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Abstract

The Turán function ex(n, F ) denotes the maximal number of edges in an F -free
graph on n vertices. However if e > ex(n, F ), many copies of F appear. We study
the function hF (n, q), the minimal number of copies of F in a graph on n vertices
with ex(n, F ) + q edges. The value of hF (n, q) has been extensively studied when
F is colour critical. In this paper we consider a simple non-colour-critical graph,
namely the bowtie and establish bounds on hF (n, q) for different ranges of q.
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1 Introduction

The Turán function ex(n, F ) of a graph F is the maximum number of edges
in an F -free graph on n vertices. In 1907, Mantel [9] proved that ex(n,K3) =
�n2/4�, where Kr denotes the complete graph on r vertices. The fundamental
paper of Turán [16] solved this extremal problem for cliques: the Turán graph
Tr(n), the complete r-partite graph on n vertices with parts of size �n/r� or
�n/r�, is the unique maximum Kr+1-free graph on n vertices. Thus the Turán
function satisfies ex(n,Kr+1) = |E(Tr(n))|.

Stated in the contrapositive, this implies that a graph with ex(n,Kr+1)+1
edges (where, by default, n denotes the number of vertices) contains at least
one copy of Kr+1. Rademacher (1941, unpublished) showed that a graph with
�n2/4� + 1 edges contains not just one but at least �n/2� copies of a trian-
gle. This is perhaps the first result in the so-called “theory of supersaturated
graphs” that focuses on the function

hF (n, q) = min{#F (H) : |V (H)| = n, |E(H)| = ex(n, F ) + q},
the minimum number of F -subgraphs in a graph on n vertices and ex(n, F )+q
edges. (We say that G is a subgraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H);
we call G an F -subgraph if it is isomorphic to F .)

One possible construction for graphs with minimal number of copies of
F is to add some q edges to a maximum F -free graph. Denote by tF (n, q)
the smallest number of F -subgraphs that can be achieved this way. Clearly,
hF (n, q) ≤ tF (n, q). In fact, this bound is sharp, when q is small. Erdős [1]
extended Rademacher’s result by showing that hK3(n, q) = tK3(n, q) = q�n/2�
for q ≤ 3. Later, he [2,3] showed that there exists some small constant εKr > 0
such that hKr(n, q) = tKr(n, q) for all q ≤ εKrn. Lovász and Simonovits [7,8]
found the best possible value of εKr as n → ∞, settling a long-standing
conjecture of Erdős [1]. In fact, the second paper [8] completely solved the
hKr(n, q)-problem when q = o(n2). The case q = Ω(n2) of the supersaturation
problem for cliques has been actively studied and proved notoriously difficult.
Only recently was an asymptotic solution found: by Razborov [13] for K3 (see
also Fisher [5]), by Nikiforov [11] for K4, and by Reiher [14] for general Kr.

The value of hF (n, q) has also been considered for general colour-critical
graphs. A graph is r-critical if its chromatic number is r + 1 and in addi-
tion removing a certain edge from the graph reduces its chromatic number.
Simonovits [15] established that if F is r-critical, then the unique maximal
F -free graph is Tr(n). Pikhurko and Yilma [12] extending the results of
Mubayi [10] established that, similarly to cliques, for every colour-critical
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graph F there exists εF > 0 such that when q ≤ εFn, we have hF (n, q) =
tF (n, q). In addition, they established the asymptotic size of hF (n, q) when
q = o(n2).

Obviously, if we do not know the exact value of ex(n, F ), then it is difficult
to say much about the supersaturation problem. In this paper we investigate
one of the remaining graphs for which this is known, namely the bowtie (two
copies of K3 joined at a vertex). From this point on F denotes the bowtie.

The main contribution of this paper is threefold. First we establish that
when q = o(n2) any graph with minimal number of copies of F contains a
spanning complete bipartite graph. Second we establish the exact number of
bowties contained in the graph when q ≤ n/4 − 1. Finally we establish the
asymptotic size of hF (n, q) when q = ω(n) and q = o(n2).

2 Main results

The Turán function of the bowtie is ex(n, F ) = �n2/4� + 1. In addition, the
maximal F -free graph is known, it is a copy of T2(n) with an arbitrarily added
edge. Recall that T2(n) is a bipartite graph, where the partitions have size
�n/2� and �n/2� vertices respectively. Thus if n is odd, the two partitions have
different sizes and thus, depending on which partition the additional edge is
added to, distinct graphs are created.

Due to the existence of multiple maximal F -free graphs we define tF (n, q)
as the minimal number of copies of F contained in the graph created by adding
q edges to any maximal F -free graph.

We first show that as long as q = o(n2) any graph with minimal number
of copies of F contains a spanning complete bipartite graph.

Theorem 2.1 Let H be a graph on n vertices with ex(n, F ) + q edges con-
taining hF (n, q) copies of the bowtie. If q = o(n2), then the vertex set of H
can be partitioned into two parts V1 and V2 such that |V1|, |V2| = (1+ o(1))n/2
and every edge between V1 and V2 is present.

In fact, when q < n/4 − 1, a stronger result is true, namely |V1| = �n/2�
and |V2| = �n/2�. Based on this we can establish the exact value of hF (n, q).

Theorem 2.2 Let q ≤ n/4− 1. Then we have hF (n, q) = tF (n, q) and

hF (n, q) =

(
q + 1

2

)
�n/2�.

For large q we establish the asymptomatics of hF (n, q).
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Theorem 2.3 Let q = ω(n) and q = o(n2). Then we have

hF (n, q) = (1 + o(1))
9

8
q2n.

3 Proof outline

We start by showing an upper bound on hF (n, q). This can be achieved by
considering an arbitrary graph on n vertices with ex(n, F ) + q edges. This
not only gives us the upper bounds in Theorem 2.2 and Theorem 2.3, but also
allows us to use the graph removal lemma (see e.g. [6, Theorem 2.9]).

The graph removal lemma implies that since the number of bowties in
the graph is small, the graph can be made bowtie-free by removing a small
number of edges. In addition, since the chromatic number of the bowties
is 3, the stability result of Erdős [4] and Simonovits [15] implies that the
vertex set of a bowtie-free graph can be partitioned into two sets such that
almost |E(T2(n))| edges are present between the two partitions. Denote these
partitions with V1 and V2 and note that both V1 and V2 contain roughly n/2
vertices.

The key step is to establish that every edge between V1 and V2 is present.
We show that for every graph, where at least one edge e between V1 and V2 is
missing, we can find another graph, where in addition to the previous edges
between V1 and V2, e is also present and the second graph has fewer bowties.

Type 1 Type 2 Type 3

Fig. 1. Types of bowties

Once we know the existence of such a partition we can express the number
of bowties. Ignore the triangles spanned by V1 and V2 for the moment, later
we will see that no such triangles exist in the extremal graph. A bowtie can be
formed in three different ways (see Figure 1). Since we are ignoring triangles
spanned by V1 and V2, any triangle in the graph contains exactly one edge
spanned by V1 or V2. As a bowtie consists of two triangles it has to have
exactly two edges spanned by V1 or V2 and we distinguish the following cases,
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depending on whether both edges are spanned by the same set or not, in
addition if they are spanned by the same set we consider the cases when the
two edges are adjacent or non-adjacent.

Recall that every edge between V1 and V2 is present. Therefore any pair of
disjoint edges in V1 is contained in |V2| bowties. If the two edges are adjacent,
then they are contained in |V2|(|V2|−1) bowties. Finally any two edges, where
one edge is spanned by V1 and the other edge is spanned by V2, is contained
in 2(n− 4) bowties.

The previous argument implies that the number of bowties depends only
on the degree sequence of the graphs spanned by V1 and V2. In addition, due
to the small number of edges spanned by V1 and V2 one can rearrange the
edges in such a way that the degree sequence remains unchanged, but V1 and
V2 are triangle-free. Destroying these triangles can only decrease the number
of bowties, justifying our earlier decision to ignore them.

All that is left to show for Theorem 2.1 is that |V1|, |V2| = (1 + o(1))n/2.
Note that if |V1| = �n/2� and |V2| = �n/2�, the number of edges spanned by
V1 and V2 is exactly q + 1. If we increase the number of vertices in V1 by a
and, in order to leave the total number of vertices unchanged, at the same
time we decrease the number of vertices in V2 by the same amount, then the
number of edges spanned by V1 and V2 increases by at least a2. However, for
large a, due to these additional a2 edges, the number of bowties in the graph
increases significantly implying a2 = O(q) = o(n2) and thus our result.

Now we consider the lower bound in Theorem 2.2. Since q is small, a more
precise analysis in determining the value of a is possible, and in this case the
optimal solution is a = 0. From the different types of edge pairs (see Figure 1)
it turns out that type 1 creates the least number of bowties. When q < n/4−1
we can avoid type 2 and 3 bowties, as every edge can be placed into V1 in such
a way that it forms a matching. Theorem 2.2 follows once one counts the
number of bowties.

Finally we establish the lower bound in Theorem 2.3. Due to the large
number of bowties created by any pair of adjacent edges, we want to minimise
the number of adjacent pairs. Let e1 denote the number of edges spanned by
V1 and e2 denote the number of edges spanned by V2. Note that by removing
some edges we can achieve that e1+e2 = q+1 and that this only decreases the
number of bowties. For fixed e1 and e2 the number of adjacent edge pairs is
minimised, if every vertex in V1 is adjacent to roughly 2e1/n edges and every
vertex in V2 is adjacent to roughly 2e2/n edges, i.e. the vertex degrees can be
defined as a function of e1 and e2. Since we fixed the sum of e1 and e2 as
q + 1, the number of bowties present in the graph can be approximated by a
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function of e1, which after optimisation leads to the asymptotic result.
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