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Abstract: Given a graph H and a positive integer n, Anti-Ramsey number
AR(n,H) is the maximum number of colors in an edge-coloring of Kn that
contains no polychromatic copy of H. The anti-Ramsey numbers were
introduced in the 1970s by Erd”os, Simonovits, and Sós, who among other
things, determined this function for cliques. In general, few exact values of
AR(n,H) are known. Let us call a graph H doubly edge-critical if �(H−e)≥
p+1 for each edge e∈E(H) and there exist two edges e1,e2 of H for which
�(H−e1−e2)=p. Here, we obtain the exact value of AR(n,H) for any doubly
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edge-critical H when n≥n0(H) is sufficiently large. A main ingredient of
our proof is the stability theorem of Erd”os and Simonovits for the Turán
problem. � 2009 Wiley Periodicals, Inc. J Graph Theory 61: 210–218, 2009

Keywords: anti-Ramsey number; Turan number; stability; polychromatic subgraph; rainbow

subgraph

1. INTRODUCTION

We will use the standard notation of graph theory, which can be found e.g. in Bollobás’
book [3].

A subgraph of an edge-colored graph is rainbow (or polychromatic) if all of its
edges have different colors. Let F be a family of graphs. For the purpose of this paper,
we call an edge-coloring that contains no rainbow copy of any graph in F an F-free
coloring. The anti-Ramsey number AR(n,F) is the maximum number of colors in an
F-free edge-coloring of Kn , the complete graph on n vertices. Anti-Ramsey numbers
were introduced by Erdős et al. [8]. Various results about this extremal function have
been obtained since then: [1, 10, 14, 11, 2, 12, 17, 15, 13, 16, 4] to name a few.

Erdős et al. [8] showed that these numbers are very closely related to Turán numbers
as follows.

Given a family F of graphs, let us call a graph G containing no graph in F as a
subgraph an F-free graph. Let EX(n,F) denote the set of F-free graphs on n vertices.
(When F consists of a single graph F , we will write EX(n,F) instead of EX(n,{F}),
etc.) The Turán number ex(n,F) is the maximum number of edges of a graph in
EX(n,F). Recall that the Turán graph Tn,p is a complete p-partite graph on n vertices
in which each part has size �n/p� or �n/p�. Let t(n, p)=e(Tn,p). Turán [21] showed
that ex(n,Kp+1)= t(n, p) and that Tn,p is the unique maximum graph in EX(n,Kp+1).
More generally, the celebrated result of Erdős et al. [9, 7] states that for any F we have

ex(n,F)= t(n, p)+o(n2)=
(
1− 1

p

)(
n

2

)
+o(n2), (1)

where p=�(F) is the subchromatic number:

�(F)=min{�(F) :F ∈F}−1. (2)

Let us give a few other definitions needed to state the results. The derived family
of F is

F− ={H−e :H ∈F, e∈E(H )}.
Let xy be an edge in a graph H . Let H1,H2 be two copies of H−xy. For i=1,2, let
xi denote the image of x in Hi and yi the image of y in Hi . Let H∗

xy denote the graph
obtained by taking H1 and H2 and identifying x1 with x2 and y1 with y2.

Theorem 1 (Erd”os et al. [8]). Let F be an arbitrary graph family. Let H ∈F and
xy∈E(H ) be such that �(H−xy)=min{�(F) :F ∈F−}. Then

ex(n,F−)+1≤AR(n,F)≤ex(n,H∗
xy).

It follows from (1) that AR(n,F)= t(n, p)+o(n2), where p=�(F−).

Journal of Graph Theory DOI 10.1002/jgt
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Proof. We recall the proof because we will need it later.
Let G be a graph in EX(n,F−) of maximum size. Assign distinct colors to all of

E(G) and a new color to all of E(G). This yields an F-free coloring of E(Kn). So
AR(n,F)≥ex(n,F−)+1.

Next, suppose that c is an edge-coloring of Kn that uses more than ex(n,H∗
xy) colors.

Let L be a representing graph of c, that is, it is a spanning subgraph of Kn obtained
by taking one edge of each color in c (where L may contain isolated vertices). Then
L must contain a copy F of H∗

xy . This is a rainbow copy of H∗
xy in c. Let H1 and H2

denote the two copies of H−xy in F as in the definition of H∗
xy . Note that H1 and H2

are edge-disjoint and since F is rainbow, no color appears in both H1 and H2. Suppose
without loss of generality that color c(xy) does not appear in H1. Now H1∪xy is a
rainbow copy of H . This shows that AR(n,F)≤ex(n,H∗

xy). �

Theorem 2 (Erd”os et al. [8]). For any p≥2 and all sufficiently large n, n≥n0(p),
we have

AR(n,Kp+2)= t(n, p)+1, (3)

and any coloring achieving this bound is obtained by taking a rainbow Tn,p and
coloring all edges in its complement with the same (extra) color.

Montellano-Ballesteros and Neumann-Lara [14] and independently Schiermeyer [17]
showed that, in fact, (3) holds for every n≥ p+1 but did not characterize extremal
colorings.

Let p be a positive integer. For 0≤ i≤ p and n≥ p+i , let T i
n,p be obtained from

the Turán graph by adding a single edge into each of the i largest vertex parts. (Thus,
e(T i

n,p)= t(n, p)+i .)
We say that a graph family F is doubly edge-p-critical if �(F−)≥ p (i.e. �(H )≥

p+1 for every H ∈F−) but there exists a graph H ∈F and two edges e1,e2∈E(H )
such that �(H−e1−e2)= p. In other words, we require that T 1

n,p is F-free for every
n but we can add two edges to some Tn,p (into two different parts or into the same
part) and obtain an element of F as a subgraph. Furthermore, we subdivide all such
families into the following types: a doubly edge-p-critical F has Type j , where j ≥1
is the maximum element of [p] such that T j

n,p is F-free for every n. This definition
implies that if F is of Type j , then, for every n≥ p+ j , we have

AR(n,F)≥ t(n, p)+ j. (4)

Indeed, the following coloring of Kn is F-free and uses t(n, p)+ j colors.

Construction 3. Take a copy H of Tn,p, color its edges with distinct colors and
then color its complement H with j new colors so that each of the p parts of H is
monochromatic and such that each of these j new colors is used on at least one part.

The main result of our paper shows that this is best possible:

Theorem 4. Let p≥2. For an arbitrary (possibly infinite) doubly edge-p-critical
family F of Type j there is an n0 such that for all n≥n0 we have

AR(n,F)= t(n, p)+ j, (5)

Journal of Graph Theory DOI 10.1002/jgt
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and all F-free edge-colorings of Kn that achieve this bound are described in
Construction 3.

This theorem generalizes Theorem 2 as Kp+2 (more precisely, {Kp+2}) is doubly
edge-p-critical of Type 1 for p≥2. One can easily generate many examples of doubly
edge-critical graphs. One is T 2

n,p. Further examples can be obtained by taking the
disjoint union of two edge-p-critical graphs. (A graph H is edge-p-critical if for some
edge e∈E(H ) we have �(H−e)= p<�(H ).) Also, one can start with an arbitrary
doubly edge-p-critical graph H and add a new set A of at least 2 vertices so that A
spans no edge while we have a complete bipartite graph between V (H ) and A. Some
variations of the last construction are possible: for example, one can let A span certain
graphs F although not every F would do here (e.g. F=K1, that is, |A|=1, does not
work for some H ).

If F is doubly edge-p-critical, then we can choose a graph H ∈F− in (3) which is
edge-p-critical. An important result of Simonovits [18] states that ex(n,H )= t(n, p)
for all large n. This was one of our motivations: to prove the analog of Simonovits’
result to anti-Ramsey numbers. Our result is a bit more complicated to prove (and
to state) but the main idea is the same: we obtain the exact result using the stability
approach. The proof can be found in Section 3.

An unpublished conjecture of the first author states that AR(n,F)≤ex(n,F−)+O(n)
for any familyF (see [10] for some discussions). Our Theorem 4 confirms the conjecture
in the case when, for some p≥2,

ex(n,F−)= t(n, p) for all n≥n0(p,F). (6)

Indeed, any F− satisfying (6) has subchromatic number p while some T 1
N ,p is not

F−-free (for otherwise ex(n,F−)≥ t(n, p)+1 for all n). This shows that F is doubly
edge-p-critical. It is possible that our method might apply in some other cases when
ex(n,F−) can be determined via the stability approach. However, it is not clear how
to proceed in general.

2. PRELIMINARIES

Here, we present some results and definitions that are needed for our proof of Theorem 4
in Section 3.

For a set X and an integer k, let
(X
k

)={A⊆ X : |A|=k}. Given a graph G and disjoint
subsets A1, . . . , Ap of vertices in G, we use G(A1, . . . , Ap) to denote the p-partite
subgraph of G with parts A1, . . . , Ap containing all the edges of G connecting different
Ai ’s. Let K (A1, . . . , Ap) denote the complete p-partite graph with parts A1, . . . , Ap.
If S⊆V (G), then G[S] denotes the subgraph of G induced by S.

Lemma 5. Let N ,m, p≥2 and s≥0 be integers. Let G be a p-partite graph with
parts A1∪S, A2, . . . , Ap where |S|=s, |Ai |=N for i =1, . . . , p, and S, A1, . . . , Ap
are pairwise disjoint. Suppose that there is no selection of subsets D1⊆ A1,D2⊆
A2, . . . ,Dp ⊆ Ap with |Di |=m for each i such that G[D1∪S,D2, . . . ,Dp] is a complete

Journal of Graph Theory DOI 10.1002/jgt
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p-partite graph. Let K =K (A1∪S, A2, . . . , Ap). Let E∗(S) denote the set of edges of
K incident to S. Then

1. |E(K )\E(G)|≥ 1
2 (

N
m )2, or

2. |(E(K )\E(G))∩E∗(S)|≥ 1
2 (

N
m ).

Proof. There are M1=(N
m

)p
ways to select the Di ’s. By our assumption, for each

selection, the p-partite graph G ′ =G[D1∪S∪D2∪·· ·∪Dp] misses some edge of K
whose two endpoints are in D1∪S∪D2∪·· ·∪Dp. Suppose first that for at least 1

2M1
of these selections, G ′ misses an edge not incident to S. For each edge xy∈ (E(K )\
E(G))\E∗(S), the number ways to select the Di ’s such that x, y∈D1∪·· ·∪Dp is

M2=(N
m

)p−2(N−1
m−1

)2
. So, we have

|E(K )\E(G)|≥|(E(K )\E(G))\E∗(S)|≥ (1/2)M1

M2
= 1

2

(
N

m

)2

.

For the rest of the proof, suppose that for at least 1
2M of the ways to select the

Di ’s, G ′ misses an edge of E(K )\E(G) that is incident to S. Fixing an edge xy∈
(E(K )\E(G))∩E∗(S), where x ∈ S, the number of ways to select the Di ’s such that

y∈D2∪·· ·∪Dp is M3=(N
m

)p−1(N−1
m−1

)
. This implies that

|(E(K )\E(G))∩E∗(S)|≥ (1/2)M1

M3
= 1

2

(
N

m

)
. �

Also, we will need the following very useful result.

Theorem 6 (The Stability Theorem, Erd”os [5,6], Simonovits [18]). Let F be a
family of graphs with subchromatic number p. For every �>0, there exist �>0 and n�
such that for n>n� if G is a graph in EX(n,F) with

e(G)>ex(n,F)−�n2,

then G can be obtained from Tn,p by changing at most �n2 edges.

3. PROOF OF THEOREM 4

Let F be a doubly edge-p-critical family of graphs. We have already demonstrated
the lower bound in (5). Let us prove the upper bound and characterize the extremal
colorings.

Fix a large integer m, a graph H ∈F , and edges e1,e2∈E(H ) with H−e1−e2⊆
Tpm,p. Let F be of Type j . If j<p, then (enlarging m if necessary) fix F ∈F such

that F⊆T j+1
pm,p. If j = p, then we can let e.g. F=H .

Given F , H , and m, choose, in this order, small positive constants

1

m
����� 1

n0
,

Journal of Graph Theory DOI 10.1002/jgt
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ANTI-RAMSEY NUMBERS 215

where ��� means that � is sufficiently small depending on �. Let n≥n0 be arbi-
trary. We do not specify the dependencies between constants explicitly, since we use
Theorem 6 as a “black box.” In particular, we make no attempt to optimize the constants.

Let c be an extremal F-free edge-coloring of the host graph Kn on the vertex-set
V . Let L be a representing graph of c, that is, it is obtained by picking one edge from
each color class. By the extremality of c we have

e(L)≥ t(n, p)+ j. (7)

By the proof of Theorem 1, L cannot contain H∗
xy . Since e(L)>t(n, p)>ex(n,H∗

xy)−
�n2, by Theorem 6 L can be obtained from Tn,p by changing at most �n2 edges.

Among all complete p-partite graphs with vertex-set V , choose T so that |E(T )∩
E(L)| is maximum. Let the graph T ′ on V have E(T )∩E(L) as the edge-set. Our
choice of T implies that

e(T ′)≥ t(n, p)−�n2. (8)

Since e(T )≤ t(n, p), we have

|E(T )\E(L)|≤�n2. (9)

Let A1, A2, . . . , Ap denote the parts of T . We have, for example, |Ai |≥n/2p for
all i ∈ [p], for otherwise it is easy to see that the imbalance of the |Ai |’s forces
e(T )<t(n, p)−�n2, contradicting (8).

Suppose first that for each i=1, . . . , p, only one color is used inside Ai in the
coloring c.

We apply Lemma 5 with S=∅ to T ′ (or rather to an arbitrary equipartite subgraph
of T ′ with each part having size N =�n/2p�). By (9), this gives a complete p-partite
subgraph K (D1, . . . ,Dp)⊆T ′ with |Di |≥m+ p for each i ∈ [p]. (Note that we apply
Lemma 5 with respect to m+ p rather than m.) Let ci be the common color of

(Di
2

)
.

Suppose there are exactly r ≤ p different elements in {c1, . . . ,cp}. By removing p
vertices from each Di , we can find a new complete p-partite graph K ′ =T ′[D1∪·· ·∪
Dp] such that c(E(K ′))∩{c1, . . . ,cp}=∅. It follows that r ≤ j for otherwise j<p and

G contains a rainbow T j+1
mp,p, and thus a rainbow F , a contradiction.

Now, (7) implies that r = j , e(T )= t(n, p) (and so T ∼=Tn,p), and the coloring c is
indeed described by Construction 3.

So, let us assume that some part Ai has at least 2 different colors. We will derive a
contradiction. The following observation will be useful in our quest.

Claim 1. There is no complete p-partite graph K (D1, . . . ,Dp)⊆T ′ such that |Di |≥
m+7 for each i ∈ [p] and c(uv) �=c(xy) for some uv, xy in one part Di .

Proof of Claim. Suppose that the claim is false. Without loss of generality,
u,v, x, y∈D1. We can assume that the pairs uv and xy are disjoint. (Otherwise pick
a third pair disjoint from both uv and xy; its color is different from at least one of
c(uv) or c(xy).)

By removing 6 vertices from each Di , we can make sure that no color present
in

({u,v,x,y}
2

)
appears in the new graph K ′=K (D1, . . . ,Dp) (while u,v, x, y are still

Journal of Graph Theory DOI 10.1002/jgt
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in D1). The graph H ∈F can be embedded into Tmp,p+ f1+ f2, where f1, f2 are two
extra edges.

Suppose first that f1, f2 are in one part of the Turán graph. If they are disjoint,
then we can map f1, f2 to uv, xy and extend this mapping to an arbitrary embedding
Tmp,p ⊆K ′. This gives a rainbow copy of H , a contradiction. If f1∩ f2 �=∅, then we
can map f1 to ux and f2 to one of uv, xy, namely to a pair whose color is different
from c(ux). Again this gives us a rainbow H because we took care to eliminate any
color in

({u,v,x,y}
2

)
from E(K ′).

So let us assume that f1, f2 belong to different parts of Tmp,p. Let us map f2 to an
arbitrary pair wz in D2. If c(wz)∈{c(uv),c(xy)}, then map f1 to one of uv, xy, namely
to a pair whose color is different from c(wz). Note that the c-colors of the images of
f1 and f2 do not appear on E(K ′), so we can extend this to a rainbow copy of H .
If c(wz) �∈ {c(uv),c(xy)}, then at most one edge between wz and {u,v, x, y} can have
c-color c(wz), and we can safely map f1 either to uv or xy. At most one edge f of
L can have color c(wz). Since we still have some freedom (each current |Di |≥m+1)
we can find a copy of H avoiding f . This H -subgraph is rainbow, contradicting our
assumptions. This finishes the proof of the claim. �

Call the edges in E(T )\E(L)missing and the edges in E(L)\E(T ) bad. Let M (resp.
B) be the graph on V consisting of all missing (resp. bad) edges. Since e(L)≥e(T ),
we have

e(B)≥e(M). (10)

Let �=1/(25pm) and W ={x :dM (x)≥�n}.
Claim 2. If uv, xy are any two edges (possibly intersecting) with different colors
inside some Ai , then W ∩{u,v, x, y} �=∅.
Proof of Claim. For notational convenience, suppose i=1. Let S={u,v, x, y}. Let

C1 be a subset of A1\S of size N =�n/3p�; C1 exists since |A1|≥n/2p. For i=
2, . . . , p, let Ci be a subset of Ai of size N .

By Claim 1, we cannot find (m+7)-sets Di ⊆Ci , i ∈ [p], such that L(D1∪
S,D2, . . . ,Dp) is a complete p-partite graph. By (9) and Lemma 5, S is incident to at
least N/(2(m+7)) missing edges. Thus at least one vertex of S is incident to at least
N/(8(m+7))≥�n edges, as required. �

Claim 2 in particular implies that e(M)≥�n. Hence, e(B)≥�n. Edges in B have
endpoints in the same Ai . Without loss of generality, suppose B[A1] contains the
maximum number of edges of B among all Ai ’s. Then e(B[A1])≥e(B)/p≥�n/p≥2.
Let W1=W ∩A1. Since B[A1] has at least two edges (and all edges of B⊆ L have
different colors), we have W1 �=∅ by Claim 2. Again, by Claim 2, at most one edge
in B[A1] can be disjoint from W1. Therefore, the edges in B[A1] can be covered by
at most |W1|+1 vertices in A1. Let x ∈ A1 be such that dB(x)=maxu∈A1 dB(u). Then
e(B[A1])≤ (|W1|+1) ·dB(x). On the other hand, there are at least |W1|·�n edges in M
incident to W1. So, e(M)≥|W1|·�n. By our assumption, e(B[A1])≥e(B)/p. So,

|W1|·�n≤e(M)≤e(B)≤e(B[A1]) · p≤ (|W1|+1) ·dB(x) · p.

Journal of Graph Theory DOI 10.1002/jgt
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Let �=�/2p. We get

dB(x)≥ |W1|
|W1|+1

· �n
p

≥ �n

2p
=�n.

In other words, |NL (x)∩A1|≥�n, where NL (x) denotes the set of neighbors of x
in the graph L . If for some i , |NL (x)∩Ai |<|NL (x)∩A1|, then by moving x from A1
to Ai we would strictly increase e(T ′), contradicting our choice of T . Hence, for each
i=1, . . . , p, |NL (x)∩Ai |≥�n. For each i=1, . . . , p, let Ci be a subset of Ai ∩NL (x)
of size N =��n�.

Note that L(C1, . . . ,Cp) cannot contain a copy of T(m+7)p,p. Indeed, since x is
connected by an L-edge to every vertex of C1∪·· ·∪Cp, we can swap x with some
vertex of T(m+7)p,p in a way that contradicts Claim 1. Applying Lemma 5, with G=
L(C1, . . . ,Cp), K =T (C1, . . . ,Cp)⊆T , N =��n�, S=∅, we conclude that

|E(T (C1, . . . ,Cp))\E(L(C1, . . . ,Cp))|≥ 1

2

(
N

m+7

)2

>�n2,

which contradicts (9). This completes the proof of Theorem 4. �
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