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NEW LOWER BOUNDS ON KISSING NUMBERS AND SPHERICAL
CODES IN HIGH DIMENSIONS

By IRENE GIL FERNÁNDEZ, JAEHOON KIM, HONG LIU, and OLEG PIKHURKO

Abstract. Let the kissing number K(d) be the maximum number of non-overlapping unit balls in Rd

that can touch a given unit ball. Determining or estimating the number K(d) has a long history, with
the value of K(3) being the subject of a famous discussion between Gregory and Newton in 1694. We
prove that, as the dimension d goes to infinity,

K(d)≥ (1+o(1))

√
3π

4
√

2
log

3
2
·d3/2 ·

( 2√
3

)d
,

thus improving the previously best known bound of Jenssen, Joos and Perkins [On kissing num-
bers and spherical codes in high dimensions, Adv. Math. 335 (2018), 307–321] by a factor of
log(3/2)/ log(9/8)+o(1) = 3.442 . . . . Our proof is based on the novel approach from that paper that
uses the hard sphere model of an appropriate fugacity. Similar constant-factor improvements in lower
bounds are also obtained for general spherical codes, as well as for the expected density of random
sphere packings in the Euclidean space Rd.

1. Introduction. The kissing number in dimension d, denoted by K(d), is
the maximum number of non-overlapping (i.e., having disjoint interiors) unit balls
in the Euclidean d-dimensional space Rd that can touch a given unit ball.

It is easy to see that K(1) = 2 and K(2) = 6. Whether K(3) is 12 or larger
was the subject of a famous discussion between David Gregory and Isaac Newton
in 1694; see e.g. [24] for a historic account. This problem was finally resolved
in 1953, by Schütte and van der Waerden [27] who proved that K(3) = 12. New
proofs of K(3) = 12 (see e.g. Maehara [20], Böröczky [4] and Anstreicher [1])
were discovered more recently, as it continues to be a problem of interest. The only
other known values are K(4) = 24, proved by Musin [21] using a modification of
Delsarte’s method; and K(8) = 240 and K(24) = 196560 were proved in 1979 by
Levenshtein [18] and, independently, by Odlyzko and Sloane [22] using Delsarte’s
method. For a survey of kissing numbers, see [5].
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In large dimensions, the best known bounds are exponentially far apart. For
the upper bound, the first exponential improvement over the easy bound of O(2d)
(coming from a volume argument) was obtained by Rankin [25]:

K(d)≤ (1+o(1))
√
π

2
√

2
·d3/2 ·2d/2.

This was improved later by a breakthrough of Kabatjanskiı̆ and Levenšteı̆n [17],
using the linear programming method of Delsarte [13], to

K(d)≤ 20.4041...·d.

For the lower bound, Chabauti [6], Shannon [28], and Wyner [35] indepen-
dently observed that

(1) K(d)≥ (1+o(1))

√
3πd

2
√

2

( 2√
3

)d
,

as every maximal arrangement has at least so many balls. An improvement on the
lower bound (1), by a multiplicative factor Θ(d), was obtained by Jenssen, Joos
and Perkins [15] whose more general result (stated as Theorem 4.1 here) gives that

(2) K(d)≥ (1+o(1))

√
3π

2
√

2
log

3
2
√

2
·d3/2 ·

( 2√
3

)d
.

We give a further constant factor improvement on the kissing numbers in high
dimensions.

THEOREM 1.1. As d→ ∞, we have

K(d)≥ (1+o(1))

√
3π

4
√

2
log

3
2
·d3/2 ·

( 2√
3

)d
.

The leading constant
√

3π
4
√

2
log 3

2 is about 0.2200 . . ., which is a factor of 3.442 . . .
improvement over the bound in (2).

In fact, we can also improve lower bounds on the more general problem of the
maximum size of a spherical code. A spherical code of angle θ in dimension d is a
set of vectors (also called codewords) x1, . . . ,xk in the unit sphere

Sd−1 := {x ∈ Rd | ∥x∥= 1},

such that ⟨xi,xj⟩ ≤ cosθ for every i ̸= j, that is, the angle between any two distinct
vectors is at least θ. The size of such spherical code is k, the number of vectors. Let
A(d,θ) denote the maximum size of a spherical code of angle θ in dimension d.

Looking at the definition of a spherical code x1, . . . ,xk of angle θ, we see that
it corresponds to a set of non-overlapping caps Cθ/2(x1), . . . ,Cθ/2(xk), where

Cθ(x) := {y ∈ Sd−1 : ⟨x,y⟩ ≥ cosθ}
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denote the closed spherical cap of angular radius θ around x ∈ Sd−1, Hence,
determining A(d,θ) is equivalent to determining the maximum number of non-
overlapping spherical caps of angular radius θ/2 that can be packed in Sd−1.

The kissing arrangement of unit spheres is a special case of spherical codes: if
the centres of the kissing spheres are projected radially to the central unit sphere,
then the obtained points form a spherical code of angle π/3 (and this transforma-
tion can be reversed). Thus K(d) =A(d,π/3).

For θ ≥ π/2, Rankin [25] determined A(d,θ) exactly, so from now on we will
assume that θ ∈ (0,π/2). For a measurable subset A of Sd−1, we write s(A) for
the normalised surface measure of A, i.e. s(A) := ŝ(A)/ŝ(Sd−1), where ŝ(·) is
the usual surface measure (that is, the (d− 1)-dimensional Hausdorff measure).
Let us denote sd(θ) := s(Cθ(x)). For large d, the best known upper bound is by
Kabatjanskiı̆ and Levenšteı̆n [17] and states that

(3) A(d,θ)≤ e(1+o(1))ϕ(θ)·d,

for certain ϕ(θ)>− logsinθ.
The easy covering bound (observed by Chabauti [6], Shannon [28] and

Wyner [35]) states that

(4) A(d,θ)≥ sd(θ)
−1.

Note that for fixed θ < π/2, we have

(5) sd(θ) = (1+o(1))
sind−1 θ√
2πd cos(θ)

, as d→ ∞,

and thus the bounds in (3) and (4) are exponentially far apart from each other. The
lower bound was improved by Jenssen, Joos and Perkins [16] by a linear factor in
the dimension, showing that A(d,θ) = Ω(d · sd(θ)−1) as d→ ∞; see Theorem 4.1
here for the exact statement.

We also improve the lower bound on the maximum size of a spherical code by
a constant factor (that depends on the angle θ ∈ (0,π/2)) as d→ ∞:

THEOREM 1.2. Let θ ∈ (0,π/2) be fixed. Then,

A(d,θ)≥ (1+o(1)) log
sinθ√
2sin θ

2

·d ·sd(θ)−1, as d→ ∞.

Observe that Theorem 1.1 is obtained from Theorem 1.2 by setting θ = π/3
and using (5).

We also look at sphere packings in the Euclidean space Rd of maximum den-
sity. Given a radius r > 0, a (sphere) packing X is a subset of Rd such that every
two distinct elements of X are at distance at least 2r (or, equivalently, if the radius-
r balls centred at X are non-overlapping). The sphere packing density is defined
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by

(6) θ(d) := sup
packingX

limsup
R→∞

vol(BR(0)∩ (∪x∈XBr(x)))

vol(BR(0))
,

where BR(x) denotes the closed ball of radius R> 0 centred at x ∈Rd and 0 ∈Rd

is the origin. In other words, we try to cover asymptotically as large as possible
fraction of the volume of a growing ball in Rd by non-overlapping balls of fixed
radius r.

It is clear that θ(1) = 1. Thue [30], in 1892, proved that

θ(2) = π/
√

12 = 0.9068 . . . ,

which is achieved by the hexagonal lattice; Hales [14] proved in 2005 that θ(3) =
π/

√
18 = 0.7404 . . . . The cases d= 8 and d= 24 have been recently resolved due

to the work of Viazovska [33] (d = 8) and Cohn, Kumar, Miller, Radchenko and
Viazovska [8] (d= 24).

However, the value of θ(d) is unknown for any other d. When d → ∞, there
are some upper and lower bounds for θ(d), but they are exponentially far apart.
The best known upper bound θ(d) ≤ 2−(0.5990...+o(1))·d is due to Kabatjanskiı̆ and
Levenšteı̆n [17], obtained by applying their bounds on spherical codes. As shown
by Cohn and Zhao [9], the more direct approach of Cohn and Elkies [7] gives at
least as strong upper bound on θ(d) as that of [17].

The trivial lower bound θ(d) ≥ 2−d (take a maximal sphere packing and ob-
serve that balls of doubled size cover the whole space) was improved by a fac-
tor of d by Rogers [26] by analysing a random lattice packing of Rd by mak-
ing use of the Siegel mean-value theorem. Later, there have been several sub-
sequent improvements to the constant by Davenport and Rogers [10], Ball [3],
Vance [31]. The current best bound is by Venkatesh [32], who proved a general
bound θ(d) ≥ (65963+ od(1))d · 2−d, and for a sparse sequence of dimensions
{di}i∈N, a bound θ(di) =Ω(di · log logdi ·2−di). (In contrast, the best known lower
bound on the kissing number for d→ ∞ coming from a lattice is exponentially in
d smaller than the easy bound in (1), see Vlădut, [34].)

One can try to find lower bounds by taking a random packing X inside a
bounded measurable set S ⊆ Rd. Jenssen, Joos and Perkins [16] investigated the
hard sphere model of fugacity λ where we take the Poisson point process X on
S of intensity λ conditioned on being a packing, with the radius chosen so that
the balls we pack have volume 1. Define the expected packing density αS(λ) :=
E[ |X| ]/vol(S) and observe that, for any λ > 0, the limit superior of αS(λ) when
S ⊆ Rd is a large ball is a lower bound on θ(d). Jenssen, Joos and Perkins [16]
were able to prove that θ(d) ≥ (log(2/

√
3) + o(1))d · 2−d via this method (see

Theorem 3.3 here). This does not improve the lower bound of Venkatesh [32] but
the full potential of this approach is unclear. (In fact, this approach is used in [15]
and in this paper to improve the best known lower bounds on spherical codes and
kissing numbers, as stated above.)
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Our next result improves the lower bound on θ(d) given by this method by a
multiplicative constant of log2/ log(4/3)+o(1) = 2.409 . . . as d→ ∞.

THEOREM 1.3. For every ε > 0, there are δ > 0 and d0 such that if d ≥ d0,
λ ≥ (1/

√
2− δ)d and S ⊆ Rd is any bounded and measurable set with positive

measure, then
αS(λ)≥ (log

√
2−ε) ·d ·2−d.

Our approach builds on the work of Jenssen, Joos and Perkins [15, 16]. As
in these papers, our lower bounds are obtained by analysing the structure of the
random packing X around a uniformly chosen random point v ∈ S. In brief, the
new ideas that lead to our improvements are lower bounding the expected size of
the random configuration around v in a more direct way (via Lemma 4.7) and using
the known re-arrangement inequalities for Sd−1 and Rd. Since the reader (like us)
may find Euclidean geometry more intuitive than the spherical one, we first present
a rather detailed proof for sphere packing in the Euclidean space that introduces the
same new ideas as the case of spherical codes.

2. Notation. For n ∈ N, write [n] := {1, . . . ,n}. If we claim that a result
holds e.g. for 0 < a≪ b,c≪ d, it means that there exist positive functions f and g

such that the result holds as long as a < f(b,c) and b < g(d) and c < g(d). We will
not compute these functions explicitly.

We will sometimes use a standard abuse of notation by denoting all the proba-
bility measures that we use as P, even if they refer to different probability spaces,
but it will be clear from the context with respect to which one it is used; and sim-
ilarly for the expectation, which will be denoted by E. All the logarithms will
be in base e. Moreover, we will use the standard asymptotic notation for non-
negative functions f and g: f(d) = O(g) means that when d tends to infinity
f(d)/g(d) is bounded by a constant independent of d; f(d) = o(g) means that
when d is large f(d)/g(d) tends to zero; f(d) = Ω(g(d)) means that, there exist
constants C and d0 such that, for every d>d0, f(d)≥C ·g(d); and f(d)=Θ(g(d))

means that, there exist constants C1,C2,d0 such that, for every d > d0, it holds that
C1 ·g(d)≤ f(d)≤ C2 ·g(d).

Let vol denote the Lebesgue measure in Rd. Let B◦
r(x) :={y∈Rd | d(x,y)<r}

denote the open radius-r ball centred at x (and recall that Br(x) denotes the closed
ball). Likewise,

C◦
θ (x) := {y ∈ Sd−1 : ⟨x,y⟩> cosθ}

denotes the open spherical cap of angular radius θ around x in the sphere Sd−1.
Also, we will be using, without any further mention, Fubini-Tonelli’s Theorem

(see e.g. [29, Section 2.3]) which states that measurable non-negative functions
can be integrated in any order of variables and, if we integrate out any subset of
variables then the obtained function in the remaining ones is defined almost every-
where and is measurable.
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3. Sphere packing in Euclidean space. Before proving Theorem 1.3 we
need to discuss the hard sphere model in some detail.

3.1. The hard sphere model. Recall that a (sphere) packing X is a subset
of Rd consisting of centres of balls of equal radii with disjoint interiors. Since the
density of a packing, as defined in (6), will not change if we scale the whole picture
by a constant factor, we assume from now on that the balls associated to a sphere
packing X are all of volume one, and we write rd for the radius of a ball of volume
one in Rd. This will allow us to treat the number |X| of points in X as the total
volume of the balls.

Let S ⊆ Rd be a bounded measurable set. The hard sphere model on S is
a probability distribution over sphere packings X ⊆ S. Before giving a formal
definition, we provide some intuition. Consider an infinite graph with vertex set S
in which two points are neighbours if they are of distance less than 2rd apart. Then,
given a sphere packing X , we can think of the set X of points as an independent set
in our graph, and the hard sphere model can be thought of as a continuous version
of the so-called hard core model that samples independent sets in graphs (some
recent results involving the latter can be found in e.g. [11, 12, 23]).

There are two versions of the hard sphere model: the canonical ensemble,
which is a uniformly chosen random packing of a given fixed density (i.e. the
number of balls is fixed); and the grand canonical ensemble, which is a random
packing with variable density determined by a fugacity parameter λ > 0. More
precisely, let S ⊆ Rd be a bounded, measurable set of positive measure and let k
be a non-negative integer. Define

Pk(S) := {{x1, . . . ,xk} | x1, . . . ,xk ∈ S, ∀1 ≤ i < j ≤ k, d(xi,xj)≥ 2rd}

to be the sets of sphere packings of size k with centres inside S. Note that we allow
centres arbitrarily close to the boundary of S, that is, we do not require that the
whole ball stays inside S, but only its centre. Then in the canonical hard sphere
model on S, we take a k-tuple Xk ∈ Pk(S) uniformly at random (if the measure of
Pk(S) is positive). The partition function of the canonical ensemble is given by

ẐS(k) :=
1
k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk, k ≥ 1,

where D(x1, . . . ,xk) is the event that d(xi,xj) ≥ 2rd for every distinct i, j ∈ [k].
We also define ẐS(0) := 1. Note that ẐS(k) = 0 if the measure of PS(k) is zero.
Observe that ẐS(k) is the measure of the set of the legitimate size-k packings
Pk(S) and the probability that the random uniform k-tuple Xk ∈ Sk is in Pk(S) is

P[Xk ∈ Pk(S) ] =
k!

vol(S)k
ẐS(k).

Note that the canonical ensemble is the analogue of the uniform distribution in the
family of independent sets of fixed size of a graph.
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In the grand canonical hard sphere model on a bounded measurable subset S⊆
Rd at fugacity λ > 0, a random set X of unordered points is sampled according to
a Poisson point process on S of intensity λ, conditioned on the event that d(x,y)≥
2rd for every distinct x,y ∈ X . Note that we condition on the event of positive
measure: for example, the unconditioned Poisson set is empty with probability
e−λ·vol(S) > 0. We will write µS,λ for the probability measure of the hard sphere
model at fugacity λ on S, and we may abbreviate PX∼µS,λ

to PX , or even to P
when the meaning is clear.

Let us present an equivalent description of the same distribution. Define the
partition function

ZS(λ) :=
∞∑

k=0

λk

k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk =
∞∑

k=0

λkẐS(k).

Note that if S is bounded, then ẐS(k) = 0 for large k (so in particular, we do not
need to worry about the convergence of the sum). This gives a random set X ⊆S as
follows: first, we choose a non-negative integer k at random with probability pro-
portional to λkẐS(k), and then we choose a k-tuple X ∈ Pk(S) from the canonical
hard sphere model. Let us show that these two distributions are indeed equal.

LEMMA 3.1. Let S ⊆Rd be a bounded measurable set of positive measure and
let λ > 0. Let X be the Poisson process of intensity λ on S conditioned on being
a packing. For an integer k ≥ 0, let Ek be the event that |X| = k. Then P(Ek) =

λkẐS(k)/ZS(λ). Moreover, if Ek has positive measure then X conditioned on Ek

is uniformly distributed in Pk(S).

Proof. The probability that the unconditioned Poisson process Y of intensity
λ on S has exactly k points is

e−λ·vol(S) (λ ·vol(S))k

k!
.

Conditioned on |Y |= k, we have that Y is a uniformly chosen random element of
Sk. Thus the probability that Y is a packing of size k is

pk :=
e−λ·vol(S)(λ ·vol(S))k

k!
· 1

vol(S)k

∫
Sk

1D(x1,...,xk) dx1 . . . dxk

= e−λ·vol(S)λkẐS(k).

Therefore, the probability that |X|= k is

P[Ek ] =
pk∑
∞

i=0 pi
=

λkẐS(k)

ZS(λ)
,

proving the first claim. The second claim follows from the uniformity of Y in Sk

when conditioned on its size k. □
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One of the main properties of the hard sphere model is the spatial Markov
property.

LEMMA 3.2 (Spatial Markov Property). Let A ⊆ S ⊆ Rd be bounded mea-
surable sets of positive measure. Let λ > 0 and let X ∼ µS,λ. Let Y be obtained
from X by removing X ∩A and adding the points produced by the hard sphere
fugacity-λ process on

(7) TA(X) := {x ∈A : ∀y ∈X \A, d(x,y)≥ 2rd}.

Then the distributions of the point processes X and Y are the same.

Proof. Let us show first that for any non-negative integers k and ℓ it holds that

(8) P[ |X ∩A|= k, |X \A|= ℓ ] = P[ |Y ∩A|= k, |X \A|= ℓ ].

Take any integers k,ℓ ≥ 0. Let Ek,ℓ denote the event that |X ∩ A| = k

and |X \A| = ℓ. Write x := (x1, . . . ,xℓ), x′ := (xℓ+1, . . . ,xℓ+k) and (x,x′) :=
(x1, . . . ,xℓ,xℓ+1, . . . ,xℓ+k). We have by Lemma 3.1 that

P[Ek,ℓ ] =
1

ZS(λ)

λk+ℓ

(k+ ℓ)!
·
∫
Sk+ℓ

1D(x,x′)1|{x1,...,xk+ℓ}∩A|=k dxdx′

=
1

ZS(λ)

λk+ℓ

(k+ ℓ)!
·
(
k+ ℓ

k

)∫
Sk+ℓ

1D(x,x′)1{x∈(S\A)ℓ}1{x′∈Ak} dxdx′

=
1

ZS(λ)

λk+ℓ

k!ℓ!

∫
(S\A)ℓ

1D(x)

(∫
Tk
A(x)

1D(x′) dx′
)

dx.

(9)

Here, the first equality is trivially true if the probability of |X| = k+ ℓ is zero;
otherwise, it is a consequence of

P[Ek,ℓ ] = P[ |X|= k+ ℓ] ·P[Ek,ℓ | |X|= k+ ℓ ].

On the other hand, for any k,ℓ,j ≥ 0, let

Pk,ℓ,j := P[ |X \A|= ℓ, |Y ∩A|= k, |X ∩A|= j ].

Clearly, the right-hand side of (8) is
∑

∞

j=0 Pk,ℓ,j . This sum, using similar argu-
ments as before and denoting xj := (xℓ+1, . . . ,xℓ+j) and y := (y1, . . . ,yk), can be
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re-written as

∞∑
j=0

Pk,ℓ,j=
∞∑

j=0

1
ZS(λ)

λj+ℓ

(j+ ℓ)!

(
j+ ℓ

j

)

·
∫
(S\A)ℓ

1D(x)

(∫
Tj
A(x)

1D(xj) dxj
)(

λkẐTA(x)(k)

ZTA(x)(λ)

)
dx

=
1

ZS(λ)

λk+ℓ

k!ℓ!

∫
(S\A)ℓ

1D(x)

( ∞∑
j=0

λjẐTA(x)(j)

ZTA(x)(λ)

)(∫
Tk
A(x)

1D(y)dy
)

dx

=
1

ZS(λ)

λk+ℓ

k!ℓ!

∫
(S\A)ℓ

1D(x)

(∫
Tk
A(x)

1D(y) dy
)

dx.

(10)

For every pair (k,ℓ) with the two (equal) probabilities in (8) non-zero, if we
condition on the event |X ∩A| = k and |X \A| = ℓ (resp. on the event |Y ∩A| =
k and |Y \A| = ℓ), then each of X and Y , as a random point of Sk+ℓ, has the
same density function with respect to the Lebesgue measure by the calculations
in (9) and (10). Of course, when we ignore the pairs (k,ℓ) where the probabilities
in (8) are zero, we ignore, by countable additivity, a set of measure 0 (which does
not affect our distributions). Thus the distributions of X and Y are the same, as
desired. □

In other words, the process of generating Y in Lemma 3.2 gives a regular
conditional distribution of X with respect to the σ-algebra of X \A, that is, the
σ-algebra generated by sets of the form

{X |X ⊆ S is a packing such that ∀i ∈ [m] |X ∩Bi|= ki},

for integers m,k1, . . . ,km ≥ 0 and measurable subsets B1, . . . ,Bm of S \A. This
gives a well-defined meaning to phrases like “the distribution of X∩A conditioned
on X \A = {x1, . . . ,xℓ}” by which we will mean µTA(x1,...,xℓ),λ, that is, the hard
sphere distribution on TA(x1, . . . ,xℓ) of the same fugacity λ.

The expected packing density, αS(λ), of the (grand canonical) hard sphere
model is the expected total volume of the balls in the random packing normalised
by the measure of S. As we consider balls of unit volume, this is the number of
centres in S normalised by the measure of S, that is,

αS(λ) :=
EX∼µS,λ

[ |X| ]
vol(S)

.

Jenssen, Joos and Perkins in [16] proved the following asymptotic lower bound
for the expected packing density.
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THEOREM 3.3 (Theorem 2, [16]). Let d → ∞, let S ⊆ Rd be a bounded and
measurable set of positive measure and let λ≥ 3−d/2 be arbitrary. Then

αS(λ)≥ (1+o(1)) log
2√
3
·d ·2−d.

Our Theorem 1.3 gives a constant factor improvement over it (although it ap-
plies only to higher values of λ than Theorem 3.3). Both results give a lower
bound on the sphere packing density via θ(d)≥ limsupn→∞αBn(0)(λ) (see e.g. [16,
Lemma 1]).

We need the following auxiliary results from [16] in order to prove Theo-
rem 1.3. For completeness, we include their short proofs.

LEMMA 3.4. Let S ⊆ Rd be a bounded, measurable set of positive measure,
λ > 0 and X ∼ µS,λ. Then, the following hold:

(i) αS(λ) =
λ

vol(S)

(
logZS(λ)

)′;
(ii) αS(λ) is a strictly increasing function of λ;
(iii) ZS(λ)≤ eλ·vol(S).

Proof. To see (i), we compute:

αS(λ) =
1

vol(S)

∞∑
k=1

k ·P[ |X|= k ] =
1

vol(S)

∞∑
k=1

k · λ
kẐS(k)

ZS(λ)

=
λ

vol(S)
Z ′
S(λ)

ZS(λ)
=

λ

vol(S)
(

logZS(λ)
)′
.

We can get (ii) by differentiating with respect to λ the expression given by (i):

λ ·vol(S) ·α′
S(λ) = λ ·vol(S)

( 1
vol(S)

(
logZS(λ)

)′
+

λ

vol(S)
(

logZS(λ)
)′′)

=
λ2Z ′′

S(λ)

ZS(λ)
−
(
λZ ′

S(λ)

Z2
S(λ)

)2

+
λZ ′

S(λ)

ZS(λ)

= E
[
|X|(|X|−1)

]
−
(
E[ |X| ]

)2
+E[ |X| ] = Var[ |X| ]> 0,

where the identity E
[
|X|(|X|−1)

]
= λ2Z ′′

S(λ)/ZS(λ) can be proved very simi-
larly as the identity in (i).

To see (iii), note that

ZS(λ) =

∞∑
k=0

λkẐS(k) =

∞∑
k=0

λk

k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk

≤
∞∑

k=0

λk

k!
vol(S)k = eλ·vol(S). □
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3.2. Externally uncovered neighbourhood T. Now we do a two-part ex-
periment: let X be a random configuration of centres drawn according to the hard
sphere model on S at fugacity λ and, independently, choose a point v uniformly at
random from S. Define the set

(11) T := T(X,v) = {x ∈B◦
2rd(v)∩S : ∀y ∈X \B◦

2rd(v), d(x,y)≥ 2rd},

which is the set of all points of S in the open ball of radius 2rd around v that are
suitable to be a centre of a new ball to add to the packing X \B◦

2rd(v) (because
they are not blocked by a centre outside B◦

2rd(v)). See Figure 1. This is the same
definition as when we take A :=B◦

2rd(v)∩S in Eq. (7). The set T is called the set
of externally uncovered points in the neighbourhood of v (with respect to X). Note
that vol(T)> 0 almost surely.

X

v2rd

rd

T

Figure 1. The set T of externally uncovered points.

We will also need the following two results from [16] that relate this two-part
experiment to αS(λ), and we include their proofs for the reader’s convenience.

LEMMA 3.5. Let S ⊆ Rd be a bounded, measurable set of positive measure,
λ > 0, X ∼ µS,λ and let v ∈ S be a random point chosen uniformly from S, inde-
pendent of X . Let T = T(X,v) be as in Eq. (11). Then, the following statements
hold:

(i) αS(λ) = λ ·EX,v

[
1

ZT(λ)

]
;

(ii) αS(λ)≥ 2−d ·EX,v

[
αT(λ) ·vol(T)

]
.

Proof. For (i), recall that D(x0,x1, . . . ,xk) is the event that every two of the
points x0, . . . ,xk are at distance at least 2rd. Then, we compute

αS(λ) =
E[ |X| ]
vol(S)

=
1

vol(S)

∞∑
k=0

(k+1) ·P[ |X|= k+1 ]

=
1

vol(S)ZS(λ)

∞∑
k=0

∫
Sk+1

λk+1

k!
1D(x0,x1,...,xk) dx1 · · · dxk dx0
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=
λ

vol(S)

∫
S

1
ZS(λ)

·
(

1+
∞∑

k=1

∫
Sk

λk

k!
1D(x0,x1,...,xk) dx1 · · · dxk

)
dx0

=
λ

vol(S)

∫
S
PX [d(x0,X)≥ 2rd ]dx0

= λ ·EX,v

[
1{T∩X=∅}

]
= λ ·EX,v

[ 1
ZT(λ)

]
,

where the last equality follows from Lemma 3.2, the spatial Markov property, ap-
plied to A :=B◦

2rd(v)∩S.
For (ii), as vol(S∩B2rd(u))≤ 2d for any u ∈ S, we have

αS(λ) =
EX [ |X| ]
vol(S)

≥ 2−d ·EX,v

[
|X ∩B◦

2rd(v)|
]
= 2−d ·EX,v[αT(λ) ·vol(T) ],

where the last equality follows again from the spatial Markov property. □

3.3. Local analysis in T. As in [16], the key part of our argument is a local
analysis of the number of centres inside the externally uncovered set T = T(X,v).
However, our proof deviates from [16] from this point on. Roughly speaking, we
write our lower bound on θ(d) in terms of the distribution of t := vol(T(X,v)),
instead of EX,v[ logZT(X,v) ] as was done in [16] and observe, using a standard
rearrangement inequality, that a worst case for our bound is when t = (log

√
2+

o(1))d/λ is constant and T(X,v) is a ball. Thus our improvement comes by adding
new geometrical considerations into the proof.

For the proof we will need some auxiliary results from Real Analysis. We say
that a measurable function f : Rd → [0,∞) vanishes at infinity if for every t > 0
the level set {x ∈ Rd : f(x) > t} has finite Lebesgue measure. For a measurable
bounded set A ⊆ Rd and a measurable function f : Rd → [0,∞) that vanishes at
infinity, their symmetric rearrangements are, respectively

A∗ :=Bvol(A)1/d·rd(0),

the ball centred at 0 of the same measure as A, and

f∗(x) :=
∫

∞

0
1{y:f(y)>t}∗(x)dt, x ∈ Rd,

the radially decreasing symmetric function with the same measures of the level sets
as f . For more details, see e.g. [19, Chapter 3.3].

For a measurable bounded T ⊆ Rd define

(12) f(T ) :=
∫
T

vol(B2rd(u)∩T )du.

Note that, if vol(T ) > 0, then f(T )/vol(T ) is the expected measure of the inter-
section B2rd(u)∩T for a random point u uniformly chosen from T .
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We will make use of the following result, which says that the function f defined
above is maximised by a ball of the same measure as T .

LEMMA 3.6. Let f be as in Eq. (12). For every bounded measurable T ⊆ Rd,
we have

f(T )≤ f(T ∗).

Proof. This is an immediate consequence of Riesz’s rearrangement inequality
(for a modern exposition, see e.g. [19, Theorem 3.7]) which states that, for any
measurable functions f,g,h : Rd → [0,∞) that vanish at infinity, we have

(13) I(f,g,h)≤ I(f∗,g∗,h∗),

where I(f,g,h) :=
∫
Rd

∫
Rd f(x)g(x−y)h(y)dxdy.

Now, let f := 1T and h := 1T be the indicator functions of T and let g(x) :=
1B2rd (0)

be the indicator function of the radius-2rd ball centred at the origin. Then
f∗ and h∗ are the indicator functions of the ball T ∗ while g∗ = g. By (13) we have

f(T ) = I(f,g,h)≤ I(f∗,g∗,h∗) = f(T ∗),

as required. □

With the help of Lemma 3.6, we can get the following strengthening of [16,
Lemma 10] (which gives an upper bound on Eu[vol(B2rd(u)∩T ) ] independent
of t).

LEMMA 3.7. Let T⊆Rd be a bounded measurable set of measure t∈[2d/2,2d].
Let u be a random point chosen uniformly from T . Then,

Eu[vol(B2rd(u)∩T ) ]≤ 2 ·2d · (1− t−2/d)d/2.

Proof. Note that Eu[vol(B2rd(u)∩T ) ]=f(T )/vol(T ), and so, by Lemma 3.6,
since vol(T ) = vol(T ∗), it is enough to prove the lemma when T =Bρ(0) is a ball
of radius ρ := t1/drd. This amounts to estimating a certain integral over Bρ(0) of a
radially symmetric function. The following trick from [16] simplifies calculations:

E
[

vol(B2rd(u)∩T )
]
=

1
t

∫
T

(∫
T
1{d(u,v)≤2rd} dv

)
du

=
2
t

∫
T

∫
T
1{d(u,v)≤2rd} ·1{∥v∥≤∥u∥} dvdu

≤ 2 max
u∈Bρ(0)

∫
T
1{d(u,v)≤2rd} ·1{∥v∥≤∥u∥} dv

≤ 2 max
u∈Bρ(0)

vol
(
B2rd(u)∩B∥u∥(0)

)
.

Let u ∈ Bρ(0) be a point maximising the volume of the intersection
vol
(
B2rd(u) ∩B∥u∥(0)

)
, and let x be such that x · rd = ∥u∥ ≤ ρ. If x ≤

√
2,
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then the intersection has volume at most vol(B√
2rd

(0)) ≤ 2d/2, which is at most
the claimed bound. Suppose then that x ≥

√
2. Then, standard trigonometry

shows that the intersection B2rd(u) ∩B∥u∥(0) is contained in a ball of radius
2
√

1−x−2 · rd centred at (1− 2/x2)u. Note that, by definition, x ≤ t1/d. Hence,
as t≤ 2d, we get that

Eu[vol(B2rd(u)∩T ) ]≤ max
{

2d/2, 2 · max√
2≤x≤t1/d

(2
√

1−x−2)d
}

= 2 · (2
√

1− t−2/d)d,

as required. □

We can now prove a lower bound for the expected number of centres of spheres
in T (which is equal to αT (λ) ·vol(T )). This bound will be useful when the volume
of T is “large”.

LEMMA 3.8. For every β > 0, there is k0 such that, for every k≥ k0 and every
λ,t,d > 0, if T is a bounded measurable subset of Rd of measure t and k ∈ N
satisfies k0 ≤ k ≤ λt, then

(14) αT (λ) ·vol(T )≥ (1−β)pkk,

where pi is the probability that for uniform independent points x1, . . . ,xi ∈ T every
two are at distance at least 2rd.

Proof. Let X ∼ µT,λ be the random set produced by the hard sphere model of
fugacity λ on T and let x := |X| be the number of spheres in this random packing
of T . Thus, αT (λ) · vol(T ) = E[x ] and we want to lower bound the expectation
of x.

If we take any random variable Y and condition on Y ≤C then the expectation
can only decrease; indeed, as E[Y |Y ≤ C ]≤ C, we have

E[Y ]≥ E[Y |Y ≤ C ] ·P[Y ≤ C ]+C ·P[Y > C ]

≥ E[Y |Y ≤ C ] ·P[Y ≤ C ]+E[Y |Y ≤ C ] ·P[Y > C ]

= E[Y |Y ≤ C ].

Thus it is enough to lower bound E[x|x≤ k ]. Let ξ := λt, γ := β/2 and m=

⌈(1−γ)k⌉. Since 1 = p0 ≥ p1 ≥ . . .≥ pk and ẐT (i) = piξ
i/i!, we have

E[x |x≤ k ] =

∑k
i=0 ipiξ

i/i!∑k
i=0 piξ

i/i!
≥ pk

∑k
i=m iξi/i!∑k
i=0 ξ

i/i!
.
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Let N :=
∑k

i=m iξi/i!. Thus pkN is the numerator of the last fraction. As ξi/i!
increases for 0 ≤ i≤m−1, we have

k∑
i=0

ξi/i! =
m−1∑
i=0

ξi/i!+
k∑

i=m

ξi/i! ≤m
ξm−1

(m−1)!
+

1
m

k∑
i=m

iξi/i!.

Here, the first term is

m
ξk

k!

∏k−m
i=0 (1− i

k )

(ξ/k)k−m+1 ≤m
ξk

k!
e−

∑k−m
i=0

i
k ≤mNe−γ2k/2,

while the second term is exactly 1
m N . Thus,

αT (λ) ·vol(T )≥ E[x |x≤ k ]≥ pk

me−γ2k/2 +1/m
≥ (1−β)pkk,

as required. □

3.4. Proof of Theorem 1.3. Given ε > 0, choose sufficiently small con-
stants β,δ so that 0 < δ ≪ β ≪ ε. Let d → ∞ and take any measurable bounded
S ⊆ Rd of positive measure. By Lemma 3.4, αS(λ) is an increasing function in λ.
So in order to prove Theorem 1.3, it is enough to show that, for λ= (1/

√
2− δ)d,

we have

(15) αS(λ)≥ (log
√

2−ε)d ·2−d.

Let X ∼ µS,λ be the centres of the sampled spheres. Take a point v uniformly at
random from S, independent of X . As in Section 3.3, let

T = T(X,v) := {x ∈B◦
2rd(v)∩S : d(x,y)≥ 2rd, ∀y ∈X \B◦

2rd(v)}

be the externally uncovered set around v and let t= t(X,v) be its measure.
Let k := (log

√
2−ε/2)d. For X ⊆ S, let

L= L(X) := {u ∈ S : t(X,u)≤ k/λ}.

Now, note that from Lemma 3.4 (iii) and Lemma 3.5 (i), we easily derive the in-
equality

αS(λ) = λE
[ 1
ZT(λ)

]
≥ λEXEv

[
e−λ·t(X,v)

]
.

Then,

αS(λ) ·vol(S)≥ λEX

[ ∫
v∈S

e−λ·t(X,v) dv
]

≥ λEX

[ ∫
v∈L

e−λ·t(X,v) dv
]

≥ eεd/3 2−dEX [vol(L) ].
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Thus, we may assume that, for example, EX [vol(L) ] ≤ vol(S)e−εd/4, for other-
wise (15) holds. Then, by Markov’s inequality,

(16) PX [vol(L)≥ vol(S)e−εd/6 ]≤ e−εd/12,

that is, for typical outcome X , the measure t= t(X,v) is “relatively large” except
for a very small set of v ∈ S.

Take any X with vol(L)≤ vol(S)e−εd/6. For every v ∈ S \L, t= t(X,v) is at
least k/λ≥ (

√
2+δ/3)d by the definition of L and at most 2d since T is a subset of

B◦
2rd(v). Again, by the definition of L, we have k ≤ λt. Thus, Lemma 3.8 applies

and gives that, for every v ∈ S \L, we have αT(λ) ·vol(T)≥ (1−β)pkk, where pi
denotes the probability that, for uniform independent x1, . . . ,xi ∈ T, every two are
at distance at least 2rd.

Claim 3.9. pk ≥ 1− δ.

Proof of claim. Recall that t ≥ (
√

2 + δ/3)d. Consider the function g(t) :=
(f(τ))−d, where τ := t1/d and f(τ) := τ/(2

√
1− τ−2). Observe that f(

√
2) = 1

and f is strictly increasing on [
√

2,2] since its derivative at x ∈ (
√

2,2] is

f ′(x) =
1

2
√

1− 1
x2

− 1

2
(
1− 1

x2

)3/2
x2

=
x2 −2

2
√

1− 1
x2 (x2 −1)

> 0.

Thus f(t1/d) ≥ f(
√

2+ δ/3) > 1, which means that g(t) is exponentially small
in d→ ∞. Note that, by Lemma 3.7, 2g(t) upper bounds the expected fraction of
measure of T that a ball of radius 2rd centred at a uniformly chosen random point
x ∈ T covers.

Let x1, . . . ,xk ∈ T be independent random points chosen according to the uni-
form distribution on T. Imagine that we sample x1, then x2, and so on. Call xi bad
if vol(B2rd(xi)∩T) ≥ t/d3 or xi is within distance 2rd from any of x1, . . . ,xi−1;
otherwise call xi good. Clearly, if all vertices are good then every two are at dis-
tance larger than 2rd, so it is enough to show that the probability of at least one xi
being bad is o(1) as d→ ∞.

Thus it is enough to show that, for each i, the probability that xi is the first bad
vertex is o(1/k). Indeed, this probability (i.e. that xi is the first bad vertex) is at
most the probability that vol(B2rd(xi)∩T)≥ t/d3, which is exponentially small in
d by Markov’s inequality, plus the probability that it belongs to the forbidden region
of the good vertices x1, . . . ,xi−1, which is at most (i− 1)/d3 ≤ k/d3 = o(1/k),
proving the claim. □

Therefore, by Lemma 3.8, we have, for every v ∈ S \L, that

(17) αT(λ) ·vol(T)≥ (1−β)pkk ≥ (1−2β)k.
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Then, Lemma 3.5 (ii) gives that

(18) 2dαS(λ)≥ EX,v

[
αT(λ) ·vol(T)

]
=

1
vol(S)

EX

[∫
v∈S

αT(λ) ·vol(T)dv
]
.

So, we have, by (17), that

2dαS(λ)≥
1

vol(S)
EX

[∫
v∈S\L

αT(λ) ·vol(T)dv
]

≥ (1− e−εd/12)(1− e−εd/6)(1−2β)k

≥ (log
√

2−ε)d,

where the second inequality is obtained by taking only X with vol(L) ≤
vol(S)e−εd/6 and using (16). This proves (15), thus finishing the proof of Theo-
rem 1.3.

4. Kissing numbers and spherical codes in high dimensions. We devote
this section to showing how the same method can be used to improve the lower
bound on kissing numbers and spherical codes in Rd. For this, we first introduce
the so called hard cap model.

4.1. The hard cap model. The hard cap model is an analogue of the hard
sphere model but, instead of considering sphere packings, we are interested in
packing the surface of a unit ball with spherical caps.

Let Pk(d,θ) be the set of all spherical codes of size k and angle θ in dimension
d (or, equivalently, the set of centres of non-overlapping spherical caps of angular
radius θ/2), that is,

Pk(d,θ) := {{x1, . . . ,xk} ⊂ Sd−1 : ∀i ̸= j, ⟨xi,xj⟩ ≤ cosθ}.

Similar to the hard sphere model (see Section 3.1), the hard cap model is a proba-
bility distribution over configurations of non-overlapping, identical spherical caps
in Sd−1, and there are two versions depending on whether the number of spherical
caps is given or it is random.

In the canonical hard cap model, we are given a non-negative integer k that is
the size of a spherical code in Sd−1 and a spherical code from Pk(d,θ) is sampled
uniformly at random (if Pk(d,θ) has positive measure). The partition function is
given by

Ẑθ
d(k) :=

1
k!

∫
Skd−1

1Dθ(x1,...,xk) ds(x1) · · · ds(xk), for k ≥ 1, and Ẑθ
d(0) := 1,

where Dθ(x1, . . . ,xk) is the event that ⟨xi,xj⟩ ≤ cosθ, for every 1 ≤ i < j ≤ k,
and the integrals over Sd−1 are with respect to the normalised surface measure
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s(·). Note that if Xk = (x1, . . . ,xk) ∈ Skd−1 is chosen uniformly at random, then

P[Xk ∈ Pk(d,θ) ] = k! · Ẑθ
d(k).

In the grand canonical hard cap model at fugacity λ, we sample X according
to a Poisson point process of intensity λ on Sd−1 conditioned on the event that
⟨x,y⟩ ≤ cosθ, for every distinct x,y ∈X . As in Lemma 3.1, this distribution can
be equivalently described by the partition function

Zθ
d(λ) :=

∞∑
k=0

λkẐθ
d(k),

where we first pick an integer k with probability Ẑθ
d(k)/Z

θ
d(λ) and then take k

independent uniform points in Sd−1 conditioned on the minimum angular distance
being at least θ.

We shall write µθ
d,λ for the probability measure of the hard cap model with

angle θ at fugacity λ on Sd−1, and abbreviate PX∼µθ
d,λ

to PX or simply P when
there is no confusion.

We can similarly define the expected size of a random spherical code to lower
bound the kissing number K(d) and the maximum size of spherical codes. More
precisely, define

αθ
d(λ) := EX∼µθ

d,λ
[ |X| ],

which is a lower bound on A(d,θ).
We can also define the hard cap model on any measurable set A ⊆ Sd−1 with

partition function

Zθ
A(λ) :=

∞∑
k=0

λkẐθ
A(k),

where Ẑθ
A(k) := 1

k!

∫
Ak 1Dθ(x1,...,xk) ds(x1) . . . ds(xk). We write αθ

A(λ) for the ex-
pected size of such a random spherical code sampled on A.

Let q(θ) be the angular radius of the smallest spherical cap that contains the
intersection of two spherical caps of angular radius θ whose centres are at angle θ.
We have

(19) q(θ) = arcsin
(
(1− cosθ)

√
1+2cosθ

sinθ

)
,

where the upper bound follows from a special case of Lemma 4.4 below.
The following lower bound on the average size of a random spherical code was

obtained by Jenssen, Joos and Perkins [15].



KISSING NUMBERS AND SPHERICAL CODES IN HIGH DIMENSIONS 919

THEOREM 4.1 (Theorem 4, [15]). Let θ ∈ (0,π/2) be fixed and q(θ) be as
in Eq. (19). Then, for λ≥ 1

d·sd(q(θ)) ,

αθ
d(λ)≥ (1+o(1)) log

sinθ
sinq(θ)

·d ·sd(θ)−1.

Our improvement over Theorem 4.1 (on a smaller range of λ) is given by the
following result, which implies Theorem 1.2.

THEOREM 4.2. For every ε > 0 there are δ > 0 and d0 such that if d≥ d0 then
the expected density of a hard cap model with fugacity λ ≥

(√
2sin θ

2 + δ
)−d in

Sd−1 satisfies

(20) αθ
d(λ)≥

(
log

sinθ√
2sin θ

2

−ε
)
d ·sd(θ)−1.

In particular, Theorem 1.2 holds.

4.2. Proof of Theorem 4.2. Similarly as we did in Section 3, consider a
two-part experiment as follows: sample a random spherical code X ∼ µθ

d,λ on Sd−1

and, independently, choose a point v uniformly at random from Sd−1. We analo-
gously define the externally uncovered neighbourhood around v as

(21) T = T(X,v) := {x ∈ C◦
θ (v) : ∀y ∈X \C◦

θ (v), ⟨x,y⟩ ≤ cosθ}.

In the proof of Theorem 4.2, we make use of several properties of αθ
d(λ) that

were proved in [15, Lemma 5]. We put them here for the reader’s convenience; we
omit their proofs, as they are analogous to those of Lemmas 3.4 and 3.5.

LEMMA 4.3. Let λ > 0, θ ∈ (0,π/2), X ∼ µθ
d,λ and let v ∈ Sd−1 be a point

chosen uniformly at random from Sd−1, independent of X . Let T be as in Eq. (21).
Then, the following hold:

(i) αθ
d(λ) = λ ·

(
logZθ

d(λ)
)′;

(ii) αθ
d(λ) is strictly increasing in λ;

(iii) αθ
d(λ) = λ ·EX,v

[ 1
ZT(λ)

]
;

(iv) αθ
d(λ)≥ λ ·EX,v

[
e−λ·s(T)];

(v) αθ
d(λ) =

1
sd(θ)

·EX,v[α
θ
T(λ)].

The next ingredient we need is the analogous result to Lemma 3.7. To state it,
we need some preliminaries. For θ ∈ (0,π/2), define θ′ ∈ (0,π/2) by

(22) sinθ′ =
√

2 sin
θ

2
.

Note that

sinθ = 2sin(θ/2)
√

1− sin2(θ/2)≥
√

2 sinθ′
√

1− sin2(π/4)≥ sinθ′

and thus θ′ ≤ θ.
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LEMMA 4.4. Let θ ∈ (0,π/2) and τ ∈ [θ′,θ], where θ′ is as in Eq. (22). Let
x,u ∈ Sd−1 be two points with an angle of τ apart. Then, the intersection of the
two caps Cτ (x)∩Cθ(u) is contained in a spherical cap of angular radius

(23) σ(τ,θ) := arcsin

(√
1+2cos2 τ cosθ−2cos2 τ − cos2 θ

sinτ

)
.

Moreover, σ(τ,θ) is increasing in τ .

Proof. The first claim was established in the proof of [15, Lemma 6], namely
see [15, Equation (10)]. Observe that the expression under the square root
in Eq. (23) is

1+2cos2 τ cosθ−2cos2 τ − cos2 θ = (1− cosθ)(1+ cosθ−2cos2 τ);

this is non-negative, which follows from τ ∈ [θ′,θ] and the choice of θ′.
For the second part, write σ(τ,θ) = arcsin(fθ(τ)), where

fθ(τ) :=

√
1+2cos2 τ cosθ−2cos2 τ − cos2 θ

sinτ
.

We need to show that the partial derivative of σ(τ,θ) with respect to τ is positive,
for which it suffices to prove that f ′

θ(τ)> 0. One can check that

f ′
θ(τ) =

cosτ · (1− cosθ)2

sin2 τ
√
(1− cosθ)(1+ cosθ−2cos2 τ)

.

The numerator above is clearly positive as τ,θ ∈ (0,π/2). □

Note that, by Eq. (23), sin2 τ · (sin2 τ − sin2σ(τ,θ)) simplifies to

(cos2 τ − cosθ)2 =
(

sin2 τ −2sin2 θ

2

)2

and so

(24) sinσ(τ,θ)≤ sinτ, with equality if and only if τ = θ′.

We also need an analogous result to Lemma 3.6. It can be derived using
spherical rearrangements and the analogue of Riesz’s rearrangement inequality for
spheres proved by Baernstein [2, Theorem 2].

LEMMA 4.5. Let T be a bounded measurable set in Sd−1 and let f(T ) :=∫
T s(Cθ(u)∩T )du. Let T ∗ be a spherical cap with the same measure as T . Then,

f(T )≤ f(T ∗).

The following result is a strengthening of Lemma 6 from [15] (whose authors
use the upper bound 2 ·sd(q(θ)), independent of the measure of T ).
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LEMMA 4.6. Let θ ∈ (0,π/2), θ′ and σ(·, ·) be as in Eqs. (22) and (23) re-
spectively. Let T ⊆ Sd−1 be a bounded measurable set such that s(T ) = sd(α) with
α ∈ [θ′,θ] and let u be a uniform point of T . Then

(25) Eu[s(Cθ(u)∩T ) ]≤ 2 ·sd(σ(α,θ)).

Proof. By Lemma 4.5, we may assume that T =Cα(x) is a spherical cap with
angular radius α ∈ [θ′,θ] centred at some point x. Now we compute

Eu[s(Cθ(u)∩T ) ] =
1

s(T )

∫
T 2
1⟨u,v⟩≥cosθ ds(u)ds(v)

=
2

s(T )

∫
T 2
1⟨u,v⟩≥cosθ ·1⟨x,v⟩≥⟨x,u⟩ ds(u)ds(v)

≤ 2 max
u∈Cα(x)

∫
T
1⟨u,v⟩≥cosθ ·1⟨x,v⟩≥⟨x,u⟩ ds(v)

≤ 2 max
u∈Cα(x)

s(Cθ(u)∩Cγ(x)),

where γ := arccos⟨x,u⟩ ∈ [0,α].
If γ < θ′, we can bound

s(Cθ(u)∩Cγ(x))≤ s(Cθ′(x)) = sd(θ
′).

Note that this is at most sd(σ(α,θ)) because θ′ = σ(θ′,θ) due to Eq. (24) while
σ(γ,θ) is increasing when γ ∈ [θ′,α].

If θ′ ≤ γ ≤ α, we can bound

s(Cθ(u)∩Cγ(x))≤ sd(σ(γ,θ))≤ sd(σ(α,θ)),

where the first inequality follows from the definition of σ(·, ·) and the second one
is because σ(γ,θ) is increasing when γ ∈ [θ′,α] due to Lemma 4.4. □

With identical proof as Lemma 3.8, we get the following version for spherical
codes.

LEMMA 4.7. Let θ ∈ (0,π/2). For every β > 0 there is k0 such that for every
k ≥ k0 and every λ,t,d > 0, if T is a measurable subset of Sd−1 of measure t and
k ∈ N satisfies k0 ≤ k ≤ λt, then

(26) αθ
T (λ)≥ (1−β)pkk,

where pi is the probability that for uniform independent x1, . . . ,xi ∈ T the angle
between every two is at least θ.

We are now ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Given ε > 0, choose sufficiently small constants β,δ

so that 0 < δ ≪ β ≪ ε. Let d → ∞. By Lemma 4.3, αθ
d(λ) is strictly increasing

function in λ, so it is enough to prove Theorem 4.2 for λ=
(√

2sin θ
2 + δ

)−d.
Let X ∼ µθ

d,λ be the set of centres of the caps sampled on Sd−1 according to
the hard cap model with fugacity λ. Take a point v ∈ Sd−1 uniformly at random
from Sd−1, independently of X . As before, let

T = T(X,v) :=
{
y ∈ C◦

θ (v) : ∀x ∈X \C◦
θ (v) ⟨x,y⟩ ≤ cosθ

}
be the externally uncovered set around v and let t := t(X,v) be its measure.

Let k :=
(

log sinθ√
2sin θ

2
− ε

2

)
d. For X ⊆ Sd−1, let

L= L(X) := {u ∈ Sd−1 : t(X,u)≤ k/λ}.

By Lemma 4.3 (iv), we have that

αθ
d(λ)≥ λEXEv

[
e−λ·t(X,v)

]
≥ λEX

[ ∫
v∈Sd−1

e−λ·t(X,v) ds(v)
]

≥ λEX

[ ∫
v∈L

e−λ·t(X,v) ds(v)
]
≥ λEX

[ ∫
v∈L

e−k ds(v)
]

≥ eεd/3 (sinθ)−d ·EX [s(L) ]≥ eεd/4 sd(θ)
−1 ·EX [s(L) ].

Thus we may assume that, for example, EX [s(L) ] ≤ e−εd/5, for otherwise (20)
holds. By Markov’s inequality,

(27) PX [s(L)≥ e−εd/6 ]≤ e−εd/30,

that is, for typical outcome X , t is “relatively large” except for a very small set of
v ∈ Sd−1.

Take any X with s(L)≤ e−εd/6. For every v ∈ Sd−1 \L, t= t(X,v) is at least

k

λ
≥
(√

2sin
θ

2
+

δ

2

)d
by the definition of L and at most sd(θ) since T is a subset of Cθ(v). Again, by the
definition of L, we have k ≤ λt. Thus Lemma 4.7 applies and gives that for every
v ∈ Sd−1\L we have αθ

T (v)(λ)≥ (1−β)pkk, where pk denotes the probability that,
for uniform independent x1, . . . ,xk ∈ T, the angle between every two is at least θ.

Claim 4.8. pk ≥ 1− δ.

Proof of claim. Let α> 0 be such that t= sd(α). Then, as t≥
(√

2sin θ
2 +

δ
2

)d,
we see that α > θ′, where θ′ is as defined in (22). Consequently, by (24), we have
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sinσ(α,θ) < sinα, where σ(·, ·) is as in (23). Thus, by Lemma 4.6 and (24), we
get that

Eu[s(Cθ(u)∩T) ]≤ 2 ·sd(σ(α,θ))< e−Ω(d) ·sd(α) = e−Ω(d) · t.

That is, the expected fraction of measure of T that a cap of angular radius θ at a
uniform u ∈ T covers is exponentially small in d → ∞. Now we finish the proof
the same way in Claim 3.9: basically, since each point ‘forbids’ o(1/k2)-fraction
of volume of T, the probability that some two points conflict with each other is
o(1). □

Therefore, by Lemma 4.7 and Claim 4.8, we have, for every v ∈ Sd−1 \L, that

αθ
T(v)(λ)≥ (1−β)pkk ≥ (1−2β)k.

This together with Lemma 4.3 (v) gives that

sd(θ) ·αθ
d(λ) = EX,v[α

θ
T(λ) ]

= EX

[∫
v∈Sd−1

αθ
T(v)(λ)ds(v)

]
≥ EX

[∫
v∈Sd−1\L

(1−2β)kds(v)
]

≥ (1− e−εd/30)(1− e−εd/6)(1−2β)k

≥
(

log
sinθ√
2sin θ

2

−ε
)
d,

where the second inequality is obtained by taking only X with s(L)≤ e−εd/6 and
using (27). This proves Theorem 4.2. □

Note added in proof. After this paper appeared, better lower bounds on the
considered packing densities were proved by Campos, Jenssen, Michelen, and Sa-
hasrabudhe [A new lower bound for sphere packing, E-print arXiv:2312.10026].
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