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Abstract This paper extends the scenario of the Four Color Theorem in the following
way. Let Hd,k be the set of all k-uniform hypergraphs that can be (linearly) embedded
into R

d . We investigate lower and upper bounds on the maximum (weak) chromatic
number of hypergraphs in Hd,k . For example, we can prove that for d ≥ 3 there are
hypergraphs in H2d−3,d on n vertices whose chromatic number is�(log n/ log log n),
whereas the chromatic number for n-vertex hypergraphs in Hd,d is bounded by
O(n(d−2)/(d−1)) for d ≥ 3.

Keywords Hypergraphs · Coloring · Chromatic number · Embeddings ·
Four Color Theorem

1 Introduction

The Four Color Theorem [1,2] asserts that every graph that is embeddable in the plane
has chromatic number at most four. This question has been one of the driving forces
in Discrete Mathematics and its theme has inspired many variations. For example, the
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chromatic number of graphs that are embedabble into a surface of fixed genus has
been intensively studied by Heawood [17], Ringel and Youngs [24], and many others.

In this paper, we consider k-uniform hypergraphs that are embeddable into R
d in

such a way that their edges do not intersect (see Definition 1 below). For k = d = 2
the problem specializes to graph planarity. For k = 2 and d ≥ 3 it is not a very
interesting question because for any n ∈ N the vertices of the complete graph Kn can
be embedded into R

3 using the embedding

ϕ(vi ) = (
i, i2, i3) ∀i ∈ {1, . . . , n}. (1)

It is a well known property of the moment curve t �→ (t, t2, t3) that any two edges
between four distinct vertices do not intersect (see Proposition 14).

As a consequence, we now focus our attention on hypergraphs, which are in general
not embeddable into any specific dimension. Some properties of these hypergraphs (or
more generally simplicial complexes) have been investigated (see e. g. [10,11,19,20,
27,31]), but to our surprise, we have not been able to find any previously established
results which bound their chromatic number. However, Grünbaum and Sarkaria (see
[15,26]) have considered a different generalization of graph colorings to simplicial
complexes by coloring faces. They also bound this face-chromatic number subject to
embeddability constraints.

Before we can state our main results, we quickly recall and introduce some useful
notation. We say that H = (V, E) is a k-uniform hypergraph if the vertex set V is a
finite set and the edge set E consists of k-element subsets of V , i. e. E ⊆ (V

k

)
. For any

hypergraph H , we denote by V (H) the vertex set of H and by E(H) its edge set. We
define

K (k)
n :=

(
{1, 2, . . . , n},

( {1, 2, . . . , n}
k

))

and call any hypergraph isomorphic to K (k)
n a complete k-uniform hypergraph of

order n.
Let H be a k-uniform hypergraph. A function κ : V (H) → {1, . . . , c} is said to

be a weak c-coloring if for all e ∈ E(H) the property |κ(e)| > 1 holds. The function
κ is said to be a strong c-coloring if |κ(e)| = k for all e ∈ E(H). The weak/strong
chromatic number of H is defined as the minimum c ∈ N such that there exists a
weak/strong coloring of H with c colors. The chromatic number of H is denoted by
χw(H) and χs(H), respectively. Obviously, for graphs, weak and strong colorings
are equivalent.

We next define what we mean when we say that a hypergraph is embeddable into R
d .

Here, aff denotes the affine hull of a set of points and conv the convex hull.

Definition 1 (d-Embeddings) Let H be a k-uniform hypergraph and d ∈ N. A (linear)
embedding of H into R

d is a function ϕ : V (H) → R
d , where ϕ(A) for A ⊆ V (H)

is to be interpreted pointwise, such that

• dim aff ϕ(e) = k − 1 for all e ∈ E(H) and
• conv ϕ(e1) ∩ conv ϕ(e2) = conv ϕ (e1 ∩ e2) for all e1, e2 ∈ E(H).
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Table 1 Currently known lower bounds for the maximum weak chromatic number of a d-embeddable
k-uniform hypergraph on n vertices as n → ∞
d�k 2 3 4 5 6 7

1 2 1 1 1 1 1

2 4 2 1 1 1 1

3 n �
( log n

log log n

)
〈21〉 1 1 1 1

4 n �
( log n

log log n

)
〈21〉 1 1 1 1

5 n �n/2 �
( log n

log log n

)
〈22〉 1 1 1

6 n �n/2 �
( log n

log log n

)
〈22〉 1 1 1

7 n �n/2 �n/3 �
( log n

log log n

)
〈22〉 1 1

8 n �n/2 �n/3 �
( log n

log log n

)
〈22〉 1 1

The number in chevrons indicates the theorem number where we prove this bound

The first property is needed to exclude functions mapping the vertices of one edge
to affinely non-independent points. The second guarantees that the embedded edges
only intersect in the convex hull of their common vertices. Note that the inclusion
from left to right always holds. A k-uniform hypergraph H is said to be d-embeddable
if there exists an embedding of H into R

d . Also, we denote by Hd,k the set of all
d-embeddable k-uniform hypergraphs.

One can easily see that our definition of 2-embeddability coincides with the clas-
sical concept of planarity [12]. Note that in general there are several other notions
of embeddability. The most popular thereof are piecewise linear embeddings and
general topological embeddings. A short and comprehensive introduction is given in
Sect. 1 in [19]. Furthermore, there exist some quite different concepts of generalizing
embeddability for hypergraphs in the literature, for example hypergraph imbeddings
[32, Chap. 13].

We have decided to focus on linear embeddings, as they lead to a very accessible
type of geometry and, at least in theory, the decision problem of whether a given
k-uniform hypergraph is d-embeddable is decidable and in PSPACE [23]. One can
show that the aforementioned three types of embeddings are equivalent only in the
less than 3-dimensional case (see e. g. [3,4]), although piecewise linear and topologi-
cal embeddability coincides if d − k ≥ 2 or (d, k) = (3, 3), see [5]. Since piecewise
linear and topological embeddings are more general than linear embeddings, all lower
bounds for chromatic numbers can easily be transferred. Furthermore, we prove all
our results on upper bounds for piecewise linear embeddings (and thus also for topo-
logical embeddings if d − k ≥ 2 or (d, k) = (3, 3)) except for one case (namely
Theorem 20).

We can now give a summary of our main results in Tables 1 and 2, which contain
upper or lower bounds for the maximum weak chromatic number of a d-embeddable
k-uniform hypergraph on n vertices. All results which only follow non-trivially from
prior knowledge are indexed with a theorem number from which they can be derived.
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Table 2 Currently known upper bounds for the maximum weak chromatic number of a d-embeddable
k-uniform hypergraph on n vertices as n → ∞
d�k 2 3 4 5 6 7

1 2 1 1 1 1 1

2 4 2 1 1 1 1

3 n O(n1/2)〈18〉 O(n1/2)〈18〉 1 1 1

4 n �n/2 O(n2/3)〈18〉 O(n1/2)〈20〉 1 1

5 n �n/2 O(n26/27)〈19〉 O(n3/4)〈18〉 O(n3/5)〈20〉 1

6 n �n/2 �n/3 O(n35/36)〈19〉 O(n4/5)〈18〉 O(n1/2)〈20〉
7 n �n/2 �n/3 O(n107/108)〈19〉 O(n44/45)〈19〉 O(n5/6)〈18〉
8 n �n/2 �n/3 �n/4 O(n134/135)〈19〉 O(n53/54)〈19〉
The number in chevrons indicates the theorem number where we prove this bound

Considering the strong chromatic number, the question whether embeddability
restricts the number of colors needed can be answered negatively by the following
observation.

Let n, d ∈ N such that d ≥ 3 and n ≥ d + 1 and let V = {1, . . . , n}. Let
ϕ : R → R

d , ϕ(x) = (x, . . . , xd+1) be the (d + 1)-dimensional moment curve. Then
ϕ(V ) are the vertices of a cyclic polytope P = conv ϕ(V ) (see [6,7,21]). As d ≥ 3,
we have that P is 2-neighborly [13]. Define H(P) = (V, E(P)) to be the (d + 1)-
uniform hypergraph with E(P) = {e ⊆ V : e is the set of vertices of a facet of P}.
Then H(P) can be linearly embedded into R

d : for example, one can take the Schegel-
Diagram [28] of P with respect to some facet.

Now, choose k ∈ N such that 2 ≤ k ≤ d + 1. Following [14, §7.1], for any
hypergraph H = (W, E), we call

Sk(H) = (W, {{w1, . . . , wk} : {w1, . . . , wk} ⊆ e for some e ∈ E})

the k-shadow of H . As P is 2-neighborly we have that S2(H(P)) = Kn and thus
χs(H(P)) = n. Obviously, S2(Sk(H(P))) = Kn and χs(Sk(H(P))) = n, too.
Thus, we have demonstrated that for any 2 ≤ k ≤ d + 1 ≤ n there exists a k-uniform
hypergraph on n vertices that is linearly d-embeddable and has strong chromatic
number n.

Thus, from now on, we restrict ourselves to the weak case and will always
mean this when talking about a chromatic number. To conclude the introduction,
here is a rough outline for the rest of the paper. In Sect. 2 the general concept
of embedding hypergraphs into d-dimensional space is discussed. We also show
the embeddability of certain structures needed later on, hereby extensively using
known properties of the moment curve t �→ (t, t2, t3, . . . , td). Then, Sect. 3 presents
our current level of knowledge for the more difficult problem of weakly coloring
hypergraphs.
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2 Embeddability

The first part of this section gives insight into the structure of neighborhoods of single
vertices in a hypergraph H ∈ Hd,k . We will later use this information to prove upper
bounds on the number of edges in our hypergraphs. This will then yield upper bounds
on the weak chromatic number. However, we must first take a small technical detour
into piecewise linear embeddings. As our hypergraphs are finite and of fixed uniformity
we give a slightly simplified definition (for a more comprehensive introduction, see
e. g. [25]).

Definition 2 (Piecewise linear d-embeddings) Let H be a k-uniform hypergraph and
D, d ∈ N. Let ϕ : V (H) → R

D be a linear embedding of H and define ϕ(H) =⋃
e∈E(H) conv ϕ(e).
We say H is piecewise linearly embeddable if there exists ψ : ϕ(H) → R

d such
that ψ is a homeomorphism from ϕ(H) onto its image and there exists a (locally
finite) subdivision K of ϕ(H) (seen as a geometric simplicial complex) such that ψ
is affine on all elements of K . We call ψ a piecewise linear embedding of H into
R

d and we denote by H PL
d,k the set of all piecewise linearly d-embeddable k-uniform

hypergraphs.

Note that such a ϕ always exists, as H ∈ H2k−1,k by the Menger–Nöbeling Theo-
rem (see [20, p. 295] and [22]). Also, Definition 2 is independent of the choice of ϕ.

Definition 3 (Neighborhoods) For a k-uniform hypergraph H and a vertex v ∈ V (H)
we say the neighborhood of v is NH (v)={w ∈ V (H) : w �= v and there is an edge in
E(H) incident with w and v}. We define the neighborhood hypergraph (or link) of
v ∈ V (H) to be the induced (k − 1)-uniform hypergraph

NHH (v) = (NH (v), {e\{v} : e ∈ E(H), v ∈ e}) .
The degree degH (v) = deg(v) is the number of edges in E(H) incident with v.

Lemma 4 For a hypergraph H ∈ H PL
d,k on n vertices, d ≥ k ≥ 2, and for any vertex

v we have that NHH (v) ∈ H PL
d−1,k−1.

Proof Let d ≥ k ≥ 2, H ∈ H PL
d,k , v ∈ V (H), and Vv = NH (v) nonempty. Then

there exist ϕ : V (H) → R
2k−1 a linear embedding and ψ : ϕ(H) → R

d a piecewise
linear embedding of H for some subdivision K of ϕ(H) on whose elements ψ is
affine. Without restriction assume that ϕ(v) = 02k−1 and ψ(02k−1) = 0d .

Let Hv = (Vv ∪ {v}, {e ∈ E(H) : v ∈ e}) be the sub-hypergraph of H of all edges
containing v. Obviously, ψ |ϕ(Hv) (the restriction of ψ onto ϕ(Hv)) is a piecewise
linear embedding of Hv for some subdivision Kv ⊆ K . Let K 1

v ={e ∈ Kv :02k−1 ∈ e}.
Then there exists an ε > 0 such that

ε · ϕ(Hv) ⊆
⋃

e∈K 1
v

e,

i. e. all points in ε · ϕ(Hv) are so close to 02k−1 that they lie completely in elements
of Kv that contain the origin.
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Then ϕ′ : Vv ∪ {v} → R
2k−1, w �→ ε · ϕ(w) is a linear and thus ψ |ϕ′(Hv) a

piecewise linear embedding of Hv for the subdivision K 2
v = {e ∩ ϕ′(Hv) : e ∈ K 1

v }.
Let VK 2

v
⊇ ϕ′(Vv) be the set of all subdivision points of K 2

v without 02k−1 and let

δ = min
{ ‖ψ(x)‖ : x ∈ conv(e ∩ VK 2

v
) for some e ∈ K 2

v

}
.

Obviously, we have that δ > 0. We take a regular d-simplex T ⊆ R
d centered at the

origin with sides of length δ and set C = ∂T . Due to our choice of δ, all ψ(w) for
w ∈ VK 2

v
lie outside of T . Further, for all e ∈ K 2

v the intersection ψ(e) ∩ C is the
union of finitely many at most (k − 2)-dimensional simplices and homeomorphic to
a (k − 2)-dimensional simplex. Also, as d ≥ k, there exists a point x ∈ C such that
x /∈ ψ(e) for all e ∈ K 2

v .
Thus, there exists a subdivision K 3

v of K 2
v such that for all e ∈ K 3

v with dimension
k − 1 we have that ψ(e) ∩ C is a (k − 2)-dimensional simplex and still 02k−1 ∈ e.
We denote the set of subdivision points without 02k−1 by VK 3

v
⊇ VK 2

v
. Now, one can

find a retraction ρ : ψ(ϕ′(Hv)) → ψ(ϕ′(Hv)) that maps each ψ(w),w ∈ VK 3
v
, to the

intersection point of the line segment [0d , ψ(w)] with C , such that ρ is linear on all
ψ(e) for e ∈ K 3

v .
Set K̂ = {conv(e ∩ VK 3

v
) : e ∈ K 3

v } which is now a subdivision of ϕ′(NHH (v)) ⊆
ϕ′(Hv). Then the image of ρ ◦ (ψ |K̂ ) lies completely in C\{x}.

Finally, note that C\{x} is piecewise linearly homeomorphic to R
d−1 [25, 3.20].

Let γ be such a (piecewise linear) homeomorphism . Then

ψ̂ = γ ◦ ρ ◦ (ψ |ϕ′(NHH (v)))

is a piecewise linear embedding of NHH (v) into R
d−1 for some subdivision of K̂ and

NHH (v) ∈ H PL
d−1,k−1. ��

Note that it is quite plausible that a version of Lemma 4 for linear or general embed-
dings does not hold. Part (a) of the following result has previously been established
by Dey and Pach for linear embeddings [8, Theorem 3.1].

Lemma 5 (a) For a hypergraph H ∈ H PL
k,k on n vertices, k ≥ 2, we have that

|E(H)| ≤ 6nk−1 − 12nk−2

k! .

(b) For a hypergraph H ∈ H PL
k+1,k+1 on n vertices, k ≥ 2, and for any vertex v we

have that

degH (v) ≤ 6nk−1 − 12nk−2

k! .

Proof If k = 2, then (a) is equivalent to the fact that for G planar |E(G)| ≤ 3n − 6.
Given that (a) is true for some k ≥ 2, we show that (b) holds for k as well. Let
H ∈ H PL

k+1,k+1, v one of the n vertices. By Lemma 4, NHH (v) ∈ H PL
k,k . By (a),

123



Discrete Comput Geom (2014) 52:663–679 669

|E(NHH (v))| ≤ 6nk−1 − 12nk−2

k!
which implies

degH (v) ≤ 6nk−1 − 12nk−2

k! .

Given that (b) is true for some k ≥ 2, we show that (a) holds for k + 1. Let
H ∈ H PL

k+1,k+1. Since (b) is true for every vertex vi , we have

|E(H)| =
∑n

i=1 degH (vi )

k + 1
≤ n(6nk−1 − 12nk−2)

(k + 1)k! = 6nk − 12nk−1

(k + 1)! .

��
Corollary 6 For a hypergraph H ∈ H PL

k,k on n vertices, k ≥ 3, and for any edge

e ∈ E(H) there exist at most k 6nk−2−12nk−3

(k−1)! − k other edges adjacent to it.

Proof This follows from Lemma 5, since every edge has exactly k vertices and each

of them has degree at most 6nk−2−12nk−3

(k−1)! . As e itself counts for the degree as well, one
can subtract k. ��

We need to bound the number of edges in a d-embeddable hypergraph to prove upper
bounds for the chromatic number. The following results will also help to do this. Note
that there exist much stronger conjectured bounds (see [16, Conjecture 1.4.4] and
[18, Conjecture 27]).

Proposition 7 (Gundert [16, Proposition 3.3.5]) Let k ≥ 2. For a k-uniform hyper-
graph on n vertices that is topologically embedabble into R

2k−2, we have that
|E(H)| < nk−31−k

.

Corollary 8 For a hypergraph H ∈ H PL
2k−�,k on n vertices, k ≥ � ≥ 2, we have that

|E(H)| < (k − �+ 2)!
k! · nk−3�−1−k

.

Proof This follows from inductively applying Lemma 4 and Proposition 7. ��
Corollary 9 For a hypergraph H ∈ H PL

2k−�,k on n vertices, k ≥ � ≥ 3, and for any

edge e ∈ E(H) there exist at most (k−�+2)!
(k−1)! · nk−1−3�−1−k − k other edges adjacent to

it.

Proof This fact follows analogously to Corollary 6 from Corollary 8. ��
Theorem 10 (Dey and Pach [8, Theorem 2.1]) Let k ≥ 2. For a k-uniform hyper-
graph on n vertices that is linearly embedabble into R

k−1, we have that |E(H)| <
kn�(k−1)/2.

123



670 Discrete Comput Geom (2014) 52:663–679

Corollary 11 For a hypergraph H ∈ Hk−1,k on n vertices, k ≥ 2, and for any edge
e ∈ E(H) there exist at most kn�(k−1)/2 − 1 other edges adjacent to it.

Proof This fact follows obviously from Theorem 10. ��
In order to find lower bounds for the chromatic number of hypergraphs later on, we

need to be able to prove embeddability. The following theorem from Shephard will
turn out to be very useful when embedding vertices of a hypergraph on the moment
curve.

Theorem 12 (Shephard [29]) Let W = {w1, . . . , wm} ⊆ R
d be distinct points

on the moment curve in that order and P = conv W . We call a q-element subset
{wi1, wi2 , . . . , wiq } ⊆ W with i1 < i2 < · · · < iq contiguous if iq − i1 = q − 1. Then
U ⊆ W is the set of vertices of a (k − 1)-face of P if and only if |U | = k and for some
t ≥ 0

U = YS ∪ X1 ∪ · · · ∪ Xt ∪ YE ,

where all Xi ,YS, and YE are contiguous sets, YS = ∅ or w1 ∈ YS,YE = ∅ or
wm ∈ YE , and at most d − k sets Xi have odd cardinality.

Shephard’s Theorem thus says that the absolute position of points on the moment
curve is irrelevant and only their relative order is important. Furthermore, note that all
points in W are vertices of P . The following corollary helps in proving that two given
edges of a hypergraph intersect properly.

Corollary 13 In the setting of Theorem 12 assume that W = U1 ∪ U2 where U1 and
U2 are embedded edges of a k-uniform hypergraph. Then these edges do not intersect
in a way forbidden by Definition 1, if there exists j ∈ {1, 2} such that

U j = YS ∪ X1 ∪ · · · ∪ Xt ∪ YE

holds where at most d − k of the contiguous sets Xi have odd cardinality.

Proof The two edges U1 and U2 do not intersect in a way forbidden by Definition 1
if at least one of them is a face of P = conv W , which is the case for U j . ��
Proposition 14 Let A, B,C, and D be four distinct points on the moment curve in
R

3 in arbitrary order. Then the line segments AB and C D do not intersect.

Proof This follows immediately from Corollary 13 for the case k = 2 and d = 3. ��
In the k = d = 3 case Corollary 13 allows zero odd sets Xi . Thus, we can easily

classify all possible configurations for two edges.

Lemma 15 Let H be a 3-uniform hypergraph and ϕ : V (H) → R
3 such that ϕ maps

all vertices one-to-one on the moment curve and for each pair of edges e and f sharing
at most one vertex, the order of the points ϕ(e ∪ f ) on the moment curve has one of
the Configurations 1–12 shown in Table 3. Then ϕ is an embedding of H.
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Table 3 Possible configurations
for two edges e and f on the
moment curve in R3 sharing at
most one vertex

The vertices of e\ f are marked
with E, those of f \e marked
with F, and a joint vertex is
marked with I. Equivalent cases,
one being the reverse of the
other, are only displayed once

No. Configuration No. Configuration

1 E E E F F F 9 E I F F E

2 E E F F E F 10 E F I E F

3 E E F F F E 11 E F E I F

4 E F F E E F 12 E E F E F F

5 E F F E I 13 E F E F E F

6 E E I F F 14 E F E F F E

7 E I E F F 15 E F E F I

8 E E F F I 16 E F I F E

Proof Note that the relative order of edges with two common vertices is irrele-
vant as they always intersect according to Definition 1. Configurations 1–11 fol-
low directly from Corollary 13 for k = d = 3. Thus, we are left with Config-
uration 12 and it is sufficient to prove the following: For x0,0 < x1,0 < x0,1 <

x2,0 < x1,1 < x2,1 ∈ R, ψ : R → R
3, ψ(x) = (x, x2, x3) the moment curve,

and Di = {x0,i , x1,i , x2,i } we have that convψ(D0) ∩ convψ(D1) = ∅. Assume
otherwise. Note that if two triangles intersect in R

3 the intersection points must
contain at least one point of the border of at least one of the triangles. Thus,
without loss of generality, conv{ψ(x j1,0), ψ(x j2,0)} ∩ convψ(D1) �= ∅. However,
by Theorem 12 we know that conv{ψ(x j1,0), ψ(x j2,0)} is a face of the polytope
P = conv({ψ(x j1,0), ψ(x j2,0)} ∪ ψ(D1)) which is a contradiction. ��

Note that if we have two edges with vertices on the moment curve as in Configura-
tions 13–16 they generally do intersect in a way forbidden by Definition 1. Also, we
have presented above all possible cases for the relative order of vertices of two edges
on the moment curve. Not all of them will actually be needed in the proofs of the next
section.

3 Bounding the Weak Chromatic Number

For d, k, n ∈ N we define

χw
d,k(n) = max{χw(H) : H ∈ Hd,k, |V (H)| = n}

to be the maximum weak chromatic number of a d-embeddable k-uniform hypergraph
on n vertices.

In this section, we give lower and upper bounds on χw
d,k(n). Obviously, χw

d,k(n) is
monotonically increasing in n and in d and monotonically decreasing in k if the other
parameters remain fixed.

Remark 16 (a) For k = 2, the results in Tables 1 and 2 follow from the Four Color
Theorem and the fact that all graphs are d-embeddable for d ≥ 3.

(b) For d ≥ 2k − 1, we have χw
d,k(n) = �n/(k − 1) as K (k)

n is (2k − 1)-embeddable
for all k ∈ N by the Menger–Nöbeling Theorem (see [20, p. 295] and [22]) and
χw

(
K (k)

n
) = �n/(k − 1).
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(c) For d ≤ k − 2, we again know χw
d,k(n) = 1 as H ∈ Hd,k cannot have any edge.

Proposition 17 For all n ≥ 3 we have χw
2,3(n) ≤ 2. (This bound is obviously sharp.)

Proof Let H ∈ H2,3 and V = V (H). Then G = S (H) is a planar graph, thus
χ(G) ≤ 4. Let κ : V → {1, 2, 3, 4} be a 4-coloring of G. Define

κ ′ : V → {1, 2}, v �→ (κ(v) mod 2)+ 1.

In any triangle {u, v, w} of H under the coloring κ these vertices have exactly three
different colors. Therefore, under the coloring κ ′ at least one vertex with color 1 and
one vertex with color 2 exists. Thus κ ′ is a valid 2-coloring of H . ��
Theorem 18 Let d ≥ 3. Then one has

χw
d,d(n) ≤

⌈(
6ed

(d − 1)!
) 1

d−1

n
d−2
d−1

⌉

= O
(

n
d−2
d−1

)
as n → ∞.

This result also holds for piecewise linear embeddings.

Proof Let H ∈ H PL
d,d ⊇ Hd,d . By Corollary 6 we know that every edge is adjacent

to at most  = d(6nd−2 − 12nd−3)/(d − 1)! − d other edges.
We want to apply the Lovász Local Lemma [9,30] to bound the weak chromatic

number of H . Let c ∈ N. In any c-coloring of the vertices of H an edge is called bad if
it is monochromatic and good if not. In a uniformly random c-coloring the probability
for any one edge to be bad is p = 1

cd−1 . Moreover, let e be any edge in H and F be
the set of edges in H not adjacent to e. Then the events of e being bad and of any
edges from F being bad are independent. Thus the event whether any edge is bad is
independent from all but at most  other such events.

The Lovász Local Lemma guarantees us that with positive probability all edges are
good if e · p · (+ 1) ≤ 1. This implies that H is weakly c-colorable. Note that

e · p · (+ 1) ≤ 1 ⇔ ed(6nd−2 − 12nd−3)

(d − 1)! − ed + e ≤ cd−1.

Choosing an integer

c ≥
(

6ed

(d − 1)!
) 1

d−1

n
d−2
d−1 ≥

(
ed(6nd−2 − 12nd−3)

(d − 1)! − ed + e

) 1
d−1

,

the hypergraph H is c-colorable and χw(H) ≤ c. ��
Theorem 19 Let d ≥ � ≥ 3. Then one has

χw
2d−�,d(n) ≤

⌈(
e(d − �+ 2)!
(d − 1)!

) 1
d−1

n1− 3�−1−d
d−1

⌉

= O
(

n1− 3�−1−d
d−1

)
as n → ∞.

This result also holds for piecewise linear embeddings.
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Proof By Corollary 9 we know that every edge is adjacent to at most  = (d−�+2)!
(d−1)! ·

nd−1−3�−1−d − d other edges. The rest of the proof is now analogous to the proof of
Theorem 18. ��
Theorem 20 Let d ≥ 2. Then one has

χw
d−1,d(n) ≤

⌈
(ed)

1
d−1 n

�(d−1)/2
d−1

⌉
=

{O (
n1/2

)
if d is odd

O (
n1/2+1/(2d−2)

)
if d is even

as n → ∞.

Proof By Corollary 11 we know that every edge is adjacent to at most  =
dn�(d−1)/2 − 1 other edges. The rest of the proof is now analogous to the proof
of Theorem 18. ��

By monotonicity, the upper bounds presented here also hold if the uniformity of
the hypergraph is larger than stated in Theorems 18 and 19. In the remaining part
of this section, we now consider lower bounds for the weak chromatic number of
hypergraphs.

Theorem 21 For n ≥ 2 we have

χw
3,3(n) ≥ log n

2 log log n
− 1 = �

( log n

log log n

)
as n → ∞.

Proof We first define a sequence of hypergraphs Hm for m ≥ 2 such that χw(Hm) ≥
m. Set H2 = K (3)

3 which has 3 vertices. Define Hm for m > 2 iteratively, assuming
χw(Hm−1) ≥ m − 1. Take m new vertices {v0, . . . , vm−1} and m(m − 1)/2 disjoint
copies of Hm−1, labeled H [0,1]

m−1 , . . . , H [m−2,m−1]
m−1 .

The edges of Hm shall be all former edges of all H [i, j]
m−1 together with all edges of

the form {vi , v j , w} where i < j and w ∈ H [i, j]
m−1. Assume Hm is weakly (m − 1)-

colorable. Given such a coloring, one color must occur twice in {v0, . . . , vm−1}. Say,
these are the vertices vi1 and vi2 where i1 < i2. This color cannot occur anymore in
the coloring of H [i1,i2]

m−1 . Thus, H [i1,i2]
m−1 must be weakly (m − 2)-colorable. This is a

contradiction and Hm is at least (and obviously exactly) weakly m-chromatic.
We now claim that Hm ∈ H3,3 for all m ≥ 2. For that, we give a function fm :

V (Hm) → {1, . . . , nm} where nm is the number of vertices of Hm . This function
defines the order in which the vertices of Hm will be arranged on the moment curve
t �→ (t, t2, t3). Lemma 15 on possible configurations then guarantees that Hm is
embeddable via arbitrary points on the moment curve. Note that the absolute position
of vertices on the moment curve is not important, only their relative order.

The hypergraph H2 = K (3)
3 can be embedded into R

3 via any three points on the
moment curve, so f2 : V (H2) → {1, 2, 3} can be chosen arbitrarily. Assume that
fm−1 has already been defined and that the vertices of Hm−1 arranged in that order
on the moment curve form an embedding. Look at the vertices of Hm as given before.
We define fm(v j ) = nm−1 · j ( j −1)/2+ j for 0 ≤ j ≤ m −1 and for anyw ∈ H [i, j]

m−1
with i < j we set fm(w) = nm−1 · ( j ( j − 1)/2 + i) + j + fm−1(w). This gives
exactly the order shown in Fig. 1.
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v0 v1 v2 vm-1

Hm-1
[0,2] Hm-1

[0,m-1] Hm-1
[m-2,m-1]Hm-1

[0,1] Hm-1
[1,2]

Fig. 1 Construction of Hm

Table 4 Sub-cases of Case 3 in
the proof of Theorem 21
referring to the corresponding
cases of Lemma 15

Relative order of v Additional condition Case number

fm (v) < fm (w1) – 1

fm (v) = fm (w1) – 6

fm (w1) < fm (v) < fm (w2) – 12

fm (v) = fm (w2) – 7

fm (w2) < fm (v) < fm (w3) – 2

fm (v) = fm (w3) – 8

fm (v) > fm (w3) fm (vi1 ) < fm (w3) 3

fm (v) > fm (w3) fm (vi1 ) > fm (w3) 1

Table 5 Sub-cases of Case 4 in
the proof of Theorem 21
referring to the corresponding
cases of Lemma 15

Relative order of i1, i2, j1, j2 Case number

j1 = j2 and i1 �= i2 10

j1 = j2 and i1 = i2 Two shared vertices

i1 < j1 < i2 < j2 1

i1 < j1 = i2 < j2 7

i1 < i2 < j1 < j2 2

i1 = i2 < j1 < j2 8

i2 < i1 < j1 < j2 3

Now, arrange the vertices of Hm on the moment curve in that order and pick any
two edges e1 and e2. By Lemma 15 we can assume that they do not share two vertices.

Case 1: e1 and e2 are from the same subhypergraph H [i, j]
m−1. Then, by induction,

they can only intersect according to Definition 1 as their relative order reflects that of
fm−1.

Case 2: e1 and e2 are from distinct subhypergraphs H [i1, j1]
m−1 and H [i2, j2]

m−1 . Then we
are in Case 1 in Table 3 and thus they intersect according to Definition 1.

Case 3: e1 = {vi1 , v j1 , v} where v ∈ H [i1, j1]
m−1 and e2 is from some subhypergraph

H [i2, j2]
m−1 . Without loss of generality, let e2 = {w1, w2, w3} and assume that fm(w1) <

fm(w2) < fm(w3). Then, by definition, i1 < j1 and i2 < j2 and all the possible cases
of Lemma 15 are listed in Table 4.

Case 4: e1 = {vi1 , v j1 , v} and e2 = {vi2 , v j2 , w}. Again, i1 < j1 and i2 < j2 holds.
Without loss of generality assume j1 ≤ j2. We then have one of the cases listed in
Table 5.

123



Discrete Comput Geom (2014) 52:663–679 675

Thus, the order given by fm provides an embedding of Hm . To estimate nm , we use
the following recursion

n2 = 3,

nm = m + nm−1 · m(m − 1)/2 for m > 2.

This can be bounded by nm ≤ m2m =: n̂m . Then

log n̂m

log log n̂m
= 2m · log m

log(2m log m)
≤ 2m

and we finally get that

m ≥ log n̂m

2 log log n̂m
≥ log nm

2 log log nm
.

��
Note that by monotonicity also

χw
4,3(n) = �

( log n

log log n

)

holds.

Theorem 22 Let d ≥ 3. For n ≥ d we have

χw
2d−3,d(n) ≥ log n

2 log log n
− d − 1

2
= �

( log n

log log n

)
as n → ∞.

Proof Induction over d. The case d = 3 was shown in Theorem 21. Let d > 3.
Suppose we have constructed a family (Hd−1

m )m∈N of hypergraphs in H2d−5,d−1 such
that χw(Hd−1

m ) ≥ m and such that all hypergraphs Hd−1
m are embeddable into R

d−1

by vertices on the moment curve with edges intersecting according to Corollary 13
(or Lemma 15 if d = 4).

Let Hd
2 = K (d)

d . The hypergraph Hd
2 has d vertices, one edge, and is weakly

2-colorable. Define Hd
m for m > 2 iteratively, given that χw(Hd

m−1) ≥ m − 1. For
that, take one copy of Hd

m−1 and one copy of (d − 1)-uniform Hd−1
m .

The edges of Hd
m shall be all edges of Hd

m−1 and all edges of the form ({v} ∪ e) for
v ∈ V (Hd

m−1) and e ∈ E(Hd−1
m ). Assume that there exists a weak (m −1)-coloring of

Hd
m . Then there has to be at least one monochromatic edge e ∈ E(Hd−1

m ). No vertex
of Hd

m−1 can be colored with this color, so its edges must be weakly (m − 2)-colored.
This is a contradiction and thus χw(Hd

m) ≥ m.
We now claim that Hd

m ∈ H2d−3,d for all m ≥ 2. As in the proof of Theorem 21, we

give a function f (d)m : V (Hd
m) → {1, . . . , n(d)m } where n(d)m is the number of vertices of

Hd
m . This defines the order in which the vertices of Hd

m will be arranged on the moment
curve t �→ (t, . . . , t2d−3). We then use Corollary 13 to prove that Hd

m is embeddable
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Fig. 2 Construction of Hd
m

Hm-1 Hm
d d-1

via arbitrary points on the moment curve. As before, the absolute position of vertices
on the moment curve is not important. For a fixed uniformity d and dimension 2d −3,
Corollary 13 guarantees that if for two given edges the vertices of at least one edge have
at most d −3 odd contiguous subsets, they intersect properly according to Definition 1.

For d = 3 we can set f (3)m = fm for all m ≥ 2, where fm is as in the proof of
Theorem 21. For d > 3 we have by assumption that there exists a corresponding
family of functions

(
f (d−1)
m : V (Hd−1

m ) → {1, . . . , n(d−1)
m })m

such that the vertices of Hd−1
m arranged in that order on the moment curve form an

embedding. We then have to give an appropriate family of functions f (d)m for d.
Hd

2 can be embedded into R
2d−3 via any d points on the moment curve, so f (d)2 :

V (Hd
2 ) → {1, . . . , d} can be chosen arbitrarily. Assume that f (d)m−1 has already been

defined and gives an embedding of Hd
m−1. We define f (d)m (v) = f (d)m−1(v) for v ∈

V (Hd
m−1) and for any w ∈ V (Hd−1

m ) we set f (d)m (w) = n(d)m−1 + f (d−1)
m (w). This is

also shown in Fig. 2.
Arrange the vertices of Hd

m on the moment curve in that order and pick any two
edges g1 and g2.

Case 1: Both edges are from the subhypergraph Hd
m−1. Then they intersect in

accordance to Definition 1 and Corollary 13 as their relative order reflects that of
f (d)m−1.

Case 2: One edge is from Hd
m−1 and the other of the form ({v} ∪ e) where v ∈

V (Hd
m−1) and e ∈ E(Hd−1

m ). Then both edges have at most one odd contiguous
subset (besides the first and last one), which is no problem for d > 3.

Case 3: g1 = ({v1} ∪ e1) and g2 = ({v2} ∪ e2). Then the edges e1 and e2 intersect
according to Corollary 13 (or Lemma 15 if d = 4) and g1 and g2 have at most one
more odd contiguous subset than the edges e1 and e2 had in the ordering of f (d−1)

m .
The last number, by assumption, was bounded from above by (d − 1)− 3 for at least
one ei , i ∈ {1, 2} (unless d = 4 and they intersect according to Case 12 in Table 3, see
below). So at least one gi has at most d − 3 odd contiguous subsets. Thus, the order
given by f (d)m provides an embedding of Hd

m .
Note that there is one small exception to Case 3 when d = 4. Here, e1 and e2

could be in the relative position of Case 12 in Table 3 and consequently have more
than (d − 1) − 3 = 0 odd contiguous subsets. However, this is no problem as in all
possible extensions to g1 and g2 at least one of the edges continues to have only one
odd contiguous subset (see Table 6).
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Table 6 All possible 4-uniform
extensions of Case 12 in Table 3
as occurring in the construction
of H4

m

No. Configuration

1 E F E E F E F F

2 F E E E F E F F

3 I E E F E F F

To bound the number of vertices of Hd
m we use

n(d)2 = d,

n(d)m = n(d)m−1 + n(d−1)
m for m > 2.

Iteratively, we get that n(d)m = d +∑m
r=3 n(d−1)

r ≤ m ·n(d−1)
m ≤ · · · ≤ md−3 · n̂m =

m2m+d−3 and thus

log n(d)m

log log n(d)m

≤ (2m + d − 3) · log(m)

log ((2m + d − 3) log(m))
≤ 2m + d − 3.

Hence,

m ≥ log n(d)m

2 log log n(d)m

− d − 3

2
.

��
Note that by monotonicity also

χw
2d−2,d(n) = �

( log n

log log n

)

holds.

4 Conclusions and Open Questions

Starting from the Four Color Theorem we have shown that it has no direct analogon for
higher dimensions in general. Rather, in almost all cases, the number of colors needed
to color a hypergraph embedabble in a certain dimension is unbounded. However,
some questions still need to be answered.

Firstly, it would be very interesting to see whether the logarithmic-polynomial
difference between lower and upper bounds for the weak coloring case can be improved
substantially. If the conjectures by Gundert and Kalai mentioned in Sect. 2 were true,
the upper bound for weak colorings could be lowered as follows.

Conjecture 23 Let k − 1 ≤ d ≤ 2k − 2. Then one has

χw
d,k(n) = O

(
n

�(d−1)/2
k−1

)
as n → ∞.

123



678 Discrete Comput Geom (2014) 52:663–679

Further, in the weak coloring case, for k = d + 1 no examples with an unbounded
number of colors needed have yet been found and a finite bound is still possible. Also,
the question whether the maximum chromatic number for some fixed k, d, and n
actually differs for linear and piecewise linear embeddings, remains an open problem.
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In: Infinite and Finite Sets (to Paul Erdős on his 60th birthday), vol. II., pp. 609–627. North-Holland,
Amsterdam (1975)

10. Flores, A.: Über die Existenz n-dimensionale Komplexe, die nicht in den R2n topologisch einbettbar
sind. Ergebnisse eines Mathematischen Kolloquiums 5, 17–24 (1933)

11. Flores, A.: Über n-dimensionale Komplexe, die im R2n+1 absolut selbstverschlungen sind. Ergebnisse
eines Mathematischen Kolloquiums 6, 4–7 (1934)

12. Fáry, I.: On straight-line representation of planar graphs. Acta Scientiarum Mathematicarum Szeged
11, 229–233 (1948)

13. Gale, D.: Neighborly and cyclic polytopes. In: Convexity: Proceedings of the Seventh Symposium in
Pure Mathematics of the American Mathematical Society, pp. 225–232 (1963)

14. Graham, R., Grötschel, M., Lovász, L. (eds.), Handbook of Combinatorics, vol. 1. North-Holland,
Amsterdam (1995)

15. Grünbaum, B.: Higher-dimensional analogs of the four-color problem and some inequalities for sim-
plicial complexes. J. Comb. Theory 8(2), 147–153 (1970)

16. Gundert, A.: On the Complexity of Embeddable Simplicial Complexes. Diplomarbeit. Freie Universität
Berlin (2009). http://www.inf.ethz.ch/personal/gunderta/files/Diplomarbeit.pdf

17. Heawood, J.C.: Map-colour theorem. Q. J. Pure Appl. Math. 24, 332–338 (1890)
18. Kalai, G.: Algebraic shifting. Adv. Stud. Pure Math. 33, 121–163 (2002)

123

http://www.inf.ethz.ch/personal/gunderta/files/Diplomarbeit.pdf


Discrete Comput Geom (2014) 52:663–679 679

19. Matoušek, J., Tancer, M., Wagner, U.: Hardness of embedding simplicial complexes in Rd . J. Eur.
Math. Soc. 13, 259–295 (2011)

20. Menger, K.: Dimensionstheorie. Teubner, Leipzig (1928)
21. Motzkin, T.S.: Comonotone curves and polyhedra, Abstract 111. Bull. Am. Math. Soc. 63, 35 (1957)
22. Nöbeling, G.: Über eine n-dimensionale Universalmenge im R2n+1. Math. Ann. 104(1), 71–80 (1931)
23. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. I, II,

III. J. Symb. Comput. 13(3), 255–299, 301–327, 329–352 (1992)
24. Ringel, G., Youngs, J.W.T.: Solution of the Heawood map-coloring problem. Proc. Natl. Acad. Sci.

USA 60(2), 438–445 (1968)
25. Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Ergebnisse der Mathematik

und ihrer Grenzgebiete, vol. 69. Springer, Berlin (1972)
26. Sarkaria, K.S.: Heawood inequalities. J. Comb. Theory Ser. A 46(1), 50–78 (1987)
27. Schild, G.: Some minimal nonembeddable complexes. Topol. Appl. 53(2), 177–185 (1993)
28. Schlegel, V.: Theorie der homogen zusammengesetzten Raumgebilde. Nova Acta Leopold. 44, 4 (1883)
29. Shephard, G.C.: A theorem on cyclic polytopes. Israel J. Math. 6(4), 368–372 (1968)
30. Spencer, J.: Asymptotic lower bounds for Ramsey functions. Discrete Math. 20, 69–76 (1977)
31. Van Kampen, E.R.: Komplexe in euklidischen Räumen. Abh. Math. Semin. Univ. Hamburg 9(1),

72–78, corrections ibidem, pp. 152–153 (1933)
32. White, A.T.: Graphs of Groups on Surfaces: Interactions and Models. Mathematics Studies, vol. 188.

North-Holland, Amsterdam (2001)

123


	Coloring d-Embeddable k-Uniform Hypergraphs
	Abstract
	1 Introduction
	2 Embeddability
	3 Bounding the Weak Chromatic Number
	4 Conclusions and Open Questions
	Acknowledgments
	References


