 1, 2, b∗

i =
∑

v∈V∗
i

φ(v)/2 is
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an integer and b∗

i ≤ (v∗

i )
2/16. Then there is a graph H∗ with n vertices and v∗

1v
∗

2 + b∗

1 + b∗

2 edges such
that

#F (H∗) ≤ f
(
(φ(v))v∈V∗

1
, (φ(v))v∈V∗

2

)
. (11)

Furthermore, if for some i = 1, 2, two values of φ on V ∗

i differ by more than 1, then the inequality
in (11) is strict.

Proof. For i = 1, 2, pick integers di,1, . . . , di,v∗
i

∈ { ⌊2b∗

i /v
∗

i ⌋, ⌈2b∗

i /v
∗

i ⌉ } with sum 2b∗

i . Lemma 24
shows that there is a triangle-free graph B∗

i on V ∗

i whose degree sequence is (di,1, . . . , d∗

i,vi
). Let H∗

be obtained by adding every edge between the graphs B∗

1 and B∗

2. Clearly, H
∗ has the stated order

and size while #F (H∗) = f ((d1,j)
v∗
1

j=1, (d2,j)
v∗
2

j=1). Using the convexity of the function x ↦→
(x
2

)
on N, we

see that this is at most the right-hand side of (11), as required.
The second part of the lemma follows since the function x →

(x
2

)
is strictly convex on N. □

If we let H̃ be our extremal graph H and let φ(v) be dB(v) for v ∈ V , then, in view of vi =

(1/2 + o(1))n = Ω(n) and bi = o(n2), Lemma 16 applies, providing another extremal graph H∗.
Thus, both (9) and (11) are equalities. This means that, for i = 1, 2, the part Vi does not induce a
triangle and

|dB(u) − dB(v)| ≤ 1, for every u, v ∈ Vi. (12)

For future reference, let us repeat the formula for the number of bowties in H:

#F (H) = 2(n − 4)b1b2 +

2∑
i=1

⎛⎝∑
v∈Vi

(
dB(v)
2

)
v3−i(v3−i − 2) +

(
bi
2

)
v3−i

⎞⎠ . (13)

Note that the number of vertices which have degree ⌊2bi/vi⌋ or ⌈2bi/vi⌉ in the graph (V , B) is
uniquely determined by bi and vi. Therefore (13) depends only on b1, b2, v1, v2. In fact, we only
need to establish the values of these parameters which lead to the minimal number of bowties.
However, there is some dependence between the parameters. We only require one parameter to
track both part sizes. Let

v1 = ⌈n/2⌉ + a and v2 = ⌊n/2⌋ − a (14)

for some a ∈ Z. Proposition 3 implies that a = o(n). Note that b = q + 1 + (⌈n/2⌉ − ⌊n/2⌋)a + a2,
thus it suffices to determine one of b1, b2, once the value of a has been established.

Theorem 1 follows if we can show that a = 0 when n is even and that a = 0 or −1 when n is
odd. We will show that if neither of these holds, then moving a vertex from the larger part to the
smaller decreases the number of bowties. Ideally, we would move the vertex in such a way that the
number of neighbours of the vertex within its part remains unchanged and every edge between the
new parts is still present. This leaves the total number of edges spanned by the parts unchanged,
but increases the number of edges between V1 and V2 as |a| is reduced. Thus, in order to leave the
total number of edges unchanged, we need to remove some additional edges. Although the previous
argument is only applicable if the degree of the vertex moved between the parts is even, it can be
adapted to work for odd degrees as well. This is achieved by removing an edge before the vertex is
moved, in particular an edge adjacent to the vertex about to be moved, resulting in an even degree
for the vertex. Further superfluous edges are removed after the vertex has been moved.

We need to estimate the change in the number of bowties after moving a vertex between the
parts and removing superfluous edges. Later we will see that the number of bowties destroyed by
removing edges outnumbers the number of bowties created when moving the vertex.

In order to prove Theorem 1 we need three auxiliary lemmas, the proofs of which can be found
in Section 5. We first estimate the number of bowties destroyed when a well-chosen set of k edges
is removed from the graph H , after a vertex has been moved between its parts.
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Lemma 17. Let U ⊆ V such that |U | ≥ n − 2 and Ĥ a graph created from H by adding and
removing edges, such that no edge is removed from E(H[U]). If b ≥ 10 for every k ≤ b/3 there exists
D ⊆ B ∩ E(H[U]) with |D| = k such that the removal of all edges of D from the graph Ĥ destroys at
least

k
bn
8

−
nk2

2
bowties.

The number of bowties created when moving a vertex depends on the difference of b1 and b2.
In particular, the closer the two values are, the smaller the change in the number of bowties is. In
the following lemma we provide an upper bound on the difference of b1 and b2.

Lemma 18. We have that |b1 − b2| ≤ n/4 + 33(|a| + 1)q/n.

As a consequence, we can derive that the degrees in the graph (V , B) are also close. By (12), this
holds in a very strong form for vertices that are in the same part Vi. So the following lemma says
something new, only if w is not in the same part as u or v.

Lemma 19. If there exists a pair of vertices u, v ∈ V such that dB(u) = dB(v), then every vertex w ∈ V ,
but at most one, satisfies dB(w) ≥ dB(u) − 1 − 900(|a| + 1)(dB(u) − 1)/n.

Using Proposition 3 and Lemmas 17–19 we prove Theorem 1.

Proof of Theorem 1. Assume for contradiction that the theorem is false. Then for each δ > 0 there
exists a graph H that violates Theorem 1. Let δ be sufficiently small so that the order n ≥ 1/δ
of H and the surplus q = |E(H)| − ex(n, F ) ≤ δn2 satisfy all forthcoming inequalities. Since the
constant δ given by our proof is very small, we do not write it explicitly nor try to optimise the
dependencies between other constants. For notational convenience, we use asymptotic notation,
e.g. writing q = o(n2).

Proposition 3 applies and gives that H contains a spanning complete bipartite graph K (V1, V2).
Define vi = |Vi| for i = 1, 2. Without loss of generality we may assume that v1 ≥ v2. Let
a = v1 − ⌈n/2⌉. By Proposition 3, we have that a = o(n). Since H is a counterexample, we have
a ≥ 1. The larger part V1 must contain at least one edge, otherwise selecting U ⊆ V1 with |U | = v2
and moving the graph spanned by V2 to U strictly decreases the number of bowties by (13).

Recall that, by (12), all bad degrees inside a part differ by at most 1. Let d be the maximal integer
such that there exist two vertices v, w ∈ V1 such that dB(v) = dB(w) = d. Since V1 contains at least
one edge, we have d > 0.

Note that each bad degree is at most d + 2 + o(d). Indeed, this is true if V2 spans no edges.
Otherwise, V2 has two vertices u′, v′ of the same positive degree d′ and in view of a = o(n) from
Lemma 19 applied to these two vertices we infer d′

≤ d + 1 + o(d). The claim follows from (12).
Thus, for every z ∈ V , we have, for example, dB(z) ≤ 2d + 2. Since v1, v2 ≤ n, we have

b1, b2 = O(dn). (15)

We consider two cases depending on the parity of d.

Case 1: d is even.
Roughly speaking, we move v from V1 to V2 in such a way that for every vertex in V \ {v} the

number of neighbours within its part remains unchanged, but for v the number of neighbours within
its part changes from d to d − 2, i.e. an edge is removed from B. In addition, every edge between
the new parts is present. More formally, set V ∗

1 = V1 \ {v}, V ∗

2 = V2 ∪ {v} and define φ : V → N
such that for u ∈ V \ {v} we have φ(u) = dB(u) and φ(v) = dB(v)− 2. Let H∗ be the graph provided
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by Lemma 16 for this function φ. We have that

#F (H∗) ≤ 2(n − 4)
(
b1 −

dB(v)
2

)(
b2 +

dB(v) − 2
2

)
+

(
dB(v) − 2

2

)
(v1 − 1)(v1 − 3)

+

(
b1 − dB(v)/2

2

)
(v2 + 1) +

(
b2 + (dB(v) − 2)/2

2

)
(v1 − 1)

+

∑
u∈V1\{v}

(
dB(u)
2

)
(v2 + 1)(v2 − 1) +

∑
u∈V2

(
dB(u)
2

)
(v1 − 1)(v1 − 3).

By (13) the number of bowties in H is

#F (H) = 2(n − 4)b1b2 +

(
dB(v)
2

)
v2(v2 − 2) +

(
b1
2

)
v2 +

(
b2
2

)
v1

+

∑
u∈V1\{v}

(
dB(u)
2

)
v2(v2 − 2) +

∑
u∈V2

(
dB(u)
2

)
v1(v1 − 2).

We are interested in a lower bound on #F (H) − #F (H∗), more precisely the difference of the
above two bounds. We will examine the difference of each of the six terms in order to determine
the overall change. Recall that dB(v) = d.

We start with

2(n − 4)b1b2 − 2(n − 4)
(
b1 −

d
2

)(
b2 +

d − 2
2

)
= 2(n − 4)

(
b2

d
2

− b1
d − 2
2

+
d(d − 2)

4

)
(15)
≥ ndb2 − n(d − 2)b1 + O(d2n). (16)

Recall that v1, v2 = n/2 + O(a). Thus for the following term we have(
d
2

)
v2(v2 − 2) −

(
d − 2
2

)
(v1 − 1)(v1 − 3)

=

((
d
2

)
−

(
d − 2
2

))(n
2

)2
+ O(ad2n)

= (2d − 3)
(n
2

)2
+ O(ad2n). (17)

By the definition of d and (12), every vertex in V1, except at most one, has degree at most d.
Therefore b1 − 1 ≤ dn/4 + O(ad) and thus we have(

b1
2

)
v2 −

(
b1 − d/2

2

)
(v2 + 1) ≥ b1

d
2
v2 −

(
b1
2

)
+ O(d2n)

= b1
d
2
v2 − b1

b1 − 1
2

+ O(d2n)

(15)
≥ b1

(
d
2
n
2

−
dn
8

)
+ O(ad2n)

= b1
dn
8

+ O(ad2n). (18)
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Lemma 19 implies that for every u ∈ V2, except at most one, we have dB(u) ≥ d−1+O(ad/n). Thus
b2 − 1 ≥ (d − 1)n/4 + O(ad) and similarly as before(

b2
2

)
v1 −

(
b2 + (d − 2)/2

2

)
(v1 − 1) = −b2

d − 2
2

n
2

+

(
b2
2

)
+ O(ad2n)

= −b2
d − 2
2

n
2

+ b2
b2 − 1

2
+ O(ad2n)

≥ −b2
(d − 3)n

8
+ O(ad2n). (19)

All that is left to estimate are the two sums. The first of these is∑
u∈V1\{v}

(
dB(u)
2

)
v2(v2 − 2) −

∑
u∈V1\{v}

(
dB(u)
2

)
(v2 + 1)(v2 − 1)

= (−2v2 + 1)
∑

u∈V1\{v}

(
dB(u)
2

)
.

Recall that for every u ∈ V1 \ {v}, except at most one, we have that dB(u) ≤ d and by (12) for
the one exception we have dB(u) ≤ d + 1. When dB(u) ≤ d, we have(

dB(u)
2

)
≤

dB(u)(d − 1)
2

,

on the other hand, if dB(u) = d + 1, then(
dB(u)
2

)
=

dB(u)(d − 1)
2

+
d + 1
2

.

Thus

(−2v2 + 1)
∑

u∈V1\{v}

(
dB(u)
2

)
≥ (−2v2 + 1)

⎛⎝d + 1
2

+

∑
u∈V1\{v}

dB(u)(d − 1)
2

⎞⎠
= (−2v2 + 1)(d − 1)

∑
u∈V1\{v}

dB(u)
2

+ O(ad2n)

≥ (−2v2 + 1)(d − 1)b1 + O(ad2n)
(15)
= −b1(d − 1)n + O(ad2n). (20)

Finally, we have∑
u∈V2

(
dB(u)
2

)
v1(v1 − 2) −

∑
u∈V2

(
dB(u)
2

)
(v1 − 1)(v1 − 3) = (2v1 − 3)

∑
u∈V2

(
dB(u)
2

)
.

Recall that for every u ∈ V2, except at most one, we have dB(u) ≥ d − 1 − O(ad/n) and by (12)
for the one exception we have dB(u) ≥ d − 2 − O(ad/n), thus

(2v1 − 3)
∑
u∈V2

(
dB(u)
2

)
≥ (2v1 − 3)(d − 2)

∑
u∈V2

dB(u)
2

+ O(ad2n)

= b2(d − 2)n + O(ad2n). (21)

Combining (16)–(21) we have

#F (H) − #F (H∗) ≥ (2d − 3)
(n
2

)2
+

(
15d − 13

4
b2 −

15d − 24
4

b1

)
n
2

+ O(ad2n)

Lemma 18
≥ (2d − 3)

(n
2

)2
−

15d − 24
8

(n
2

)2
+ O(ad2n)



18 M. Kang, T. Makai and O. Pikhurko / European Journal of Combinatorics 88 (2020) 103107

d=o(n)
=

d
8

(n
2

)2
+ o(adn2) (22)

when n is large enough.
Note that the number of edges in H∗ exceeds the number of edges in H by

E(H∗) − E(H) ≥ (⌈n/2⌉ + (a − 1)) (⌊n/2⌋ − (a − 1))
− (⌈n/2⌉ + a) (⌊n/2⌋ − a) − 1

≥ a2 − (a − 1)2 − 1 = 2(a − 1).

When a < 10,

#F (H) − #F (H∗)
(22)
≥

d
8

(n
2

)2
+ o(adn2) > 0

for large enough n and thus already H∗ has fewer bowties than H and removing the additional edges
only decreases this number. On the other hand, if a ≥ 10, then removing these 2(a − 1) additional
edges plays a significant role, because by Lemma 17 this destroys at least (a− 1)bn/4− 2(a− 1)2n
bowties. Recall that b ≥ q + 1 + a2 and when a ≥ 10 then b ≥ q + 1 + a2 ≥ 10(a − 1) leading to
the destruction of at least

(a − 1)n
(
b
4

− 2(a − 1)
)

≥ (a − 1)n
(
b
4

−
2b
10

)
= (a − 1)

b
20

n
b≥(d−1)n/2,d≥2

≥
adn2

100
(23)

bowties. This together with (22) leads to a contradiction.

Case 2: d is odd.
Recall that v, w ∈ V1 are such that dB(v) = dB(w) = d. Roughly speaking, we will move v from

V1 to V2 in such a way that for every vertex in V \ {v, w} the number of neighbours within its part
remains unchanged, but for v and w the number of neighbours within its part changes from d to
d − 1. Formally, set V ∗

1 = V1 \ {v}, V ∗

2 = V2 ∪ {v} and define φ : V → N such that φ(v) = dB(v) − 1,
φ(w) = dB(w) − 1 and for u ∈ V \ {v, w} we have φ(u) = dB(u). Let H∗ be the graph returned by
Lemma 16. The number of bowties in H∗ satisfies

#F (H∗) ≤ 2(n − 4)
(
b1 −

dB(v) + 1
2

)(
b2 +

dB(v) − 1
2

)
+

(
dB(v) − 1

2

)
(v1 − 1)(v1 − 3) +

(
dB(w) − 1

2

)
(v2 + 1)(v2 − 1)

+

(
b1 − (dB(v) + 1)/2

2

)
(v2 + 1) +

(
b2 + (dB(v) − 1)/2

2

)
(v1 − 1)

+

∑
u∈V1\{v,w}

(
dB(u)
2

)
(v2 + 1)(v2 − 1) +

∑
u∈V2

(
dB(u)
2

)
(v1 − 1)(v1 − 3).

Clearly, the number of bowties in H is the same as earlier

#F (H) = 2(n − 4)b1b2

+

(
dB(v)
2

)
v2(v2 − 2) +

(
dB(w)

2

)
v2(v2 − 2)

+

(
b1
2

)
v2 +

(
b2
2

)
v1

+

∑
u∈V1\{v,w}

(
dB(u)
2

)
v2(v2 − 2) +

∑
u∈V2

(
dB(u)
2

)
v1(v1 − 2).

The calculations, for most part, are analogous to Case 1. In (16) we just need to replace d with
d + 1

2(n − 4)b1b2 − 2(n − 4)
(
b1 −

(d + 1)
2

)(
b2 +

d − 1
2

)
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≥ n(d + 1)b2 − n(d − 1)b1 + O(d2n). (24)

On the other hand, in (17) the vertex degree decreases only by one, leading to(
d
2

)
v2(v2 − 2) −

(
d − 1
2

)
(v1 − 1)(v1 − 3)

=

(
d
2

)(n
2

)2
−

(
d − 1
2

)(n
2

)2
+ O(ad2n)

= (d − 1)
(n
2

)2
+ O(ad2n).

However, this time the degree of another vertex in V1 also decreases(
dB(w)

2

)
v2(v2 − 2) −

(
dB(w) − 1

2

)
(v2 + 1)(v2 − 1) = (d − 1)

(n
2

)2
+ O(ad2n).

For (18) and (19) our bounds on b1 and b2 still hold, leading to(
b1
2

)
v2 −

(
b1 − (d + 1)/2

2

)
(v2 + 1) ≥ b1

(
d + 1
2

n
2

−
dn
8

)
+ O(ad2n)

= b1
(d + 2)n

8
+ O(ad2n)

and (
b2
2

)
v1 −

(
b2 + (d − 1)/2

2

)
(v1 − 1) ≥ −b2

d − 1
2

n
2

+ b2
(d − 1)n

8
+ O(ad2n)

≥ −b2
(d − 1)n

8
+ O(ad2n).

Finally, note that removing an additional vertex from the sum in (20) has no affect on the lower
bound and (21) remains unchanged. Therefore, we have

#F (H) − #F (H∗) ≥ 2(d − 1)
(n
2

)2
+

(
15d − 7

4
b2 −

15d − 18
4

b1

)
n
2

+ O(ad2n)

Lemma 18
≥ 2(d − 1)

(n
2

)2
−

15d − 18
8

(n
2

)2
+ O(ad2n)

≥
d + 2
8

(n
2

)2
+ O(ad2n)

when n is large enough. Similarly as before we have at least 2(a− 1) additional edges in the graph.
If a < 10 or d = 1, then the number of bowties has already decreased even before removing
these edges. In the remaining cases, a calculation analogue to (23) implies that the removal of the
additional edges decreases the number of bowties. □

4.2. Proof of Theorem 2

In order to prove Theorem 2 we need to show

hF (n, q) = (1 ± c)
n
2

[(
e1
2

)
+

(
e2
2

)
+ m

(
d + 1
2

)
n
2

+ (n − m)
(
d
2

)
n
2

+ 4e1e2

]
,

where

e1 =

⌊
dn
4

+
min{m, n/2}

2

⌋
and e2 = q + 1 − e1.

In the previous subsection we established the values of v1 and v2, thus we only need to determine
the values of b1 and b2. More precisely, the asymptotics of these two values suffice, which we
achieve by analysing the degree sequence in the graphs spanned by V1 and V2. We first show that
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the bad degree of almost every vertex must take one of two values (Lemma 20). In addition in
one of the partitions almost every vertex must have the same bad degree (Lemma 21). The proofs
of these two lemmas can be found in Section 5. Lemmas 20 and 21 are sufficient to establish the
asymptotics of b1 and b2 and complete the proof of Theorem 2.

Lemma 20. Let d = ⌊2(q+1)/n⌋. For every vertex v ∈ V , we have d−1 ≤ dB(v) ≤ d+2. In addition,
both the number of vertices with bad degree d − 1 and d + 2 are at most one.

This lemma shows that almost every vertex has degree ⌊2(q + 1)/n⌋ or ⌊2(q + 1)/n⌋ + 1 in the
graph (V , B). We have yet to establish how many of these vertices are contained in V1 and V2. In the
following lemma we show that in one of the two parts almost every vertex has the same degree. In
fact, we show a more general statement. By (12), pick integers k and ℓ such that every vertex in V1
has degree k or k+ 1 and every vertex in V2 has degree ℓ or ℓ + 1. Let Ci denote the set of vertices
of degree i in V1 and Di denote the set of vertices of degree i in V2.

Lemma 21. In H, at least one of |Ck|, |Ck+1|, |Dℓ|, |Dℓ+1| is at most 1.

The previous two lemmas give us a satisfactory estimate for the degree sequence of (V , B),
allowing us to determine the asymptotics of hF (n, q).

Proof of Theorem 2. By (13) and since vi = (1 + o(1))n/2, the number of bowties is

(1 + o(1))
n
2

[(
b1
2

)
+

(
b2
2

)
+

n
2

∑
v∈V

(
dB(v)
2

)
+ 4b1b2

]
.

When q < ⌊n/4⌋ − 1, Lemma 21 implies that the optimal solution is when V1 or V2 contains a
matching of size q + 1 and the other part does not span any edge. Therefore the statement holds
for this range of q.

Now assume that q ≥ ⌊n/4⌋−1. Recall from the statement of the theorem that 2(q+1) = dn+m
for d,m ∈ N with m < n and d = ⌊2(q+1)/n⌋. By Lemma 20 we have that almost every vertex has
degree d or d + 1 in (V , B) and any other vertex has degree d − 1 or d + 2. Thus we obtain∑

v∈V

(
dB(v)
2

)
= (n − m)

(
d
2

)
+ m

(
d + 1
2

)
+ O(d + 1).

Since d = o(n), we have (d + 1)n = o(n2). In addition, q = Ω(n) and thus b21 + b22 = Ω(n2).
Therefore, the total number of bowties is

(1 + o(1))
n
2

[(
b1
2

)
+

(
b2
2

)
+

n
2

(
(n − m)

(
d
2

)
+ m

(
d + 1
2

))
+ 4b1b2

]
.

All that is left to show is that one of the parts contains (1 + o(1))e1 edges. Recall that the
sum of the bad degrees is dn + m. Let m > n/2. By Lemma 20 there exist at least n/2 − 3
vertices of bad degree d + 1. If each part has at least 2 vertices with bad degree d + 1, then by
Lemma 21 all but at most one vertex must have bad degree d + 1 in one of the parts. Together
with Theorem 1 this implies that there exists a part with at least n/2 − 2 vertices of bad degree
d+1. Otherwise, one part has at most one vertex of bad degree d+1 and thus the other must have
at least n/2 − 4 vertices of bad degree d + 1. So in either case we have a part containing at least
n/2 − 4 vertices of bad degree d + 1 and without loss of generality we may assume that this is V1.
Then b1 = (1 + o(1))(d + 1)n/2 = (1 + o(1))e1.

Now consider the case when m ≤ n/2. A similar argument as before, implies the existence of a
part containing n/2 − 4 vertices with bad degree d and without loss of generality assume that this
is V2. Therefore,

b1 =
dn + m

2
− (1 + o(1))

dn
4

− o
(
(d + 1)n

4

)
= (1 + o(1))e1

as required. □
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Remark. Lemmas 20 and 21 leave only a limited number of options for the degree sequence of the
extremal graph H . The exact value of hF (n, q) can be deduced after a precise analysis. In particular
when n is divisible by 4, since the number of vertices in both parts is even the aforementioned
lemmas imply that every vertex has bad degree d or d + 1 and every vertex in one of the parts
has the same bad degree. Therefore the formula in Theorem 2 holds exactly, i.e. without the 1 ± c
multiplier.

5. Proof of technical lemmas

We start with results on the existence of triangle-free graphs with a given degree sequence, cul-
minating in Lemma 24 which was used in the proof of Lemma 16. While some of the
intermediate steps can be derived from the Gale–Ryser theorem [10,30] that characterises possible
degree sequences of bipartite graphs, we present simple direct constructions instead. Let an
(α, a, β, b)-graph mean a triangle-free graph with α + β vertices which has α vertices of degree
a and β vertices of degree b if a ̸= b and is a-regular if a = b. Trivially an (α, a, β, b) graph is also
a (β, b, α, a) graph.

Lemma 22. For any non-negative integers d, i,m satisfying d < i + m there exists a (2i, d +

1, 2m, d)-graph. In addition this is a balanced bipartite graph.

Proof. Partition the vertices into two sets {v1,j : j = 1, . . . , i+m} and {v2,j : j = 1, . . . , i+m}. Join
v1,j with v2,j by an edge for every j ≤ i. Let Mℓ be a perfect matching where for every j = 1, . . . , i+m
the vertex v1,j is connected to v2,k where k ≡ j + ℓ (mod i + m). In order to complete the graph,
insert Mℓ for ℓ = 1, . . . , d. The obtained graph has the desired degree sequence and is also bipartite
(and thus triangle-free). □

Lemma 23. For any integers k,m satisfying k ≥ m ≥ 0 there exists a (4k, k, 1, 2m)-graph.

Proof. Denote by u the vertex of degree 2m and partition the remaining vertices into 4 sets of size
k: U1, . . . ,U4. Denote the vertices in Ui by ui,j for j = 1, . . . , k. Join u to vertices ui,j by an edge,
where i = 1, 3 and j = 1, . . . ,m, i.e. we join u to m vertices in U1 and to m vertices in U3. In
addition, for j = m + 1, . . . , k insert an edge between u1,j and u3,j. Also for j = 1, . . . , k insert an
edge between u2,j and u4,j. Finally insert every edge between U1 and U2 and every edge between
U3 and U4 except the ones in the set {{ui,j, ui+1,j} : i = 1, 3, j = 1, . . . , k}.

Note that the obtained graph G has the required degree sequence. In addition u is not contained
in a triangle, while, G − u is bipartite with parts U1 ∪ U4 and U2 ∪ U3. Thus, G is triangle-free, as
required. □

Lemma 24. Let a, b, α, β be non-negative integers such that |a − b| = 1, αa + βb is even and
3a + 3b < α + β − 1. Then there is an (α, a, β, b)-graph.

Proof. If both α and β are even, then Lemma 22 directly gives the desired graph. Assume that
at least one of α and β is odd. In fact, exactly one of them is odd, because a and b have different
parities while αa+βb is even by our assumption. By symmetry, assume that α is odd and β is even.
Then, necessarily, a is even.

By the remaining assumption of the lemma, we have that 6a < α + β − 1 or 6b < α + β − 1. In
the former case we take the disjoint union of the (4a, a, 1, a)-graph given by Lemma 23 (with k = a
and m = a/2) and the (α − 4a − 1, a, β, b)-graph given by Lemma 22. In the latter case we take
the (4b, b, 1, a)-graph of Lemma 23 (with k = b and m = a/2) and the (α − 1, a, β − 4b, b)-graph
of Lemma 22. □

Now we provide the proofs of the auxiliary lemmas of Section 4.
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Proof of Lemma 17. The number of bowties destroyed by removing the edges in D from the graph
Ĥ , is at least the number of bowties destroyed by removing D from the graph H[U]. We will analyse
the latter.

Note that

|B ∩ E(H[U])|
Lemma 10

≥ b − 2
(
80b
n

+ 1
)

≥
2b
3

,

where the last inequality follows from our assumption that b ≥ 10 and because n is large enough.
For simplicity of notation let U1 = U ∩ V1 and U2 = U ∩ V2. Without loss of generality

we assume that U1 spans at least as many edges in B ∩ E(H[U]) as U2. Select an arbitrary pair
of edges {w1, w2}, {w3, w4} ∈ B ∩ E(H[U1]). If {w3, w4} is disjoint from {w1, w2}, then for every
shared neighbour of w1, w2, w3, w4 we have a bowtie. On the other hand, if {w3, w4} is adjacent to
{w1, w2}, then every pair of shared neighbours results in a bowtie. By Proposition 3 every edge
between U1 and U2 is present. Since only two vertices were removed from the graph we have
|U1|, |U2| = (1+ o(1))n/2. Thus the number of bowties containing {w1, w2} and {w3, w4} is at least
(1 + o(1))n/2.

Therefore, removing arbitrary k edges from B ∩ E(H[U1]) destroys at least

(1 + o(1))
n
2

(
k
(

|B ∩ E(H[U])|
2

− k
))

≥ (1 + o(1))
n
2

(
k
(
b
3

− k
))

≥ k
bn
8

−
nk2

2
bowties. □

Proof of Lemma 18. Assume for contradiction that |b1 − b2| > n/4+ 33(|a| + 1)q/n. Without loss
of generality assume that

b1 > b2 + n/4 + 33(|a| + 1)q/n. (25)

Roughly speaking, we move eM := ⌊n/4⌋ − |a| edges from V1 to V2 and show that the resulting
graph has fewer copies of bowties. Let R1 be a set of vertices in V1 of size 2⌊n/4⌋−2|a| maximising
the function

∑
v∈R1

dB(v), i.e. it contains the 2⌊n/4⌋ − 2|a| vertices v ∈ V1 with the largest value of
dB(v). Note that

|V1| − |R1| ≥

⌊n
2

⌋
− |a| − 2

⌊n
4

⌋
+ 2|a| ≥ |a| ≥ 0.

On the other hand, let R2 be the set of vertices in V2 of size 2⌊n/4⌋ − 2|a| minimising the function∑
v∈R2

dB(v). In order to move the eM edges we reduce the value of dB(v) for v ∈ R1 by one and
increase the value of dB(v) for v ∈ R2 by one. Define φ : V → N by

φ(v) =

{dB(v) − 1, if v ∈ R1,

dB(v), if v ∈ V \ (R1 ∪ R2),
dB(v) + 1, if v ∈ R2.

Since by (12) the value of dB(v) differs by at most one for vertices in V1 and R1 contains the
vertices v with the largest value of dB(v), we also have that the value of φ(v) differs by at most one
for vertices in V1. The same argument also gives us that the value of φ(v) differs by at most one for
vertices in V2.

Denote by H∗ the graph returned by Lemma 16 for V ∗

1 = V1 and V ∗

2 = V2. By (13) and Lemma 16
we have

#F (H) − #F (H∗) ≥

∑
u∈R1

φ(u)v2(v2 − 2) + eMb2(2n − 8) + v2

(
eMb1 −

e2M
2

−
eM
2

)

−

∑
u∈R2

dB(u)v1(v1 − 2) − eM (b1 − eM )(2n − 8) − v1

(
b2eM +

e2M
2

−
eM
2

)
.
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By Proposition 3 and (25) we have 4q + 4 ≥ b1 ≥ n/4, implying b1 ≤ (1 + o(1))4q and

16q/n ≥ 1 + o(1). Therefore
∑

u∈R1
φ(u) ≤

∑
u∈V1

φ(u) ≤ 2b1 ≤ (1 + o(1))8q ≤ 9q. Thus

∑
u∈R1

φ(u)v2(v2 − 2) ≥

∑
u∈R1

φ(u)
(
n
2

− |a| −
1
2

)(
n
2

− |a| −
5
2

)
≥

∑
u∈R1

φ(u)
(n
2

)2
− 14(|a| + 1)qn.

Proposition 3 also implies that v1 = (1 + o(1))n/2, therefore the average vertex degree in H[V1]

is 2b1/v1 ≤ (1 + o(1))16q/n. Together with (12), for every vertex v ∈ V1 we have dB(v) ≤

(1 + o(1))16q/n + 1 for large enough n. Recall that 16q/n ≥ 1 + o(1). Thus for v ∈ V1 we have

dB(v) ≤ (1 + o(1))32q/n ≤ 33q/n. Therefore, we have

∑
u∈R1

φ(u)
(n
2

)2
− 14(|a| + 1)qn

≥

⎡⎣∑
u∈V1

φ(u) − |V1 \ R1|
33q
n

⎤⎦(n
2

)2
− 14(|a| + 1)qn

≥

(n
2

)2 ∑
u∈V1

φ(u) − 39(|a| + 1)qn,

as |V1 \ R1| ≤ ⌈n/2⌉ + |a| − 2⌊n/4⌋ + 2|a| ≤ 3(|a| + 1).

Since q ≥ (1+ o(1))n/16 we have b2 ≤ 4q+ 4 ≤ 5q for large enough n. Together with eM ≤ n/4

this implies

eMb2(2n − 8) ≥ eMb22n − 10(|a| + 1)qn
eM≥n/4−|a|−1

≥

(n
2

)2 ∑
u∈V2

dB(u) − 20(|a| + 1)qn.

Finally using eM = ⌊n/4⌋ − |a| and eM + 1 ≤ n/4 + 1 ≤ b1 ≤ (1 + o(1))4q we have

v2

(
eMb1 −

e2M
2

−
eM
2

)
≥

n
2

(
eMb1 −

e2M
2

−
eM
2

)
− 2(|a| + 1)qn

≥
n
2
b1

(n
4

− |a| − 1
)

−
n
4

((n
4

)2
+

n
4

)
− 2(|a| + 1)qn

≥
n2

8
b1 −

n3

64
−

n2

16
− 5(|a| + 1)qn.
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Therefore, we obtain∑
u∈R1

φ(u)v2(v2 − 2) + eMb2(2n − 8) + v2

(
eMb1 −

e2M
2

−
eM
2

)

≥

(n
2

)2 ∑
u∈V1

φ(u) +

(n
2

)2 ∑
u∈V2

dB(u) +
n2

8
b1 −

n3

64
−

n2

16
− 64(|a| + 1)qn.

A similar argument shows that∑
u∈R2

dB(u)v1(v1 − 2) + eM (b1 − eM )(2n − 8) + v1

(
b2eM +

e2M
2

−
eM
2

)

≤

(n
2

)2 ∑
u∈V2

dB(u) +

(n
2

)2 ∑
u∈V1

φ(u) +
n2

8
b2 +

n3

64
+

n2

16
+ 64(|a| + 1)qn.

Summing up, we have

#F (H) − #F (H∗) ≥
n2

8

[
b1 − b2 −

n
4

− 1 − 16
(|a| + 1)q

n

]
16q/n≥1+o(1)

≥
n2

8

[
b1 − b2 −

n
4

− 33
(|a| + 1)q

n

]
,

which is positive due to (25), leading to a contradiction on minimality. □

Proof of Lemma 19. Let d := dB(u) − 1 = dB(v) − 1. We start with the case when u, v ∈ V1, d ≥ 1
and at most one vertex in V1 has degree d + 2 in (V , B).

Assume for contradiction that there exist 2 vertices w1, w2 ∈ V with dB(w1), dB(w2) < d −

900(|a| + 1)d/n. By (12) for any vertex w ∈ V1 we have that dB(w) ≥ d so in fact w1, w2 ∈ V2. In
addition, we may choose w1, w2 such that for every w ∈ V2 \ {w1, w2} we have dB(w1), dB(w2) ≤

dB(w). Let φ : V → N be the function defined by

φ(z) =

{dB(z) − 1, if z = u, v,

dB(z), if v ∈ V \ {u, v, w1, w2},

dB(z) + 1, if z = w1, w2.

Let H∗ be the graph returned by Lemma 16 for V ∗

1 = V1 and V ∗

2 = V2. Thus, by (13), we have

#F (H) − #F (H∗) ≥ (dB(u) + dB(v) − 2)v2(v2 − 2) + b2(2n − 8) + (b1 − 1)v2

− (dB(w1) + dB(w2))v1(v1 − 2) − (b1 − 1)(2n − 8) − b2v1.

Note that dB(v), dB(w1) ≤ d + 1 and together with (12) we have that dB(w) ≤ d + 2 for any w ∈ V .
Therefore, b1, b2 ≤ (1 + o(1))(d + 2)n/4 ≤ dn as d ≥ 1. Thus we have

#F (H) − #F (H∗) ≥ (2d − dB(w1) − dB(w2))
n2

4
+

3
2
n(b2 − b1) − 26(|a| + 1)dn.

Recall that dB(w) ≤ d + 2 for any w ∈ V . Therefore q ≤ (d + 2)n/2
d≥1
≤ 3dn/2. This together with

Lemma 18 implies b2 ≤ b1 + n/4 + 33(|a| + 1)q/n ≤ b1 + n/4 + 50(|a| + 1)d and thus

#F (H) − #F (H∗) ≥ (2d − dB(w1) − dB(w2))
n2

4
−

3
2
n
n
4

− 101(|a| + 1)dn. (26)

We first consider the case when 900(|a| + 1)d/n < 1. In this case any vertex with degree less
than d − 900(|a| + 1)d/n has degree at most d − 1. Therefore, dB(w1), dB(w2) ≤ d − 1 and thus

#F (H) − #F (H∗)
(26)
≥ 2

n2

4
−

3n2

8
− 101(|a| + 1)dn > 0
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where the last inequality follows because our conditions imply 101(|a| + 1)q < n2/8, resulting in a
contradiction.

Next we consider the case when 900(|a| + 1)d/n ≥ 1. Recall that by our assumption dB(w1),
dB(w2) < d − 900(|a| + 1)d/n and thus

#F (H) − #F (H∗)
(26)
≥ 450(|a| + 1)dn −

3n2

8
− 101(|a| + 1)dn > 0,

where the last inequality follows because our conditions imply 900(|a| + 1)dn ≥ n2, leading to a
contradiction.

Now we consider the remaining cases. An analogous proof works if u, v ∈ V2. Should u and v be
in different parts, by (12) we have for all w ∈ V that dB(w) ≥ d giving the required bound. Also the
statement is trivial when d + 1 = 1, as the degree of any vertex is non-negative. Finally, if more
than two vertices of degree d+2 exist, then u and v can be replaced by two vertices of degree d+2
and our earlier argument implies the result. □

Proof of Lemma 20. Note that dn ≤ 2(q + 1) ≤ (d + 1)n. We start by showing that in the graph
(V , B) at most one vertex of degree at least d + 2 exists. Suppose that this is false. Let Wd+1 be the
set of vertices w ∈ V with dB(w) < d + 1. By Theorem 1 we have |a| ≤ 1, which together with
Lemma 19, d = o(n) and the fact that dB(w) is an integer imply that |Wd+1| ≤ 1. In fact, by (12) we
have that if there exists a vertex w ∈ Wd+1, then dB(w) ≥ d. Therefore,

2(q + 1) =

∑
w∈V

dB(w) ≥ 2(d + 2) + d + (n − 3)(d + 1) > (d + 1)n,

contradicting our earlier observation.
Note that if there exists in (V , B) a vertex of degree at least d+3, then by (12) there exists a pair

of vertices u, v ∈ V such that dB(u) = dB(v) ≥ d+2, a contradiction. Therefore, there is at most one
vertex with degree larger than d+1 in (V , B) and by (12) this vertex, if it exists, has degree exactly
d + 2 in (V , B). It only remains to show that there is at most one vertex with degree less than d in
this graph and should such a vertex exist it has degree d − 1.

Lemma 19 implies that this is in fact true if (V , B) contains two vertices of degree d + 1. Now
assume that (V , B) has at most one vertex of degree d+1. By (12) the presence of a vertex of degree
d + 2 in (V , B) would imply that many vertices of degree d + 1, d + 2 or d + 3 should be present.
However, by our assumption there is only one vertex of degree d + 1 in (V , B) and previously we
have shown that there is at most one vertex of degree at least d + 2 in (V , B). Thus (V , B) contains
no vertex with degree larger than d + 1. Let Wd be the set of vertices w ∈ V with dB(w) < d. Then

dn ≤ 2(q + 1) =

∑
w∈V

dB(w) = d + 1 + (n − |Wd| − 1)d +

∑
w∈Wd

dB(w).

Rearranging the terms gives us

|Wd|d − 1 ≤

∑
w∈Wd

dB(w) ≤ |Wd|(d − 1),

where the right hand inequality follows from the definition of Wd. The inequality holds only if
|Wd| ≤ 1 and for w ∈ Wd we have dB(w) = d − 1. □

Proof of Lemma 21. Assume for contradiction that the size of each of these sets is at least two.
Therefore there exist vertices u1, u2 ∈ Ck+1, v1, v2 ∈ Ck, w1, w2 ∈ Dℓ+1, z1, z2 ∈ Dℓ. Roughly
speaking, we want to show that either moving an edge from Ck+1 to Dℓ decreases the number of
bowties, or moving an edge from Dℓ+1 to Ck does.

Define φ1 : V → N by

φ1(x) =

{dB(x) − 1, if x = u1, u2,

dB(x), if v ∈ V \ {u1, u2, z1, z2},
dB(x) + 1, if x = z1, z2,
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and φ2 : V → N by

φ2(x) =

{dB(x) − 1, if x = w1, w2,

dB(x), if v ∈ V \ {w1, w2, v1, v2},

dB(x) + 1, if x = v1, v2.

For i = 1, 2 let Hi be the graph returned by Lemma 16 with φ = φi, V ∗

1 = V1 and V ∗

2 = V2. Thus,
by (13), we have

#F (H1) − #F (H) ≤ 2ℓv1(v1 − 2) + (b1 − 1)(2n − 8) + b2v1

− 2kv2(v2 − 2) − b2(2n − 8) − (b1 − 1)v2

and

#F (H2) − #F (H) ≤ 2kv2(v2 − 2) + (b2 − 1)(2n − 8) + b1v2

− 2ℓv1(v1 − 2) − b1(2n − 8) − (b2 − 1)v1.

Should either one of these be negative, we are done, as we have a contradiction on the minimality
of H . Clearly, this holds if the sum of the two terms is negative. Note that the 2ℓv1(v1 − 2) and the
2kv2(v2 − 2) terms cancel and thus

#F (H1) + #F (H2) − 2#F (H) ≤ (b1 − 1)(2n − 8) + b2v1 − b2(2n − 8) − (b1 − 1)v2

+ (b2 − 1)(2n − 8) + b1v2 − b1(2n − 8) − (b2 − 1)v1

= −(2n − 8) + v1 − (2n − 8) + v2

= −3n + 16 < 0

and the statement follows. □

6. Concluding remarks

After Proposition 3 is established (namely, that every extremal graph admits a vertex partition
{V1, V2} such that all cross edges are present), the rest essentially reduces to the problem of
minimising the right-hand side of (13) as a function of e.g. v1 = |V1| and b1 = |E(H(V1))|.
Surprisingly, this integer optimisation problem turned out to be very delicate and we needed a
lot of calculations to solve it (i.e. to derive Theorems 1–2 from Proposition 3). While our method
may apply to other non-critical graphs F , we expect that similar algebraic difficulties will appear.
One important difference between the cases of critical and non-critical F for q = o(n2) is that in the
former case a single edge added to K (V1, V2) already creates many copies of F , which often gives
the dominant term for hF (n, q) and makes analysis easier.

One cannot expect that Theorem 1 holds for all q. For example, the Turán graph Tr (n) is known to
minimise the number of triangles among all graphs of the same order and size, which follows from
the results by Moon and Moser [23] and, independently, Nordhaus and Stewart [26], which can be
also derived from the paper of Goodman [12]. The corresponding stability result was obtained by
Lovász and Simonovits [21]. Since this graph has approximately the same number of triangles per
each vertex, the Cauchy–Schwarz Inequality implies that Tr (n) also asymptotically minimises the
number of bowties, including the stability result that all asymptotically optimal graphs are o(n2)-
close in the edit distance to Tr (n). However, if r ≥ 3 is a fixed odd integer, then Tr (n) is Ω(n2)-away
from containing T2(n). So Theorem 1 strongly fails for the corresponding value of q. It would be
interesting to know how hF (n, q) behaves for larger q, in particular find the largest c such that
hF (n, q) = (1 + o(1))tF (n, q) holds for every q ≤ cn2.
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