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Abstract. Let f (r)(n; s, k) be the maximum number of edges of an r-uniform
hypergraph on n vertices not containing a subgraph with k edges and at most
s vertices. In 1973, Brown, Erdős, and Sós conjectured that the limit

lim
n→∞

n−2f (3)(n; k + 2, k)

exists for all k and confirmed it for k = 2. Recently, Glock showed this for
k = 3. We settle the next open case, k = 4, by showing that f (3)(n; 6, 4) =(

7
36

+ o(1)
)
n2 as n → ∞. More generally, for all k ∈ {3, 4}, r ≥ 3 and t ∈

[2, r−1], we compute the value of the limit limn→∞ n−tf (r)(n; k(r− t)+ t, k),
which settles a problem of Shangguan and Tamo.

1. Introduction

For a family F of r-uniform hypergraphs (or r-graphs for short), let ex(n;F)
denote the maximum number of edges in an F-free r-graph1 on n vertices. This is
called the Turán number of F , and determining it for various families F is one of
the central topics in extremal combinatorics. In this paper, we consider the family
F (r)(s, k) of all r-graphs with k edges and at most s vertices. In 1973, Brown,
Erdős, and Sós [3] introduced the function

f (r)(n; s, k) = ex(n;F (r)(s, k)).

Using the probabilistic method, they showed that f (r)(n; s, k) = Ω
(
n(rk−s)/(k−1)

)
for all s > r ≥ 2 and k ≥ 2. If the exponent is an integer t, then s = k(r− t)+ t and
therefore every t-set can be contained in at most k−1 edges. Hence, the above lower
bound has the correct order of magnitude. If the exponent is not an integer, then
even determining the order of magnitude of f (r)(n; s, k) is a major open problem,
which encompasses, for instance, the famous (7, 4)-problem and its generalizations
(see, e.g., [1]). In this paper, we focus on the case when the exponent is an integer.
Then it is natural to ask if n−tf (r)(n; s, k) tends to a limit. Indeed, in the special
case r = 3 and t = 2, Brown, Erdős, and Sós [3] conjectured that the limit exists.
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Conjecture 1.1 (Brown, Erdős, and Sós [3]). The limit limn→∞ n−2f (3)(n; k+2, k)
exists for all k ≥ 2.

They confirmed the conjecture for k = 2, where the limit is 1/6 and the extremal
examples are given by Steiner triple systems, which exist by the fundamental work
of Kirkman [12]. For k = 3, they gave a lower bound of 1/6 and an upper bound
of 2/9, and Glock [9] showed that the limit is 1/5. All other cases of Conjecture 1.1
were open. In general, the best currently known bounds for Conjecture 1.1 are

1

6
≤ lim inf

n→∞
n−2f (3)(n; k + 2, k) ≤ lim sup

n→∞
n−2f (3)(n; k + 2, k) ≤ k − 1

3k
,

where the lower bound follows from recent work on large girth approximate Steiner
triple systems [2, 11], and the upper bound is obtained by averaging over vertex
degrees and using the fact that f (2)(n− 1; k + 1, k) = �k−1

k (n− 1)� (see [6]).
One of our main contributions is to confirm the conjecture of Brown, Erdős, and

Sós [3] for k = 4, which is the next open case. In fact, we can also determine the
limit.

Theorem 1.2. limn→∞ n−2f (3)(n; 6, 4) = 7
36 .

By doing so, we develop a quite flexible approach that can be used to solve
the Brown–Erdős–Sós problem for more general parameters. Shortly after the ap-
pearance of [9], Shangguan and Tamo [16] extended the result of Glock to every
uniformity r ≥ 4 (and fixed t = 2, k = 3) by showing that

lim
n→∞

n−2f (r)(n; 3r − 4, 3) = 1
r2−r−1 .

Moreover, inspired by Conjecture 1.1, they asked if the limit

lim
n→∞

n−tf (r)(n; k(r − t) + t, k)

exists for all fixed r, t, and k, and if so, what its value is. We note that a useful
interpretation of the term k(r− t)+ t is that it is the number of vertices in a k-edge
r-graph such that each but the first edge shares t vertices with the previous ones.

Throughout this paper, we assume that k ≥ 2 and t ∈ [r − 1], as otherwise the
problem is trivial. Furthermore, for t = 1, one can easily show that

lim
n→∞

n−1f (r)(n; k(r − 1) + 1, k) =
k − 1

(k − 1)(r − 1) + 1
,

and the extremal examples are obtained as vertex-disjoint unions of loose trees with
k − 1 edges. Thus, we only consider the case t ≥ 2 in the sequel.

Observe that, for k = 2, it follows from the famous theorem of Rödl [14] on the
existence of asymptotic Steiner systems that

lim
n→∞

n−tf (r)(n; 2r − t, 2) =
(r − t)!

r!

(see [16] for more details).
In this paper, we completely settle the problem when k = 3.

Theorem 1.3. For every 2 ≤ t < r, we have

lim
n→∞

n−tf (r)(n; 3r − 2t, 3) = 2

t!
(
2
(
r
t

)
−1

) .
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This generalizes the aforementioned results of Glock [9] and Shangguan and
Tamo [16]. We remark that the upper bound was already obtained in [16], where
the authors also provided a lower bound of 1

rt−r using an algebraic construction
based on a matrix-property called “strongly 3-perfect hashing”.

Finally, we also completely settle the problem for k = 4. Recall that the case
when r = 3 is already covered by our Theorem 1.2, and that the following formula
does not apply in this case due to a change of behaviour when r ≥ 4 (which is the
result of an optimisation problem).

Theorem 1.4. For all r ≥ 4 and t ∈ [2, r − 1], we have

lim
n→∞

n−tf (r)(n; 4r − 3t, 4) =
1

t!

(
r

t

)−1

.

A few more sporadic results are mentioned in Section 5.

Notation and terminology. For two positive integers m,n, we define [n] =
{1, . . . , n} and [m + 1, n] = [n] \ [m]. For a set X and a nonnegative integer s,

we refer to
(
X
s

)
as the set of all subsets of X of size s. For an r-graph G, we denote

by V (G) the vertex set of G and by E(G) its edge set. We often identify G with
its edge set, in particular, |G| denotes the number of edges of G. Moreover, for a
set S ⊆ V (G), the degree of S is the number of edges of G that contain it. For
an integer i ∈ [r], we denote by Δi(G) the maximum i-degree of G defined as the
maximum of the degrees of all i-subsets of V (G). Moreover, for simplicity we write
Δ instead of Δ1.

Usually, the uniformity r is clear from the context. So, for positive integers s
and k, an (s, k)-configuration is an r-graph with k edges and at most s vertices,
that is, an element of F (r)(s, k). Also, we say that an r-graph is (s, k)-free to mean
that it is F (r)(s, k)-free.

Finally, the t-shadow of an r-graph F is the t-graph with vertices V (F ) and
edges given by all t-subsets of the edges of F .

Overview of the proof and plan of the paper. We briefly sketch the main
approach. For simplicity, we stick to the setting of Theorem 1.2 since the proofs
of the other theorems use similar ideas. In order to show the existence of n-vertex
3-graphs with roughly 7n2/36 edges and no (6, 4)-configuration, we proceed as
follows. We find a special 3-graph T7 which has seven edges and is (6, 4)-free (see
Figure 2 for an illustration). The main idea is to pack many copies of this 3-graph
together. More precisely, we consider the 2-shadow J of T7, which has 18 edges.
We then find an asymptotically optimal packing of the complete 2-graph Kn with
copies of J . Putting a copy of T7 “on top” of each such copy of J leads to roughly

|T7|· (
n
2)
|J| ≈ 7

36n
2 edges in the resulting 3-graph, as desired. The challenge is to ensure

that in this packing, we do not create any (6, 4)-configurations using edges from
different copies of T7. For this, a crucial ingredient in our proof is a recent result
on “conflict-free hypergraph matchings” [4, 10], which we introduce in Section 2.

In order to show that the obtained lower bound is asymptotically optimal, we
proceed as follows. Let G be any (6, 4)-free n-vertex 3-graph. As a first step,
we show that one can remove all (4, 3)-configurations by only deleting a negligible
amount of edges. For such a “cleaned” 3-graph, we show that its edges can be
clustered in such a way that every pair of vertices is only associated to one cluster.
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An upper bound on the total number of edges can then be obtained by maximizing
the ratio of edges to associated pairs over all feasible clusters. The clustering
procedure is divided into two steps. Firstly, we consider the tight components of
the given (cleaned) 3-graph. All tight components must be small since otherwise
one could easily find a (6, 4)-configuration. Then, we define a merging operation
which combines the given components into larger clusters along common pairs of
vertices. The crux is to show that by the (6, 4)-freeness, each of the obtained
clusters has bounded size. This allows us to maximize the aforementioned ratio
over all possible clusters (and is in fact how we found the 3-graph T7 used in the
lower bound).

2. Preliminaries

In this section, we introduce conflict-free hypergraph matchings, a general tool
developed recently by Glock, Joos, Kim, Kühn, and Lichev [10], and independently
by Delcourt and Postle [4]. These works were motivated in turn by earlier results of
Glock, Kühn, Lo, and Osthus [11] as well as Bohman and Warnke [2], who proved
an approximate version of an old conjecture of Erdős [7] on the existence of high-
girth Steiner triple systems. Roughly speaking, a Steiner triple system has large
girth if it does not contain any (�+2, �)-configurations for small �. This makes the
connection to our Turán problem immediate.

Let H be an N -vertex r-uniform hypergraph which is almost d-regular and has
codegree o(d). Then, by a celebrated theorem of Frankl and Rödl [8], and Pippenger
and Spencer [13], H has a matching containing (1− o(1))N of the vertices in H.

Now, let in addition C be a (not necessarily uniform) hypergraph with vertex set
E(H). We see C as a set of conflicts between certain edges of H. More precisely,
we say that a matching M in H is C-free if no edge of C is a subset of M . Let
us provide an example: given the complete graph Kn, let V (H) be the set of all
N =

(
n
2

)
edges, and E(H) be the set of triples of edges which form a triangle.

Then, a matching in H is a triangle packing of Kn. Let also C represent the set of
copies of the Pasch configuration depicted in Figure 1. Then, a C-free matching in
H would be a Pasch-free triangle packing of Kn.

Figure 1. The Pasch configuration is the above 2-regular 3-graph
on six vertices and four edges.

Let H be as above. Assume that all edges of C have size at most � = O(1) and at
least 2. For every j ∈ [2, �], denote by C(j) the spanning subgraph of C containing
the edges of C of size j. We also assume that, for every j ∈ [2, �], the maximum
degree of C(j) is O(dj−1).

For instance, in the Pasch configuration example described above, every triangle
in Kn (which is an edge in H and therefore a vertex in C) is contained in 6

(
n−3
3

)
=

O(d3) Pasch configurations. Here, d = n−2 is the degree of a vertex inH. Moreover,
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edges in C have size 4 since the Pasch configuration consists of four triples, so indeed
Δ(C(4)) = O(d3).

Note that the required relation Δ(C(j)) = O(dj−1) is natural: it implies that, in
total, there are O(Ndj) conflicts of size exactly j. Using a probabilistic deletion
method, one can select every edge of H with probability ε/d for some small ε to
form a (random) set S ⊆ E(H). Then, E[|S|] = Ω(εN). Now, delete from S all
overlapping edges (i.e., all e ∈ S such that, for some f ∈ S, we have e ∩ f 
= ∅) as
well as edges forming conflicts (i.e., all e ∈ S such that, for some C ∈ C, we have
e ∈ C and C ⊆ S). Since the expected number of such edges is

O

(
ε

d
· Nd

r
·
(
rd · ε

d

))
+O

( �∑
j=2

Ndj ·
(
ε

d

)j)
= O(ε2N),

there are on average Ω(εN) edges that remain after all deletions, and these form a
C-free matching.

In order to get not only a linear size matching but an almost-perfect one, we
need a few further codegree assumptions for C, customary to the Rödl nibble.

Theorem 2.1 ([10, Theorem 1.3]). For all r, � ≥ 2, there exists ε0 > 0 such that
for all ε ∈ (0, ε0), there exists d0 such that the following holds for all d ≥ d0. Let

H be an r-graph with |V (H)| ≤ exp(dε
3

) such that every vertex is contained in
(1± d−ε)d edges and Δ2(H) ≤ d1−ε.

Let C be a hypergraph with V (C) = E(H) such that every C ∈ E(C) satisfies
2 ≤ |C| ≤ �, and the following conditions hold.

(C1) Δ(C(j)) ≤ �dj−1 for all 2 ≤ j ≤ �;

(C2) Δj′(C(j)) ≤ dj−j′−ε for all 2 ≤ j′ < j ≤ �;
(C3) |{f ∈ H : {e, f} ∈ C and v ∈ f}| ≤ d1−ε for all e ∈ E(H) and v ∈ V (H);
(C4) |{g ∈ H : {e, g}, {f, g} ∈ C}| ≤ d1−ε for all disjoint e, f ∈ H.

Then, there exists a C-free matching M in H which covers all but d−ε3 |V (H)|
vertices of H.

We remark that a version of Theorem 2.1 appears as [4, Corollary 1.17].

3. Lower bounds

To prove the lower bounds in Theorems 1.2, 1.3, and 1.4, we pack the (edges of
the) complete t-graph Kt

n with disjoint t-shadows of carefully chosen r-graphs of
constant size. To start with, we explain how to deduce lower bounds on

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k)

in terms of certain (k(r − t) + t, k)-free r-graphs.
Given an r-graph F and a t-graph J , we say that J is a supporting t-graph of F if

V (J) = V (F ) and for every edge e ∈ E(F ), all the t-subsets of e are edges in J , that
is, J contains the t-shadow of F . Also, for F and J as above, we define the non-edge
girth of (F, J) to be the smallest g ≥ 1 for which there exists a (g(r − t) + t, g)-
configuration in F which contains (as a vertex subset) a non-edge of J . If no such
g exists, we set the non-edge girth to be infinity.

Theorem 3.1. Fix k ≥ 2, r ≥ 3 and t ∈ [2, r − 1]. Let F be an r-graph which is
(k(r − t) + t, k)-free and (�(r − t) + t − 1, �)-free for all � ∈ [2, k − 1]. Let J be a
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supporting t-graph of F such that the non-edge girth of (F, J) is greater than k/2.
Then,

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ |F |
t! |J | .

Before proving this result, let us see some applications.

Corollary 3.2. Fix k ≥ 2, r ≥ 3 and t ∈ [2, r− 1]. Also, fix a (k(r− t) + t, k)-free
r-graph F on m vertices which is also (�(r − t) + t− 1, �)-free for all � ∈ [2, k − 1].
Then,

lim inf
n→∞

n−tf (r)(n; k(r − t) + t, k) ≥ |F |
mt

.

Proof. Take J to be the complete t-graph on V (F ). Then, t! |J | < mt and the
non-edge girth is infinite, so Theorem 3.1 gives the required conclusion. �

Note that Corollary 3.2 applied with (t, r) = (2, 3) ensures that a positive answer
to Problem 3.3 would imply Conjecture 1.1.

Problem 3.3. Let k ≥ 3. Given a (k+2, k)-free 3-graph F on m vertices, can one
remove o(m2) edges and make it (�+ 1, �)-free for all � ∈ [2, k − 1]?

Indeed, fix k ≥ 3 and define πk = lim supn→∞ n−2f (3)(n; k + 2, k). Also, fix
ε > 0. Then, by the definition of lim sup there exist an arbitrarily large m and a
(k + 2, k)-free 3-graph F ′ on m vertices such that |F ′| ≥ (πk − ε/2)m2. If one can
delete εm2/2 edges from F ′ to obtain a 3-graph F which is (� + 1, �)-free for all
� ∈ [2, k − 1], then applying Corollary 3.2 with F shows that

lim inf
n→∞

n−2f (3)(n; k + 2, k) ≥ |F |
m2

≥ πk − ε.

Since this holds for all ε > 0, we obtain that lim infn→∞ n−2f (3)(n; k + 2, k) = πk.
Note that an analogous reduction can be done more generally for n−tf (r)(n; k(r −
t) + t, k).

As another application of Theorem 3.1, we can derive the lower bounds stated
in the introduction.

Proof of the lower bounds. We start with Theorem 1.3: let F be an r-graph con-
sisting of two r-edges intersecting in t vertices, and let J be its t-shadow. Note that
F is (2(r− t) + t− 1, 2)-free and the non-edge girth of (F, J) is 2 > 3/2. Hence, by
Theorem 3.1 we have that

lim inf
n→∞

n−tf (r)(n; 3r − 2t, 3) ≥ |F |
t! |J | =

2

t!
(
2
(
r
t

)
− 1

) .
The lower bound in Theorem 1.4 follows by applying Theorem 3.1 for F being a

single edge and J =
(
V (F )

t

)
(in which case the non-edge girth of (F, J) is infinity).

It remains to prove the lower bound in Theorem 1.2. Define the 3-graph T7 with
vertex set

⋃3
i=1{xi, ai, bi} and edge set

{x1x2x3, a1b1x2, a1b1x3, a2b2x1, a2b2x3, a3b3x1, a3b3x2},
whose supporting graph J is simply its 2-shadow (see Figure 2); in particular, |J | =
18. By construction T7 is (6, 4)-free and (4, 3)-free (and, vacuously, (3, 2)-free).
Moreover, its non-edge girth is at least 3: indeed, the only (4, 2)-configurations
have vertex sets {a3, b3, x1, x2}, {a1, b1, x2, x3}, and {a2, b2, x1, x2}, which all induce
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copies of K4 in J .2 Hence, applying Theorem 3.1 directly yields the lower bound
of Theorem 1.2. �

x1 x2

x3

a3 b3

a2

b2

b1

a1

Figure 2. The 3-graph T7 has seven edges and its 2-shadow con-
tains 18 edges. It is easy to check that this graph is (6, 4)-free, and
also (4, 3)-free. Moreover, its non-edge girth is 3.

Proof of Theorem 3.1. Fix k, r, t, F and J as in the statement of the theorem.
Let m = |V (F )| and let ε > 0 be arbitrarily small. In the sequel, we allow the
constants in our O(·) notations to depend on k, r, t and ε. We will show that, for
all sufficiently large n, there is a (k(r − t) + t, k)-free r-graph with vertex set [n]

and at least (1− 2ε) |F |
|J|

(
n
t

)
edges, which clearly implies the result.

Step 1 (Defining the auxiliary hypergraph H). As a first step, we 2-colour the edges
of the complete t-graph with vertex set [n]. Colour every edge (independently of
all others) red with probability ε/2 and blue otherwise. Given a copy J ′ of J with
V (J ′) ⊆ [n], call it admissible if every edge of J ′ is coloured blue and every non-edge

in
(
V (J′)

t

)
is coloured red.

Now, letH be a hypergraph with vertices corresponding to the blue edges in
(
[n]
t

)
,

and edges corresponding to the admissible copies of J . Hence, H is |J |-uniform.
Moreover, by standard concentration arguments H is with high probability approx-
imately regular with all degrees (1 +O(d−ε))d, where d = cnm−t for some positive
constant c. In the remainder of the proof we assume that this event holds.

For every such admissible copy of J , we add a copy of F (supported by this J)
on top (if there are several ways to do this, pick one arbitrarily). In the sequel,
we identify the edges of H with these copies of F ; thus, several such copies form a
matching if and only if their associated supporting graphs are edge-disjoint.

Step 2 (Defining the conflict hypergraph C). Our main goal is to make sure that
the final packing is (k(r − t) + t, k)-free, and hence it is natural to define C0 as the
set of all collections of copies of F which form a matching in H and whose union
contains a (k(r − t) + t, k)-configuration. Ultimately, we want to find a matching

2In fact, the non-edge girth of T7 is exactly 3 because T7 contains the (5, 3)-configuration
{x1x2x3, a2b2x1, a2b2x3} and b2x2 /∈ J .
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in H which is C0-free. However, in order to verify the conditions of Theorem 2.1,
it will be appropriate to see C0 as part of a bigger conflict system.

More precisely, let C1 be the (minimal) set of all collections of copies of F which
form a matching in H and whose union contains an (�(r − t) + t, �)-configuration
S for some � ∈ [2, k] such that S contains edges from at least two of the copies.
Clearly C0 ⊆ C1 since no copy of F contains a (k(r − t) + t, k)-configuration on its
own. Moreover, let C2 be the set of all pairs of copies of F which intersect in at
least t + 1 vertices. (We forbid intersections of size at least t + 1 to facilitate the
verification of condition (C4) in Theorem 2.1.) Let C′ = C1 ∪ C2. Finally, let C be
the set of all inclusion-wise minimal elements of C′. Observe that if a matching in
H is C-free, then it is in particular C0-free, as we need.

To begin with, all the conflicts in C have size between 2 and k (so we may choose
any integer larger than or equal to k to play the role of � in Theorem 2.1). Below
we check conditions (C1) to (C4) with the help of the following two claims.

Claim 1 will allow us to control the degrees of the conflict hypergraph. Here, the
assumption that F is (�(r − t) + t− 1, �)-free for all � ∈ [2, k − 1] is crucial.

Claim 1. Fix j ≥ 3 and suppose that {F1, . . . , Fj} ∈ C(j). Then,∣∣∣∣
( j⋃

i=2

V (Fi)

)
\ V (F1)

∣∣∣∣ ≤ (j − 1)(m− t),

and for every j′ ∈ [2, j − 1],∣∣∣∣
( j⋃

i=j′+1

V (Fi)

)
\
( j′⋃

i=1

V (Fi)

)∣∣∣∣ ≤ (j − j′)(m− t)− 1.

Proof of Claim 1. The statement follows from the minimality of the conflicts and
the fact that F is (�(r − t) + t− 1, �)-free for all � ∈ [2, k].

In more detail, we argue as follows. Since {F1, . . . , Fj} ∈ C(j) and j ≥ 3, there

exists an (�(r − t) + t, �)-configuration S ⊆
⋃j

i=1 Fi for some � ∈ [2, k]. For i ∈ [j],

let Si = S ∩ Fi and �i = |Si|, and let S≤i =
⋃i

i′=1 Si′ and �≤i = |S≤i|. Note
that �i ≥ 1 for all i ∈ [j] by minimality of the conflicts, and hence also �≤i ≥ 1. We
have
(3.1)∣∣∣( j⋃

i=j′+1

V (Fi)
)
\

j′⋃
i=1

V (Fi)
∣∣∣ ≤ ∣∣∣(V (S) \ V (S≤j′)

)
∪

j⋃
i=j′+1

(
V (Fi) \ V (Si)

)∣∣∣
≤ |V (S)| − |V (S≤j′)|+

j∑
i=j′+1

|V (Fi) \ V (Si)|

≤ �(r − t)+t− |V (S≤j′)|+(j − j′)m−
j∑

i=j′+1

|V (Si)|.

Now, we observe that

(3.2) |V (S≤1)| ≥ �≤1(r − t) + t.

Indeed, if �≤1 = 1, then (3.2) trivially holds, and if �≤1 ≥ 2, then (3.2) follows by
the (�1(r−t)+t−1, �1)-freeness of F1. Moreover, we show that for all j′ ∈ [2, j−1],

(3.3) |V (S≤j′)| ≥ �≤j′(r − t) + t+ 1.
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This is implied by the minimality of the conflicts: indeed, for all j′ ∈ [2, j − 1],⋃j′

i=1 Fi contains no forbidden configuration.
We also show that for every i ∈ [j′ + 1, j],

(3.4) |V (Si)| ≥ �i(r − t) + t.

Indeed, if �i = 1, then (3.4) trivially holds, and it is otherwise implied by the (�i(r−
t) + t− 1, �i)-freeness of Fi.

Finally, since �≤j′ +
∑j

i=j′+1 �i ≥ �, combining (3.1), (3.2), (3.3), and (3.4)

yields the claimed bounds (where the first one follows from (3.1) and (3.2) with
j′ = 1). �

Claim 2. If {F1, F2} ∈ C(2), then |V (F1) ∩ V (F2)| ≥ t+ 1.

Proof of Claim 2. We show that for all F1, F2 ∈ H, we have {F1, F2} /∈ C1, which
follows from the fact that the non-edge girth of F is greater than k/2.

Let us turn to the details. Fix disjoint edges F1, F2 ∈ H and a subgraph S ⊆
F1 ∪ F2 satisfying 2 ≤ � = |S| ≤ k. We show that |V (S)| ≥ �(r − t) + t+ 1, which
in turn implies that {F1, F2} /∈ C1 and the claim. Recall that for both i ∈ {1, 2},
by Step 1, there is a copy Ji of J supporting Fi, and let Si = S ∩ Fi and �i = |Si|.
Since � ≤ k, we have |Si| ≤ k/2 for some i ∈ {1, 2}. This together with the fact

that the non-edge girth of (F, J) is larger than k/2 implies
(
V (Si)

t

)
⊆ Ji ⊆ V (H).

Since F1 and F2 are disjoint as edges of H, and since J1 and J2 are both admissible
copies of J , this implies

(3.5) |V (S1) ∩ V (S2)| ≤ t− 1.

(Indeed, if |V (S1) ∩ V (S2)| was at least t, every t-subset of this intersection would
have belonged to V (F1) ∩ V (F2), which would contradict the fact that F1, F2 are
disjoint.) Moreover, for i ∈ {1, 2}, since �i ≤ k−1, by the (�i(r−t)+t−1, �i)-freeness
of Fi we have

(3.6) |V (Si)| ≥ �i(r − t) + t.

Since �1 + �2 ≥ �, we combine (3.5) and (3.6) to conclude that

|V (S)| = |V (S1)|+ |V (S2)| − |V (S1) ∩ V (S2)| ≥ �(r − t) + t+ 1,

which completes the proof. �

We are now ready to verify the conditions of Theorem 2.1. Recall that d =
Θ(nm−t), and that every vertex of H has degree (1+O(d−ε))d. Also, as every two
distinct t-sets span at least t+1 vertices, it holds that Δ2(H) ≤ O(nm−t−1) ≤ d1−ε.

Moreover, |V (H)| ≤ nt ≤ exp(dε
3

).

Step 3 (Degrees of the conflict hypergraph: Verifying (C1)). Let us first check the

degrees in C. Fix copies (Fi)
j
i=1 of F and suppose that {F1, . . . , Fj} ∈ C(j). We

claim that the copies F2, . . . , Fj contain at most (j − 1)(m − t) vertices outside
V (F1). If j = 2, by Claim 2 the copy F2 contains at most m− t−1 < m− t vertices
outside F1. If j ≥ 3, by Claim 1 the copies F2, . . . , Fj contain at most (j−1)(m−t)

vertices outside V (F1). Hence, the number of choices of a j-set {F1, . . . , Fj} ∈ C(j)

is O(n(j−1)(m−t)). Since d = Θ(nm−t), we obtain that Δ(C(j)) = O(dj−1), as
required in (C1).



182 GLOCK, JOOS, KIM, KÜHN, LICHEV, AND PIKHURKO

Step 4 (Codegrees of the conflict hypergraph: verifying (C2)). Now, consider
2 ≤ j′ < j and copies F1, . . . , Fj′ of F . Using Claim 1, the number of sets

{Fj′+1, . . . , Fj} such that {F1, . . . , Fj} ∈ C(j) is

O(n(j−j′)(m−t)−1) = O(dj−j′−(m−t)−1

).

Step 5 (Verifying (C3) and (C4)). By Claim 2, {F1, F2} ∈ C(2) implies that F1, F2

intersect in at least t+ 1 vertices. Thus, for every fixed copy F1, there are at most

O(nm−t−1) = O(d1−(m−t)−1

) choices for F2 that form a conflict together with F1,
which yields both (C3) and (C4) (note that fixing a vertex v in (C3) or a third copy
F3 of F such that {F1, F2}, {F3, F2} ∈ C in (C4) is not needed here).

Step 6 (Wrapping up). Finally, we apply Theorem 2.1 to obtain a C-free matching
M in H which covers all but o(nt) vertices of H. Each edge in M corresponds to a
copy of F and, by definition of C, the union of all these copies gives us an r-graph
which is (k(r − t) + t, k)-free. Finally, the number of blue edges we started with
is at least (1 − ε)

(
n
t

)
, and since we get an almost perfect matching, we know that

at least (1 − 2ε)
(
n
t

)
of all edges are covered by M . As the corresponding copies

of J are edge-disjoint, this means that |M | ≥ 1−2ε
|J|

(
n
t

)
, and since every copy of F

contains |F | edges, the desired bound follows. �

4. Upper bounds

In this section, we are interested in hypergraphs of arbitrary uniformity r ≥ 3
that are F (r)(k(r − t) + t, k)-free for some integers k ∈ {3, 4} and t ∈ [2, r − 1],
that is, that do not contain subgraphs with k edges spanning at most k(r − t) + t
vertices. The fact that the upper bound on lim supn→∞ n−tf (r)(n; 3r−2t, 3) stated
in Theorem 1.3 appears as part of [16, Theorem 6] allows us to concentrate on the
case k = 4. We treat both Theorems 1.2 and 1.4 in a unified way.

The proof proceeds in several steps. We start by getting rid of configurations
that are “too dense” by deleting a small number of edges.

Step 1 (Deleting dense configurations). We employ Lemma 4.1, which solves the
analogue of Problem 3.3 for k = 4 and arbitrary uniformities r and t.

Lemma 4.1. Let r ≥ 3 and t ∈ [2, r − 1]. Suppose G is an r-graph on n vertices
that is (4r− 3t, 4)-free. Then, there exists a spanning r-graph G′ ⊆ G that is (3r−
2t− 1, 3)-free, (2r − t− 1, 2)-free and contains |G| −O(nt−1) edges.

Proof. We show that the deletion of all edges in (3r− 2t− 1, 3)-configurations, and
then in (2r− t−1, 2)-configurations, leads to an overall difference of O(nt−1) edges.

First, consider a (3r − 2t− 1, 3)-configuration {e1, e2, e3}. Note that every edge
e ∈ G \ {e1, e2, e3} satisfies |e ∩ (e1 ∪ e2 ∪ e3)| ≤ t− 2 since otherwise {e, e1, e2, e3}
would form a (4r − 3t, 4)-configuration. In particular, every set of t− 1 vertices is
contained in at most three edges in (3r − 2t − 1, 3)-configurations, and therefore
there are O(

(
n

t−1

)
) = O(nt−1) edges in such configurations. Let us delete all such

edges.
Now, we turn to (2r − t − 1, 2)-configurations. First of all, note that an edge

e cannot participate in two (2r − t − 1, 2)-configurations {e, f} and {e, g} since
otherwise {e, f, g} would span at most r + 2(r − t − 1) = 3r − 2t − 2 vertices.
Also, every set of t − 1 vertices can be contained in at most two edges in (2r −
t − 1, 2)-configurations because otherwise it would be contained in two different



ON THE (6, 4)-PROBLEM OF BROWN, ERDŐS, AND SÓS 183

(and hence edge-disjoint) (2r− t− 1, 2)-configurations and therefore in a (4r− 3t−
1, 4)-configuration as well. Thus, in total there are O(

(
n

t−1

)
) = O(nt−1) edges in

(2r − t − 1, 2)-configurations. By deleting all such edges, we obtain an r-graph G′

as desired. �

By Lemma 4.1, it suffices to obtain the required upper bounds on the numbers
of edges in (4r− 3t, 4)-free r-graphs only for those that are also (3r− 2t− 1, 3)-free
and (2r − t − 1, 2)-free. For the subsequent steps, fix any such r-graph G on n
vertices.

In the next step, we “cluster” the edges of G into larger blocks in such a way
that every t-set of vertices is associated with at most one block. This is reminiscent
of the connection between the r-graph F and its supporting t-graph J which was
central in Section 3.

Step 2 (Merging). To begin with, we iteratively combine the edges of G into com-
ponents as follows: starting from |G| components (one for every edge in G), at
every step we look for a pair of edges e, f ∈ G in different components such that
|e ∩ f | = t, and if there is such a pair, merge the components of e and f . Then,
we end up with a partition of G into t-tight components. Note that every t-tight
component contains at most three edges since a larger component would contain a
(4r − 3t, 4)-configuration.

Now, we do the following additional mergings. For a set of t vertices S and an
edge e ∈ G, we say that e covers S if S ⊆ e. A diamond is a set of two edges sharing
t vertices. We say that a component claims a set S of t vertices if it contains a
diamond {e1, e2} such that S ⊆ e1 ∪ e2 but S is not contained in any of e1 and
e2. Iteratively and as long as possible, we merge the components such that one
component claims a t-set covered by an edge in another component and denote by
Y the final collection of components. Let us call the elements of Y clusters.

Lemma 4.2. The collection Y consists of the t-tight components with two or three
edges and the clusters, obtained from a single edge e by attaching a number i between
0 and

(
r
t

)
of diamonds claiming distinct t-subsets of e.

Proof. Note that a diamond in a t-tight component with three edges cannot claim
a t-set covered by another edge, as otherwise it would contain a (4r − 3t, 4)-
configuration. Moreover, for the same reason, every diamond may claim a t-set
of vertices only if this set is covered by at most one edge, and this edge must be the
only edge in its t-tight component. At the same time, one t-set cannot be claimed
by two different diamonds. Therefore, a cluster not containing a t-tight component
on one edge is itself a t-tight component on two or three edges. Finally, a cluster
containing a t-tight component on one edge, say e, is the union of e and diamonds
claiming distinct t-subsets of e. �

Step 3 (The final count). In this section, we are interested in the maximum over
F ∈ Y of the ratio

|F |
|{t-sets covered by an edge in F}|+ |{t-sets claimed by diamonds in F}| ,

which is an upper bound for |G|/
(
n
t

)
since the edges of G are partitioned into

clusters of Y while every t-set is claimed or covered at most once.
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Clearly a t-tight component on one edge covers
(
r
t

)
t-sets, and a component in

Y on two edges covers or claims
(
2r−t

t

)
t-sets. Concerning a component {e1, e2, e3}

on three edges in Y , suppose that |e1 ∩ e2| = t and |e2 ∩ e3| = t. Since G is
(3r − 2t − 1, 3)-free, we have that e1 ∩ e3 ⊆ e2. Then, either |e1 ∩ e2 ∩ e3| = t, in
which case there are 3

(
2r−t

t

)
−3

(
r
t

)
+1 covered or claimed t-sets, or |e1∩e2∩e3| < t,

in which case {e1, e3} is not a diamond and the total number of covered or claimed
sets is 2

(
2r−t

t

)
−
(
r
t

)
. Moreover, for all r ≥ 3 and t ∈ [2, r − 1] we have(

2r − t

t

)
=

1

t!

t−1∏
i=0

(2r − t− i)

=
1

t!
(2r − 2t+ 1)(2r − 2t+ 2)

t−3∏
i=0

(2r − t− i)

≥ 1

t!
(2r − 2t+ 1)(2r − 2t+ 2)

t−3∏
i=0

(r − i)

≥ 2

(
r

t

)
.

(4.1)

(Note that if t = 2, then the empty products from 0 to t− 3 are both agreed to be
equal to 1.) This directly implies that

(4.2) max

{
1(
r
t

) , 2(
2r−t

t

) , 3

3
(
2r−t

t

)
− 3

(
r
t

)
+ 1

,
3

2
(
2r−t

t

)
−
(
r
t

)
}

=

(
r

t

)−1

.

Furthermore, a cluster consisting of an edge e and i diamonds, each claiming a
different t-subset of e, claims or covers a total of

(
r
t

)
+ i

((
2r−t

t

)
− 1

)
t-sets. In this

case, the ratio of edges to covered or claimed t-sets is

(4.3)
2i+ 1(

r
t

)
+ i

((
2r−t

t

)
− 1

) =
2(

2r−t
t

)
− 1

+

(
2r−t

t

)
− 2

(
r
t

)
− 1((

2r−t
t

)
− 1

) ((
r
t

)
+ i

((
2r−t

t

)
− 1

)) .
To understand which i maximizes the ratio, we look at the sign of the difference(
2r−t

t

)
− 2

(
r
t

)
− 1. Note that (4.1) holds with equality if and only if t = 2 (ensuring

the equality in the first inequality) and r − t = 1 (ensuring equality in the second
inequality). Hence, for (t, r) 
= (2, 3) we have that

(
2r−t

t

)
≥ 2

(
r
t

)
+ 1, so the

maximum in (4.3) is attained by the term i = 0, while for (t, r) = (2, 3) the
maximum is attained for i =

(
r
t

)
= 3. Note that (4.3) for i = 0 is equal to the right

hand side of (4.2).
We conclude that for every cluster F ∈ Y , if (t, r) 
= (2, 3), then the maximum

ratio of edges in F to t-sets covered by an edge in F or claimed by F is
(
r
t

)−1
, while

for (t, r) = (2, 3) this ratio is given by 7/18. This finishes the proof of the upper
bounds.

5. Concluding remarks

In this paper, we made progress towards an old problem of Brown, Erdős, and
Sós. In particular, we settled the (6, 4)-problem for 3-graphs.

We also suggested a way to prove Conjecture 1.1 in general, namely by reducing it
to Problem 3.3. Shortly after this paper was made available as a preprint, Delcourt
and Postle [5] proved Conjecture 1.1 in full. A major ingredient in their work is
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Corollary 3.2. Interestingly, they found a way to prove the conjecture without
solving Problem 3.3 directly. Instead, they show that in any sufficiently dense
(k+2, k)-free F , one can find a subgraph F ′ with the same density which is (�+1, �)-
free for all � ∈ [2, k−1]. We refer the reader to their paper for more details. We also
note that Shangguan [15] subsequently extended the proof to higher uniformities.
Now that Conjecture 1.1 is proven, it would be interesting to determine the limiting
constants.
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