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Abstract: We show that a typical d-regular graph G of order n does not
contain an induced forest with around 2 ln d

d n vertices, when n � d � 1,
this bound being best possible because of a result of Frieze and Łuczak [6].
We then deduce an affirmative answer to an open question of Edwards and
Farr (see [4]) about fragmentability, which concerns large subgraphs with
components of bounded size. An alternative, direct answer to the question
is also given. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 149–156, 2008

Keywords: connectivity components; decycling number; fragmentability; random regular graphs

Contract grant sponsor: NSERC (to P. H.); Contract grant sponsor: NSF (to O. P.);
Contract grant number: DMS-0457512.

Journal of Graph Theory
© 2007 Wiley Periodicals, Inc.

149



150 JOURNAL OF GRAPH THEORY

1. INTRODUCTION

This note is concerned with subgraphs of regular graphs that are either acyclic
or have only small components. We begin by stating some appropriate graph
parameters that have appeared in different places in the literature, and showing
how they are related.

First, with regard to acyclic subgraphs, the decycling number φ(G) of a graph G
is the smallest number of vertices that can be removed from G to make it acyclic.
Thus, v(G) − φ(G) is the largest order of an induced forest in G. The problem
of deciding whether φ(G) ≤ k, on input (G, k), was shown to be NP-complete by
Karp [8].

Second, with regard to small components, given an integer f, we say that a graph
is f-fragmented if each of its components has at most f vertices. More generally,
given a real number α > 0, we say that G is (α, f )-fragmentable if it has a set of at
most αv(G) vertices whose removal results in an f-fragmented graph.

Our interest in these parameters was prompted by a study of graph
fragmentability, and in particular the parameter αd defined by Edwards and Farr [5]
as follows. For an integer d, αd is the infimum of α for which there is an f such that
any graph with maximum degree at most d is (α, f )-fragmentable. In other words,
if α > αd then there is some finite f, such that every graph G of maximum degree d
has a set of at most αv(G) vertices, whose removal leaves components with at most
f vertices. It is easy to see that the value of αd would not change if we consider
d-regular graphs only.

Note that, trivially, α1 = α2 = 0. Edwards and Farr [5] proved that

d − 2

2d − 2
≤ αd ≤ d − 2

d + 1
= 1 − 3

d + 1
, for any d ≥ 3. (1)

In particular, α3 = 1
4 . More recently, Edwards and Farr (personal communication)

reported an improvement in the upper bound in (1). It is not clear at present what
the best result given by their method is, though they can definitely show that

α4 ≤ 3

8
. (2)

On the other hand, Edwards and Farr (in Cameron [4], Problem 408) asked whether

lim
d→∞

αd = 1. (3)

In this note, we give an affirmative answer to this question, by two different
methods. Observe that, to answer the question, we must exhibit graphs for which it is
necessary to delete nearly all the vertices before the remainder is fragmented—that
is, we must find graphs without any large fragmented subgraph.
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In the first place, it is natural to consider what bounds are given by random
regular graphs. This is where the decycling number comes in, because decycling
and fragmenting are more or less the same for these graphs (see the simple Lemma
2). The decycling number of random d-regular graphs with d small has been studied
by Bau et al. [2].

For 0 ≤ d ≤ n − 1 with nd even, let Gn,d be a graph selected uniformly at
random from all labeled d-regular graphs of order n. Let φd(n) be the smallest φ

such that with probability at least 1/2 we have φ(Gn,d) ≤ φ. (Here, as we shall see
later, the value 1/2 can be changed to any constant from the open interval (0, 1)
without changing the subsequent results.)

Clearly, φd(n) = o(n) if d ≤ 2. However, we do not know how to prove that
φd(n)/n tends to a limit for d ≥ 3 as n → ∞, so we have to define

b(d) = lim inf
n→∞

φd(n)

n
,

B(d) = lim sup
n→∞

φd(n)

n
.

Bau, Wormald, and Zhou [2] proved that whp (i.e., with probability 1 − o(1)
as n → ∞) we have φ(Gn,3) = �n

4 + 1
2� (and thus b(3) = B(3) = 1

4 ) and, they
presented methods for obtaining bounds on b(d) and B(d) for any given d. Their
techniques give the following bounds (for some small d):

1/3 ≤ b(4) ≤ B(4) ≤ 0.3787,

0.3786 ≤ b(5) ≤ B(5) ≤ 0.4512,

0.4232 ≤ b(6) ≤ B(6) ≤ 0.5043. (4)

Here, we are interested in the asymptotic behavior for large d, and we establish the
following result.

Theorem 1. For any ε > 0, there is a d0 such that for any d ≥ d0, we have

b(d) ≥ 1 − 2 ln d

d
+ −4 + 2 ln 2 − ε

d
. (5)

The term 2 ln d
d

is matched by the following estimate of the independence number
i(G) by Frieze and Łuczak [6]; for every ε > 0, there is a d1 such that for any
d ≥ d1, we have whp

∣∣∣∣i(Gn,d) − 2n

d
(ln d − ln ln d + 1 − ln 2)

∣∣∣∣ ≤ εn

d
. (6)
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Since, φ(G) ≤ v(G) − i(G), Theorem 1 and the estimate (6) imply that, for n �
d � 1, the maximum size of an induced forest in Gn,d is whp n

d
(2 ln d + O(ln ln d)).

It would be interesting to estimate the error term more precisely.
There is a simple relationship between b(d) and αd .

Lemma 2. For any d ≥ 2, we have b(d) ≤ B(d) ≤ αd .

Proof. Observe that any f-fragmented set Y ⊂ V (Gn,d) can be made acyclic by
removing a vertex from each cycle of Gn,d[Y ] of length at most f. But, if we fix f
and let n tend to infinity, there are o(n) such cycles in the whole graph Gn,d whp. �

Note that, in view of this lemma, the inequality (2) improves the upper bound
(4) on B(4).

Theorem 1 together with Lemma 2 answer the question of Graham and Farr. But
we can give another proof of (3), which is much shorter and, in fact, gives a sharper
estimate.

Theorem 3. For every k ≥ 2, we have

α2k ≥ 1 − 2

k + 1
,

α2k+1 ≥ 1 − 2k + 3

(k + 1)(k + 2)
.

In the next section, we give the proof of Theorem 1. Then, in the final section,
we prove Theorem 3 and give some further observations about the parameter αd .

2. RANDOM REGULAR GRAPHS

The random regular graph Gn,d can be generated by taking a random 1-factor on
dn points, these points being grouped into n groups of d apiece. Each group is then
identified to a single vertex to produce a d-regular multigraph G′. We obtain Gn,d by
conditioning on the event that G′ is simple (i.e., it has no loops or multiple edges),
see Bollobás [3, Chapter 2.4].

Recall that φd(n) is the smallest φ such that with probability at least 1/2, we have
φ(Gn,d) ≤ φ. For fixed d and n → ∞, the choice of the constant 1/2 has negligible
effect. Namely, for every ε > 0 and d, there is a C such that, for all large n, there is an
interval I of length at most Cn1/2 such that the probability of φ(Gn,d) ∈ I is at least
1 − ε. Let us prove the last claim. A random pairing of dn points can be obtained by
taking a random permutation σ and joining the points in positions 2i − 1 and 2i. Let
the random variable X(σ) be the order of the largest induced forest in the multigraph
G′ given by σ. A single transposition affects at most 4 vertices of G′ so it can change
X(σ) by at most 4 (in fact, by at most 1). Also, if X(σ) ≥ l, this can be demostrated
by exhibiting a forest G′[L] for an l-set L, which in turn is determined by the values
of σ on the dl points in the groups corresponding to L. Thus, we can take c = 4 and
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r = d in McDiarmid’s version [9, Theorem 1.1] of Talagrand-type inequality (cf.
[10]) for functions determined by random permutations. McDiarmid’s inequality
implies that for each t ≥ 0 the probability of X(σ) deviating from its median m by
at least t is at most 4 exp(−t2/(16rc2(m + t))). This is at most ε for all large n if,
for example, t2 > 257dn ln(1/ε). (Note that trivially m ≤ n.) Finally, the claim for
Gn,d follows by observing that, for fixed d, the probability of G′ being simple is
bounded from 0, see Bollobás [3, Chapter 2.4].

The proof of Theorem 1 is based on a first moment calculation which in fact
shows that whp any set A ⊂ V (Gn,d) with |A| = (1 − f (d, ε))n spans at least |A|
edges, where f (d, ε) denotes the right-hand side of (5). Although the approach
is straightforward, we have to go through somewhat messy calculations. The
method in [2] for proving a lower bound on b(d) is also based on the expectation
argument but it estimates the number of induced forests via generating functions.
Our calculations indicate that this approach gives a bound comparable to ours,
namely b(d) ≥ 1 − 2 ln d

d
+ O(1/d), but the proof would be longer.

Let n � d � 1/ε. Choose a λ such that m = λn/d is an integer and

2 ln d + 4 − 2 ln 2 + ε

2
≤ λ ≤ 2 ln d + 4 − 2 ln 2 + ε. (7)

Let X consist of all m-subsets of V (G′) that span at most m − 1 edges in the
multigraph G′. We show that the expectation of |X| is o(1).

The expected number of m-subsets X spanning i ≤ m edges in G′ is

Ei =
(

n

m

)(
dm

2i

)
�(2i)

(
dn − dm

dm − 2i

)
(dm − 2i)!

�(dn − dm − (dm − 2i))

�(dn)

= n!(dm)!2dm(dn − dm)!(dn/2)!

(n − m)!m!(dm − 2i)!22ii!(dn/2 − dm + i)!(dn)!
,

where �(2m) = (2m)!/(2mm!) is the number of perfect matchings on 2m points.
The ratio

Ei+1

Ei

= (dm − 2i)(dm − 2i − 1)

4(i + 1)(dn/2 − dm + i + 1)

is a decreasing function of i. Thus, for any i < m we have

Ei+1

Ei

≥ Em

Em−1
= (1 + o(1))

(d − 2)2λ

d(2d − 4λ + 4λ/d)
,

which is at least, for example, 2 if the constant d is large. Hence,

E
( |X| ) =

m−1∑
i=0

Ei ≤ Em(2−1 + 2−2 + · · ·) = Em.
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From now on it is more convenient to operate with λ rather than with m which
is dependent on n. We have

Em = n!(λn)!2(λ− 2λ
d

)n(dn − λn)!(dn/2)!

(n − λ
d
n)!((λn

d
)!)2(λn − 2λ

d
n)!( d

2 − λ + λ
d
)n)!(dn)!

= nO(1)(h(d, λ))n,

where, by Stirling’s formula,

h(d, λ) = λλ2λ− 2λ
d (d − λ)d−λ(d/2)d/2

(1 − λ
d
)1− λ

d (λ
d
)

2λ
d (λ − 2λ

d
)λ− 2λ

d ( d
2 − λ + λ

d
)

d
2 −λ+ λ

d dd
.

It remains to argue that h = h(d, λ) is strictly less than 1. For d → ∞, we have
h → 1, so we have to take into account smaller order terms. We use the following
estimates. (Recall that λ = �(ln d).)

λλ

(λ − 2λ
d

)λ− 2λ
d

= λ
2λ
d

(
1 − 2

d

)−λ+ 2λ
d

= λ
2λ
d e

2λ
d

+O( λ

d2 )
,

(
1 − λ

d

)1− λ
d

= e− λ
d
+O( λ2

d2 )
,

(d − λ)d−λ

dd
= d−λ

(
1 − λ

d

)d−λ

= d−λ

(
e− λ

d
− λ2

2d2 +O( λ3

d3 )
)d−λ

= d−λe−λ+ λ2

2d
+O( λ3

d2 )
,

(d/2)d/2

( d
2 − λ + λ

d
)

d
2 −λ+ λ

d

= (d/2)λ− λ
d

(
e− 2λ

d
+ 2λ

d2 − (2λ)2

2d2 +O( λ3

d3 )
)− d

2 +λ− λ
d

= (d/2)λ− λ
d eλ− λ2

d
− λ

d
+O( λ3

d2 )
.

We obtain

h = 2λ− 2λ
d(

λ
d

) 2λ
d

λ
2λ
d e

2λ
d e

λ
d d−λe−λ+ λ2

2d (d/2)λ− λ
d eλ− λ2

d
− λ

d e
O

(
λ3

d2

)

= 2− λ
d d

λ
d e

2λ
d e− λ2

2d eO( λ3

d2 ) = exp

(
−ε ln d

2d
+ O(d−1)

)
< 1.

Thus, E(|X|) = o(1). By the Markov inequality, whp X = ∅, that is, any m vertices
of the multigraph G′ span at least m edges. The result for Gn,d follows because the
probability that G′ is simple can be bounded from 0 by a function depending on d
only.

This completes the proof of Theorem 1.
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3. FRAGMENTABILITY

We begin with the proof of Theorem 3.
For d = 2k, we use the construction of Alon, Ding, Oporowski & Vertigan [1],

see also Haxell, Szabó & Tardos [7]. Let f be an arbitrary constant. Let H be a
(k + 1)-regular graph of girth larger than f. Let n = v(H). Let G be the line graph
of H. It is regular of degree 2k. The order of G is n(k + 1)/2. Note that any set of
n vertices of G has a component of size at least f + 1 because the corresponding
edge set of H must span a cycle. Hence, G is not (1 − 2

k+1 , f )-fragmentable and
the required bound on α2k follows.

For d = 2k + 1, we slightly modify the above construction: namely, take a
bipartite graph H with partition V (H) = V1 ∪ V2 such that the girth of H is larger
than f and every vertex in V1 (resp. in V2) has degree k + 1 (resp. k + 2). The
existence of such a graph can be established, for example, by randomly pairing the
points in (k + 2)n groups each of size k + 1 with the points in (k + 1)n groups each
of size k + 2, where n → ∞. Let G be the line graph of H. It has order (k+1)(k+2)

2k+3 v(H)
while any f-fragmented set in G contains at most v(H) − 1 vertices. The theorem
is proved.

It is convenient to denote γd = 1 − αd . Theorem 3 and (1) then imply that γd has
magnitude �(d−1) as d → ∞. We can show that this function behaves regularly.

Theorem 4. The expression dγd tends to some limit γ as d → ∞. Moreover, for
any d ≥ 2, we have

γ ≥ (d + 1)γd. (8)

Proof. We prove first that for any D ≥ d ≥ 2, we have

(D + d + 1)γD ≥ (d + 1)γd. (9)

Fix any small ε > 0. Choose an f such that any graph of maximum degree d is
(αd + ε, f )-fragmentable. Let G be an arbitrary graph of maximum degree at most
D. Let n = v(G). Let q = �D+1

d+1 � ≤ D+d+1
d+1 . Take a partition V (G) = V1 ∪ · · · ∪ Vq

which maximizes the number of edges across the parts. Since q(d + 1) > D, it
follows that each G[Vi] has maximum degree at most d. Suppose without loss of
generality that |V1| ≥ n/q. By the definition of ε, applied to G[V1], we can find
an f-fragmented set X ⊂ V1 with |X| ≥ (γd − ε)|V1| ≥ (γd − ε)n/q. The same set
X ⊂ V (G) shows that G is (α, f )-fragmentable, where α = 1 − (γd − ε)/q. We
conclude that

γD ≥ γd − ε

q
≥ d + 1

D + d + 1
(γd − ε).

Since ε was arbitrary, (9) follows.
All claims of the theorem routinely follow from (9). �
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Theorem 3 implies that γ ≤ 4 while (2) and (8) imply that γ ≥ 25
8 .

Problem 5. Compute γ exactly.
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