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A classical result, due to Bollobás and Thomason, and 
independently Komlós and Szemerédi, states that there is 
a constant C such that every graph with average degree at 
least Ck2 has a subdivision of Kk, the complete graph on k
vertices. We study two directions extending this result.

• Verstraëte conjectured that a quadratic bound guarantees 
in fact two vertex-disjoint isomorphic copies of a Kk-
subdivision.

• Thomassen conjectured that for each k ∈ N there is some 
d = d(k) such that every graph with average degree at 
least d contains a balanced subdivision of Kk. Recently, 
Liu and Montgomery confirmed Thomassen’s conjecture, 
but the optimal bound on d(k) remains open.

In this paper, we show that a quadratic lower bound on 
average degree suffices to force a balanced Kk-subdivision. 
This gives the right order of magnitude of the optimal d(k)
needed in Thomassen’s conjecture. Since a balanced Kmk-
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subdivision trivially contains m vertex-disjoint isomorphic 
Kk-subdivisions, this also confirms Verstraëte’s conjecture in 
a strong sense.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

A subdivision of a graph H is obtained by replacing each edge of H by a path, so 
that the new paths are internally vertex disjoint. This notion has played a central role in 
topological graph theory since the seminal result of Kuratowski in 1930 that a graph is 
planar if and only if it does not contain a subdivision of K5 or K3,3. In this paper, we are 
specifically interested in the optimal average degree for forcing particular subdivisions 
of a clique.

One of the first results in this direction was proved by Mader [17], who showed that 
there is some d = d(k) such that every graph with average degree at least d contains a 
subdivision of the complete graph Kk. After some further results by Mader [19], it was 
proved by Bollobás and Thomason [3], and independently by Komlós and Szemerédi [11], 
that we may take d(k) = O(k2). This is optimal: e.g., the complete balanced bipartite 
graph on k2/4 vertices contains no subdivision of K� for � ≥ k; indeed such a subdivision 
would require at least � +

(
�
2
)
− ( �

2 )2 > k2

4 vertices, as at most ( �
2 )2 pairs of vertices can 

be embedded as adjacent pairs and each non-adjacent pair would require at least one 
additional vertex.

Twenty years ago, a strengthening of the result of Bollobás-Thomason and Komlós-
Szemerédi was conjectured by Verstraëte [24], who believed that the quadratic bound 
O(k2) suffices also to guarantee a pair of disjoint isomorphic subdivisions of Kk. This 
can be seen as a natural generalisation of the problem of finding disjoint cycles of the 
same length in a given graph. Such problem has received considerable attention since the 
work of Corradi and Hajnal [4], who showed that for any positive integer k, any graph 
of order at least 3k and minimum degree at least 2k contains k disjoint cycles.

A different direction of extension was proposed by Thomassen [21] (see also [22,23]), 
who conjectured that, for each k ∈ N, there is some d = d(k) such that every graph 
with average degree at least d contains a balanced subdivision of Kk. Here, a subdi-
vision is balanced if every added path is of the same length. Very recently, Liu and 
Montgomery [14] confirmed this conjecture, but it remains to determine optimal bounds 
for d(k). Clearly, we have by d(k) = Ω(k2) by the same complete bipartite graph ex-
ample above. Very recently, Wang [25] proved that, for all sufficiently large d, every 
n-vertex graph with average degree at least d contains a balanced subdivision of Kr, 
where r = Ω(d1/2/log10 n).

Our main result simultaneously settles the conjecture of Verstraëte and gives optimal 
bounds for d(k) in Thomassen’s conjecture. It shows that the quadratic bound is optimal 

http://creativecommons.org/licenses/by/4.0/
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in forcing balanced disjoint isomorphic clique subdivisions. Indeed, simply notice that a 
balanced Ktk-subdivision contains t disjoint isomorphic balanced Kk-subdivisions.

Theorem 1.1. Every graph with average degree d contains a balanced subdivision of a 
complete graph of order Ω(

√
d).

Our approach uses a version of expander called sublinear expanders. For more recent 
applications of the theory of sublinear expanders, we refer the interested readers to [5–
10,13–15].

Organisation The rest of the paper is organised as follows. Preliminaries are given 
in Section 2. In Section 2.1 we reduce to proving Theorem 1.1 in the case when G is a 
bipartite expander graph. Then in Section 2.2, we further reduce to proving Theorem 1.1
when n/K ≥ d ≥ log800(n) for some large constant K (stated as Theorem 2.8). Section 3
contains a proof sketch of Theorem 2.8. In Section 4, we demonstrate the existence of a 
certain structure, called a unit, in an expander graph. In Section 5, we use these units 
to build a certain absorbing structure introduced by Liu and Montgomery [14] called 
an adjuster, which will allow us to ‘adjust’ the length of a path between two points 
under certain conditions. In Section 6, we will use these adjusters to prove Theorem 2.8. 
Section 7 contains concluding remarks.

2. Definitions and some auxiliary results

Notation For sets X and Y , we define X×Y := {(x, y) : x ∈ X, y ∈ Y }. We often omit 
brackets when writing small sets, for example, abbreviating {x} and {x, y} to x and xy, 
respectively. For � ∈ N, we define [�] := {1, 2, . . . , �}. We omit floor and ceiling signs when 
they are not essential, that is, we treat large numbers as integers. We sometimes write 
(a, b, c, d)X = (a′, b′, c′, d′) meaning that we choose constants a, b, c, d in the statement 
of Result X to be a′, b′, c′, d′.

Let G be a graph. We will denote the set of vertices of G by V (G) and the set of edges 
by E(G), and define |G| := |V (G)| and e(G) := |E(G)|. Let A ⊆ V (G). We define G[A] to 
be the subgraph of G induced by A with vertex set A and edge set {xy ∈ E(G) : x, y ∈ A}. 
Further, we define G −A := G[V (G) \A] to be the graph with vertex set V (G) \A and 
edge set E(G) \ {vw ∈ E(G) : v ∈ A or w ∈ A}. We define the external neighbourhood of 
A in G to be

NG(A) := {w ∈ V (G) \A : ∃ v ∈ A such that vw ∈ E(G)}.

For k ∈ N we define the ball of radius k around A in G, denoted by Bk
G(A), to be the set 

of vertices with graph distance at most k from a vertex in A. For v ∈ V (G), we define 
the degree of v in G to be dG(v) := |NG(v)|. Let
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d(G) := 1
|G|

∑
v∈V (G)

dG(v)

denote the average degree of G. For A, B ⊆ V (G), we define NG(A, B) := NG(A) ∩ B. 
We define an A, B-path in G to be a path which has one endpoint in A and the other 
endpoint in B and has no other vertices in A or B. For a subgraph F ⊆ G, we define 
G \ F to be the graph with vertex set V (G) and edge set E(G) \E(F ). The length of a 
path P is e(P ) = |P | − 1, the number of edges in it. We say a collection of paths P is 
internally vertex disjoint if for each pair of paths P1, P2 ∈ P the set of internal vertices 
of P1 is disjoint from V (P2); in other words, if a vertex belongs to two different paths of 
P then it is an endpoint in both. We note that sometimes, when it is clear from context, 
we drop the subscript G from the above nomenclature. For h ∈ N, we define an h-star
to be the graph on h + 1 vertices where one vertex has degree h and all other vertices 
have degree one.

For �, t ∈ N, we write TK(�)
t for a balanced Kt-subdivision in which each edge is 

replaced by a path with � internal vertices (i.e., a path of length � + 1).

2.1. Robust Komlós-Szemerédi expansion

We use the following notion of expansion introduced by Haslegrave, Kim and Liu [9], 
which is essentially a robust form of the sublinear expansion property introduced by 
Komlós and Szemerédi in [11,12]. Informally speaking, this property states that even 
after removing a relatively small set of edges we can still guarantee sublinear expansion 
properties.

Definition 2.1. Let ε1 > 0 and k ∈ N. A graph G is an (ε1, k)-robust-expander if for all 
X ⊆ V (G) with k/2 ≤ |X| ≤ |G|/2, and any subgraph F ⊆ G with e(F ) ≤ d(G) ·ε(|X|) ·
|X|, we have

|NG\F (X)| ≥ ε(|X|) · |X|,

where

ε(x) = ε (x, ε1, k) :=
{

0 if x < k/5,
ε1/ log2(15x/k) if x ≥ k/5.

(1)

Observe that ε(x, ε1, k) decreases for x ≥ k/2, but ε(x, ε1, k) · x increases for x ≥ e2k
15

(in particular, for x ≥ k/2).
Importantly, Komlós and Szemerédi [12] proved that every graph G contains an ex-

pander subgraph with comparable average degree to G, and Haslegrave, Kim and Liu [9, 
Lemma 3.2] proved the analogous result for robust-expanders. From now on we will refer 
to a robust-expander as an expander.
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The following is a direct consequence of [9, Lemma 3.2] and the well known facts that 
every graph G has a bipartite subgraph H with d(H) ≥ d(G)/2 and that every graph H
contains a subgraph of minimum degree at least d(H)/2.

Lemma 2.2. Let ε1 ≤ 1/1000, ε2 < 1/2 and d > 0. Every graph G with d(G) ≥ d has a 
bipartite (ε1, ε2d)-expander subgraph H with δ(H) ≥ d/8.

Note that the expansion subgraph H ⊆ G found in Lemma 2.2 may be significantly 
smaller than |G|. Indeed, G could be disjoint union of many copies of H.

A common use of the expansion condition is to connect two vertex sets together by 
a short path, which, as the following result shows, we can do even after removing a 
relatively smaller set of vertices. We will use the following version, which is a slight 
variation of Lemma 3.4 in [14].

Lemma 2.3. For each 0 < ε1, ε2 < 1, there exists d0 = d0(ε1, ε2) such that the following 
holds for each n ≥ d ≥ d0 and x ≥ 1. Let G be an n-vertex (ε1, ε2d)-expander with 
δ(G) ≥ d − 1. Let A, B ⊆ V (G) with |A|, |B| ≥ x, and let W ⊆ V (G) \ (A ∪B) satisfy

|W | ≤ ε1x

4 log2(15n
ε2d

)
.

Then, there is an A, B-path in G −W with length at most 100
ε1

log3 15n
ε2d

.

Proof. We first prove the following claim.

Claim 2.4. Set m0 := 40
ε1

log3 15n
ε2d

. Let C ⊆ V (G − W ) with |C| ≥ ε2d/2. Let ε(y) =
ε(y, ε1, ε2d) be the function defined in (1). If |W | ≤ ε(|C|) ·|C|/4, then |Bm0

G−W (C)| > n/2.

Proof of claim. For each i ∈ N, denote Ci := Bi
G−W (C) and set C0 := C. Using the 

expansion property of G (with F as the empty graph), our assumption that |W | ≤
ε(|C|) · |C|/4 and the fact that ε(y) ·y increases for y ≥ ε2d/2, we have for any i ≤ m0 +1
that |Ci−1| > n/2 (and so the claim holds by |Cm0 | ≥ |Ci−1|), or

|NG(Ci−1)| ≥ ε(|Ci−1|) · |Ci−1| ≥ ε(|C|) · |C| ≥ 4 · |W |.

Assuming that we are not done yet, we have

|NG−W (Ci−1)| ≥ |NG(Ci−1)| − |W | ≥ 1
2 |NG(Ci−1)|.

Now, using the above two inequalities and that ε(y) decreases for y ≥ ε2d/2, we bound

|NG−W (Ci−1)| ≥
1
ε(|Ci−1|) · |Ci−1| ≥

1
ε(n) · |Ci−1|.
2 2
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Then, since |C| ≥ ε2d/2 we have

|Cm0 | ≥
(
1 + 1

2 ε(n)
)m0

· ε2d

2 .

Finally, we can solve 
(
1 + 1

2 ε(n)
)r ·ε2d/2 > n/2 for r, and using the inequality log(1 +x) ≥

(1 + 1
x )−1, see that the desired inequality holds for r = m0. �

We have two cases. If x ≥ ε2d/2, we have

ε(x) · x4 = ε1x

4 log2 ( 15x
ε2d

) ≥ |W |.

Then by Claim 2.4 applied to A and B, we have that |Bm0
G−W (A)|, |Bm0

G−W (B)| > n/2, 
which implies that there exists an A, B-path in G −W with length at most

2m0 ≤ 100
ε1

log3 15n
ε2d

,

as desired.
If x < ε2d/2, take vertices a ∈ V (A) and b ∈ V (B) and let NG−W (a) =: A′ and 

NG−W (b) =: B′. Observe that since

|W | ≤ ε1ε2d

4 log2(15n
ε2d

)
≤ ε2d/4

and d(a), d(b) ≥ d −1, we have that |A′|, |B′| ≥ ε2d/2 > x. Hence we have ε(|A′|) ·|A′|/4 ≥
|W | and ε(|B′|) · |B′|/4 ≥ |W |. Then by Claim 2.4 applied to A′ and B′, we have that 
|Bm0

G−W (A′)| > n/2 and |Bm0
G−W (B′)| > n/2, which implies that there exists an A, B-path 

in G −W with length at most

2m0 + 2 ≤ 100
ε1

log3 15n
ε2d

,

as desired. �
2.2. Reducing Theorem 1.1

Using Lemma 2.2, we can assume that G is a bipartite expander graph. If G is very 
dense, a classic result of Alon, Krivelevich and Sudakov [1, Theorem 6.1] provides a 
balanced 1-subdivision of a clique on Ω(

√
|G|) vertices.

Theorem 2.5. Let α > 0. If G is a graph with n vertices and average degree αn, then G
contains a copy of TK(1)

r where r := αn1/2/2.
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For sparse expanders, the following result of Wang [25, Lemma 1.3] provides a balanced 
clique subdivision of size linear in its average degree.

Theorem 2.6. There exists ε1 > 0 such that for any 0 < ε2 < 1/5 and s ≥ 20, there 
exist d0 = d0(ε1, ε2, s) and some constant t > 0 such that the following holds for each 
n ≥ d ≥ d0 and d < logs n. Suppose that G is an n-vertex bipartite (ε1, ε2d)-expander 
graph with δ(G) ≥ d. Then G contains a copy of TK(�)

td for some � ∈ N.

By Theorems 2.5 and 2.6, to prove Theorem 1.1 it suffices to prove the following:

Theorem 2.7. For each 0 < ε1, ε2 < 1, the following holds for all sufficiently large K =
K(ε1, ε2). Let G be an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d, n ≥ Kd and 
d ≥ log800 n. Then G contains a copy of TK(�)√

d
for some � ∈ N.

For brevity, throughout this paper we set

m :=
⌊
log4 n

d

⌋
.

Actually, we shall prove a stronger version of Theorem 2.7:

Theorem 2.8. For each 0 < ε1, ε2 < 1, the following holds for all sufficiently large K =
K(ε1, ε2). Let G be an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d, n ≥ Kd and 
d ≥ log800 n. Then G contains a copy of TK(�)√

dm
for � = 1 or � = 80m3.

Note that m ≥ 
log4 K�, so we can choose K sufficiently large to ensure that m is 
large enough for all later statements and proofs. Moreover, since n/d ≥ K, taking K
sufficiently large we can assume that n ≥ dm200.

3. Proof sketch of Theorem 2.8

Assume that the graph G contains no TK(1)√
dm

. Thus we have to find a copy of TK(�)√
dm

, 
where � := 80m3. One immediate obstruction to a naive greedy construction is that the 
desired subdivision has 

(√
dm
2

)
� ≥ dm vertices which is much larger than our lower bound 

d on the minimal degree δ(G). That is, if we were to construct a copy of TK(�)√
dm

one path 
at a time, we may arrive at a point when all unused vertices in G have neighbours only 
internal to the previously constructed paths. This would be overcome if there existed 
sufficiently many vertices of degree Ω 

((√
dm
2

)
�
)
, but we cannot guarantee this.

However, using the expansion property of G (in particular, Lemma 2.3) we can find √
dm rooted trees, called units, each containing Θ(dm28) leaves, all at the same distance 

from the root (see Definition 4.1 and Fig. 1). Also, each constructed unit will have very 
small interior (that is, the set of its non-leaf vertices), namely of size at most O(

√
dm8), 

and any two distinct units will have disjoint interiors. Thus we would like to find, for 
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every pair of units, a path between their boundaries (that is, their sets of leaves) so that 
the paths extended to the roots all have length � and are internally disjoint.

For this step, we create certain structures called adjusters, introduced by Liu and 
Montgomery in [14]. While the adjusters were constructed in sparse expanders in [14], 
the bulk of the work in our paper is to construct adjusters in dense expanders whose 
average degree could be a polynomial of the order of the expander. Roughly speaking, a 
(j, k)-adjuster consists of two units rooted at x and y together with a collection of (not 
necessarily internally vertex disjoint) x, y-paths that have lengths �′, �′+2, �′+4, . . . , �′+
2k for some �′ ≤ j. We call �′ + 2k the length of the adjuster. We first construct an 
(O(m), 1)-adjuster (Lemma 5.3). We then chain together (O(m), 1)-adjusters to form 
an (O(m3), Ω(m2))-adjuster whose length is contained in some fixed interval of length 
o(m2) (Lemma 5.4). Such an (O(m3), Ω(m2))-adjuster can then be used along with 
Lemma 2.3 to construct a path between the boundaries of any two given units that 
has the desired length and also avoids any given relatively small set W because when 
finding such paths, one may need to avoid certain vertices, e.g. previously used vertices 
(Lemma 6.1). Namely, we connect the two unit boundaries to the two opposite ends of 
the adjuster via short paths and then choose a path of the appropriate length inside the 
adjuster.

The proof is completed by connecting each pair of roots of the 
√
dm constructed units, 

one by one in some order, by a path of length � through a new (O(m3), Ω(m2))-adjuster 
for each pair as above (satisfying appropriate disjointness conditions in each of these 
steps). Of course, there are a number of technical issues to take care of such as, for 
example, making sure that a bulk of each unit remains available throughout the whole 
procedure.

4. Building units

Definition 4.1. An (h0, h1, �)-unit F consists of a core vertex v and h0 pairwise vertex 
disjoint h1-stars Sui

in F −v, with centres ui respectively, i ∈ [h0], along with v, ui-paths 
Pi, which are internally vertex disjoint from each other and ∪i∈[h0]V (Sui

). Furthermore, 
all paths Pi are of length exactly s, for some s < �. We call the union of all vertices 
in the paths int(F ) := ∪i∈[h0]V (Pi) the interior of F , and bd(F ) := V (F ) \ int(F ) the 
boundary of F . We say that two units are disjoint if their interiors are vertex-disjoint.

See Fig. 1 for an illustration of a unit. We now show the existence of a unit in a dense 
graph after removing a relatively small set of vertices.

Lemma 4.2. For each 0 < ε1, ε2 < 1, the following holds for all sufficiently large K =
K(ε1, ε2). Let G be an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d, n ≥ Kd

and d ≥ m200. Then, given any W ⊆ V (G) with |W | ≤ dm30, G − W contains a 
(4
√
dm6, 

√
dm22, 10m)-unit.



I.G. Fernández et al. / Journal of Combinatorial Theory, Series B 161 (2023) 417–436 425
v

bd(F )int(F )

s

s

s

Fig. 1. A (3, 4, �)-unit F .

Proof. We will first construct m40 +
√
dm49 disjoint stars, m40 of which will have d/m5

leaves each and 
√
dm49 of which will have 

√
dm24 leaves each. We will then show that 

some collection of stars can be connected together (possibly losing some leaves of the 
stars in the process) in order to create a (4

√
dm6, 

√
dm22, 10m)-unit.

Claim 4.3. Let X ⊆ V (G). If |X| ≤ dm74, then there exists a vertex v ∈ G − X such 
that dG−X(v) ≥ d/m5.

Proof of claim. Suppose not. Then Δ(G − X) < d/m5. Recall that, since n ≥ Kd, 
we must have n ≥ dm200. Thus, since |X| ≤ dm74, we can take a subset of vertices 
U ⊆ V (G) \X with |U | = dm76. Define F be the graph on V (G) \X with edge set

E(F ) := {uv ∈ E(G) : u ∈ U, v ∈ V (G) \X}

and no isolated vertices. Then

e(F ) ≤ Δ(G−X) · |U | ≤ d |U |
m5 ≤ d(G) · ε(|U |, ε1, ε2d) · |U |.

Observe that NG\F (U) ⊆ X. Hence |NG\F (U)| ≤ |X| ≤ dm74. But, as G is an expander, 
we have that |NG\F (U)| ≥ 1

2 |U | ε(|U |, ε1, ε2d) ≥ dm75, which is a contradiction. �
Now, iteratively apply Claim 4.3 to G −W a total of m40 times, at each iteration i, 

1 ≤ i ≤ m40, removing a star Si with centre ui and d/m5 leaves from the current graph 
and adding it to a set S1. Let V (S1) be the set of vertices in the stars in S1 and observe 
that all stars in S1 are vertex disjoint. Observe that one can do this because throughout 
the process |V (S1)| ≤ dm35 and thus |W ∪ V (S1)| ≤ 2dm40 ≤ dm73 also.

Next, we iteratively apply Claim 4.3 to G − (W ∪ S1) a further 
√
dm49 times, at 

each iteration i, m40 + 1 ≤ i ≤ m40 +
√
dm49, removing a star Si with centre ui and 
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√
dm24 leaves from the current graph and adding it to a set S2. Let V (S2) be the set of 

vertices in the stars in S2 and observe that all stars in S2 are vertex disjoint. Observe 
that one can do this since d ≥ m200 implies 

√
dm24 ≤ d/m5, and throughout the process 

|V (S2)| ≤ dm73 and thus |W ∪ V (S1) ∪ V (S2)| ≤ dm74 also.
So now we have in G −W a set S1 of m40 stars each with d/m5 leaves and a set S2 of √
dm49 stars each with 

√
dm24 leaves, such that all stars in S1 ∪ S2 are vertex disjoint 

from each other. Let � := m40 +
√
dm49. Take I ⊆ [m40] × [�] to be a maximal subset for 

which there are paths P(i,j), (i, j) ∈ I, in G −W such that the following holds.

• For each (i, j) ∈ I, P(i,j) is a ui, uj-path with length at most 2m which is disjoint 
from {uk : k ∈ [�] \ {i, j}}.

• The paths are internally vertex disjoint.

Suppose there is some i ∈ [m40] and J ⊆ [�] with (i, j) ∈ I, for each j ∈ J , with 
|J | =

√
dm8. Let U := ∪j∈JV (P(i,j)), and note that |U | ≤ 2 ·

√
dm9. Hence, for any 

j ∈ J ,

|V (Sj) \ U | ≥
√
dm24/2 ≥

√
dm23.

By pigeonhole, we can pick a subset J ′ ⊆ J such that all paths P(i,j) with j ∈ J ′ have 
the same length, and |J ′| ≥ |J |/2m ≥ 4

√
dm6. Taking stars Sj′ ⊆ Sj − U , j ∈ J ′, with √

dm22 leaves, and the paths P(i,j), j ∈ J ′, we get a (4
√
dm6, 

√
dm22, 10m)-unit.

Suppose then that there are no such i ∈ [m40] and J ⊆ [�]. Let J1 := {u1, . . . , um40}, 
and let J2 ⊆ [�] be a maximal set such that there is no j1 ∈ J1 and j2 ∈ J2 with 
(j1, j2) ∈ I. Then, |J2| ≥ � − |J1| ·

√
dm8 ≥

√
dm24. Let

U :=
⋃

i∈J1,{i,j}∈I

V (P(i,j) \ {ui, uj}).

Using that d ≥ m200 we have that |U | ≤ m40 ·
√
dm8 · 2m ≤ dm30, and hence |W ∪U | ≤

2dm30. Also, observe that

| ∪i∈J1 (V (Si) \ U)| ≥ m40 · d/m5 − dm30 ≥ dm34 ≥ log3
(n
d

)
|W ∪ U |

and

| ∪i∈J2 (V (Si) \ U)| ≥
√
dm49 ·

√
dm24 − dm30 ≥ dm71 ≥ log3

(n
d

)
|W ∪ U |.

Hence, by Lemma 2.3, and that n ≥ Kd with K sufficiently large, we can find a path 
connecting ∪i∈J1(V (Si) \ U) and ∪i∈J2(V (Si) \ U) which avoids W ∪ U and has length 
at most 2m. This contradicts the maximality of I. �
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v2
v1

p(P )

�(P )F1 F2

Fig. 2. An example of an adjuster P we shall build, in which A is a string of even cycles, joined by paths 
connecting at almost antipodal vertices of the cycles. The length �(P ) is found by traversing all the longest 
paths between the almost antipodal vertices on the cycles.

5. Building adjusters

In order to ensure the clique subdivision we construct is balanced, we utilise special 
structures called adjusters, introduced by Liu and Montgomery in [14].

Definition 5.1. An (�, k)-adjuster P = (v1, v2, F1, F2, z, A, P) in a graph G consists of 
two vertices v1, v2 that are the core vertices of two (z

√
dm6, 

√
dm22, 10m)-units F1 and 

F2, respectively, where |int(F1) ∩ int(F2)| = ∅, a real number z ∈ [1, 3], a vertex set 
A ⊆ V (G) of size at most 2� disjoint from ∪i∈[2]V (Fi), and a collection P of k + 1
v1, v2-paths in G[A ∪ {v1, v2}] of lengths �′, �′ + 2, �′ + 4, . . . , �′ + 2k for some �′ ≤ �. 
Further, define �(P ) := �′ + 2k and call it the length of P . We also define the perimeter
p(P ) := A ∪ int(F1) ∪ int(F2).

We refer the Reader to Fig. 2 for an illustration. Note that the condition �′ ≤ � from 
the definition of an (�, k)-adjuster P is equivalent to �(P ) ≤ � + 2k (and this will be the 
form in which we will be verifying it). We say that an adjuster P is ‘in a set X’ to mean 
that p(P ) is a subset of X. Also, we may just write P = (v1, v2, F1, F2, z, A) when the 
collection P of paths is understood. We may additionally omit z if the size of the units 
is not important.

5.1. Asymmetric bipartite parts

To construct robustly many adjusters in our expander, we need the following result 
showing that a dense asymmetric bipartite subgraph is enough for finding a 1-subdivision 
of large clique.

Proposition 5.2. Let d ≥ 40 and suppose that a graph G contains disjoint vertex 
sets U and W such that every vertex in U has at least d neighbours in W . Let 
� := min{ � d

√
|U |/8|W | 
, d/2 } and suppose � ≥ 20. Then, G contains a copy of TK(1)

� .

Proof. If |U | > 16|W |2, then replace U by a subset of size exactly 16|W |2; the new 
� = �d/2
 is still at least 20.

Let p :=
√

|U |/4|W | ≤ 1, so that �pd/2
 = �, and hence pd/12 ≥ 2. Let W ′ ⊆ W be a 
subset formed by choosing each element of W independently at random with probability 
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p. For u ∈ U , set Xu := dG(u, W ′) =
∑

w∈N(u,W ) 1{w∈W ′}, which is a sum of independent 
Bernoulli random variables of parameter p with expectation E[Xu] ≥ pd. Then, using a 
standard lower-tail Chernoff bound (e.g. [20, Theorem 4.5]) gives that, for each u ∈ U ,

P (Xu < pd/2) ≤ exp(−pd/12) ≤ 1/4,

using that pd/12 ≥ 2. Therefore, letting U ′ := {u ∈ U : Xu ≥ pd/2}, it is clear that 
we have E [ |U ′| ] = |U | · P ( Xu ≥ pd/2 ) ≥ 3|U |/4. The last inequality (combined with 
|U ′| ≤ |U |) gives that

P ( |U ′| < |U |/4 ) ≤ 1/2.

Now, we have |W | ≥ d, and hence E [ |W ′| ] = p|W | ≥ 24. Thus, using an upper-tail 
Chernoff bound (e.g. [20, Theorem 4.4]), we have that

P ( |W ′| > 2p|W | ) ≤ exp(−p|W |/3) ≤ 1/4.

And so we have that P ( |W ′| > 2p|W | ) +P ( |U ′| < |U |/4 ) < 1. Therefore, there is some 
choice of W ′ for which |U ′| ≥ |U |/4 and |W ′| ≤ 2p|W |.

Take a maximal set of pairs I ⊆
(
W ′

2
)

for which there is a set of distinct vertices v{x,y}
in U ′, {x, y} ∈ I, such that x, y ∈ N(v{x,y}) for each {x, y} ∈ I.

Noting that 16p2|W |2 = |U |, we have

|U ′| ≥ |U |/4 = 4p2|W |2 ≥ |W ′|2 >

(
|W ′|

2

)
.

Thus, there is some u ∈ U ′ \ {v{x,y} : {x, y} ∈ I}. Let A := N(u, W ′). Then |A| ≥
�pd/2
 = �. Moreover, 

(
A
2
)
⊆ I, by the maximality of I. Note that A ∪ {v{x,y} : {x, y} ∈(

A
2
)
} is the vertex set of a copy of TK(1)

� in G with core vertices those in A and edge set 
{xv{x,y}, yv{x,y} : {x, y} ∈

(
A
2
)
}. �

5.2. Constructing an adjuster

Lemma 5.3. For each 0 < ε1, ε2 < 1, the following holds for all sufficiently large K =
K(ε1, ε2). For d > 0, let G be an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d

and n ≥ Kd. Suppose d ≥ m200 and G contains no copy of TK(1)√
dm

. Let W ⊆ V (G)
satisfy |W | ≤ dm11. Then, there exists a (50m, 1)-adjuster P = (u1, u2, F1, F2, 3, A, P)
in G −W . Moreover, |A| ≤ 2�(P ).

Proof. By Lemma 4.2, since |W | ≤ dm11 ≤ dm30, we can find a (3
√
dm6 +

2, 
√
dm22, 10m)-unit F1 in G −W . Now, set W0 := W ∪V (F1) and use again Lemma 4.2

to find a (3
√
dm6 + 2, 

√
dm22, 10m)-unit F2 in G − W0. Repeat the process one more 

time to find a (4
√
dm6, 

√
dm22, 10m)-unit F3 in G −W1, with W1 := W0 ∪ V (F2). This 
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can be done, since |W0| ≤ |W | + |V (F1)| ≤ dm11 + 40dm29 ≤ dm30 and, similarly, 
|W1| ≤ dm11 + 80dm29 ≤ dm30.

Set W ′ := W ∪ int(F1) ∪ int(F2) ∪ int(F3) and denote the core vertices of the units 
F1, F2, F3 by v1, v2, v3 respectively.

Note that |W ′| ≤ 2dm11. As |bd(F1)|, |bd(F2)| ≥ dm28, and recalling that n ≥ Kd

for sufficiently large K implies n ≥ dm200, iteratively applying Lemma 2.3 we can find 
in G −W ′ a collection of dm26 pairwise vertex disjoint bd(F1), bd(F2)-paths P ′, each of 
length at most m. By averaging, there exists a subcollection P ⊆ P ′ of dm25 paths of 
equal length. Let B := V (P) ∩ bd(F1) be the set of endpoints of P in bd(F1), so that 
|B| = dm25.

Suppose first that there is some vertex w /∈ W ′ with two neighbours w1, w2 in B. 
Let P1, P2 ∈ P be the paths that wi is an endvertex of Pi for each i ∈ [2] (see Fig. 3). 
Denote the paths in F1 joining v1 with w1 and w2 by Q1 and Q2, respectively. Denote 
the paths in F2 joining P1 ∩ bd(F2) and P2 ∩ bd(F2) with v2 as R1 and R2, respectively. 
(Note that these paths may meet before reaching the core vertex.) By symmetry, we 
can assume that w /∈ P2. Then, v1Q1P1R1v2 and v1Q1ww2P2R2v2 are two v1, v2-paths 
whose lengths differ by two and are at most

e(Q1) + 2 + e(P2) + e(R1) ≤ 50m + 2.

Let F ′
1 be the (3

√
dm6, 

√
dm22, 10m)-unit with core vertex v1 constructed from F1 by 

removing the paths Q1 and Q2 and the leaves of the stars incident to Q1 and Q2. 
Similarly, let F ′

2 be the (3
√
dm6, 

√
dm22, 10m)-unit with core vertex v2 constructed from 

F2 by removing the paths R1 and R2 and the leaves of the stars incident to R1 and 
R2. If Q1 and Q2 (resp. R1 and R2) only differ by an edge, then remove in addition an 
arbitrary path and its leaves from F1 (resp. F2) to construct F ′

1 (resp. F ′
2). Let

A′ := (V (P1) ∪ V (P2) ∪ {w} ∪ V (Q1) ∪ V (R1) ∪ V (R2)) \ {v1, v2}.

Note that |A′| ≤ 2|P2| +1 +30m ≤ 2 ·50m. Therefore, (v1, v2, F ′
1, F

′
2, 3, A′) is a (50m, 1)-

adjuster in G −W . Moreover,

|A′| ≤ |P1| + |P2| + 1 + |Q1| − 2 + |R1 ∪R2| − 3 ≤ 2(|Q1| + |P2| + |R1| − 1) = 2�(P ),

so the additional property also holds.
Suppose then there is no such vertex. Let B0 be the set of vertices in B with at 

least d/2 neighbours in W ′. As G is TK(1)√
dm

-free and 20 ≤
√
dm ≤ d/2, we have by 

Proposition 5.2 that

√
dm ≥ (d/2)

√
|B0|

8|W ′| ≥
√

|B0|
32m11 ,

and hence |B0| ≤ 210dm24 ≤ |B|/3. Let B′ := B \ B0, so that |B′| ≥ 2|B|/3 and each 
vertex in B′ has at most d/2 neighbours in W ′.
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v1
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P2

bd(F1) bd(F2)

Fig. 3. An illustration of the first case in the proof of Lemma 5.3.

Now, remove from B′ at most 3
√
dm6 + 2 vertices to ensure for each x ∈ int(F1)

either |NG(x) ∩ B′| = 0 or |NG(x) ∩ B′| ≥ 2. The new set B′ satisfies |B′| ≥ |B|/2. 
For each v ∈ B′, let Pv ∈ P be the path with v as an endvertex. For each v ∈ B′, 
remove any edges between v and V (Pv) in G, excluding the edge emanating from v in 
Pv. Call the resulting graph G′. Note that we have removed at most |B′| m edges. There 
are thus at least |B′| · (d/2) −|B′| m ≥ |B′| d/8 edges from B′ to V (G) \ (B′ ∪W ′) in G′. 
(Note that there are no edges inside B′ as our graph is bipartite.) Now, by construction 
of G′ and that no vertex w /∈ W ′ has at least two neighbours in B′ in G′, we get 
|NG′(B′, V (G) \W ′)| ≥ |B′| d/8 ≥ |B| d/16 = d2m25/16.

Let C := NG′(B′, V (G) \ W ′). Let W ′′ := W ′ ∪ (∪v∈B′V (Pv)), noting at this point 
that |W ′′| ≤ 2dm11 + dm25 ·m ≤ 2dm26. Next, we apply Lemma 2.3 to connect C and 
bd(F3), the former of size at least d2m25/16 and the latter of size at least 2dm28, with a 
path P of length at most m avoiding W ′′, as d ≥ m200. Let u ∈ NG′(B′) be the endvertex 
of P in C, w1 be a neighbour of u in B′ and x be the neighbour of w1 in int(F1). Let Q3
be the path in F3 between v3 and P ∩ bd(F3). Fix another path P ′ ∈ P which has an 
endvertex w2 in (B′ ∩N(x)) \ {w1}. That is, P ′ = Pw2 . As P avoids W ′′, P is disjoint 
from Pw1 and Pw2 . Let Q4, Q5 be the paths in F2 joining Pw1 and Pw2 , respectively, 
with v2. Then v3Q3Pw1Pw1Q4v2 and v3Q3Pw1xw2Pw2Q5v2 are two v3, v2-paths whose 
lengths differ by two and are at most

e(Q3) + e(P ) + 3 + e(Pw2) + e(Q5) ≤ 20m + |P | + |Pw2 | + 5 ≤ 50m + 2.

Observe that |(V (Pw1) ∪ V (Pw2)) ∩ bd(F3)| ≤ 2m ≤
√
dm5. Hence, we can con-

struct an (3
√
dm6, 

√
dm22, 10m)-unit F ′

3, with core vertex v3, from F3 by removing all 
{v3}, (V (Pw1) ∪ V (Pw2)) ∩ bd(F3)-paths (in F3) and leaves of the stars incident to these 
paths, as well as removing the path Q3 and the leaves of the star incident to Q1. Let F ′

2
be the (3

√
dm6, 

√
dm22, 10m)-unit with core vertex v2 constructed from F2 by removing 

the paths Q4 and Q5 and the leaves of the stars incident to Q4 and Q5. (If Q4 and Q5
only differ by an edge, then remove in addition an arbitrary path and its leaves from F2
to construct F ′

2.) Let
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Fig. 4. An illustration of the second case in the proof of Lemma 5.3.

A∗ := (V (P ) ∪ V (Pw1) ∪ {x} ∪ V (Pw2) ∪ V (Q3) ∪ V (Q4) ∪ V (Q5)) \ {v2, v3}.

We clearly have |A∗| ≤ 2 · 50m. Therefore,

P ∗ = (v3, v2, F
′
3, F

′
2, 3, A∗)

is a (50m, 1)-adjuster in G −W (see Fig. 4). Also, it is routine to check that |A∗| ≤ 2�(P ∗), 
finishing the proof of the lemma. �

5.3. Constructing larger adjusters

Lemma 5.4. For each 0 < ε1, ε2 < 1, the following holds for all sufficiently large K =
K(ε1, ε2). For d > 0, let G be an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d

and n ≥ Kd. Suppose d ≥ m200 and G contains no copy of TK(1)√
dm

. Let W ⊆ V (G)
satisfy |W | ≤ dm10. Then, there exists an (100m3, m2)-adjuster P = (v1, v2, F1, F2, 2, A)
in G −W such that 80m3 ≤ �(P ) ≤ 80m3 + 80m.

Proof. Inductively on i = 1, 2, . . . we will construct, in the graph G −W , an (80mi, i)-
adjuster Pi = (vi1, vi2, F i

1, F
i
2, zi, Ai, Pi) with the additional properties that zi ≥ 2 and 

|Ai| ≤ 2�(Pi), stopping when its length �(Pi) becomes at least 80m3 for the first time.
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For i = 1, we apply Lemma 5.3 in order to get a (50m, 1)-adjuster P1 =
(v1

1 , v
1
2 , F

1
1 , F

1
2 , 3, A1, P1) in G −W , which can be done since |W | ≤ dm10 ≤ dm11.

We then proceed as follows. Suppose that we have an (80m(i − 1), i − 1)-adjuster

Pi−1 = (vi−1
1 , vi−1

2 , F i−1
1 , F i−1

2 , zi−1, Ai−1,Pi−1)

as above, whose length �(Pi) is still less than 80m3. Define Wi := W ∪ p(Pi−1). Then

|Wi| = |W∪Ai−1∪int(F i−1
1 )∪int(F i−1

2 )| ≤ dm10+2·80m(i−1)+6
√
dm6·10m+2 ≤ dm11,

since i < �(Pi) < 80m3. We then apply Lemma 5.3 to get a (50m, 1)-adjuster P̃ =
(w1, w2, F̃1, F̃2, 3, Ã) in G −Wi. Define W ′

i := Wi ∪ p(P̃ ). As above, we have that |W ′
i | ≤

dm11 also.
Let X := bd(F̃1) and Y := bd(F i−1

2 ) \ p(P̃ ). Apply Lemma 2.3 with (A, B, x)2.3 =
(X, Y, dm28) in order to find an X, Y -path of length at most m in G −W ′

i . Thus there 
exists a vi−1

2 , w1-path Q of length at most 10m + m + 10m < 22m. Consider paths 
between vi−1

1 and w2 obtained by first taking a vi−1
1 , vi−1

2 -path from the adjuster Pi−1, 
followed by Q, followed by a w1, w2-path from the adjuster P̃ . Clearly, we can choose 
i + 1 of these paths so that their lengths form an arithmetic progression with difference 
2 and are all at most �(Pi−1) + e(Q) + �(P̃ ). Let Ai be the set of the vertices used by 
these paths, except for their endpoints vi−1

1 and w2. The longest among these paths has 
length

�i := �(Pi−1) + e(Q) + �(P̃ ) ≤ �(Pi−1) + 80m, (2)

where by induction the right-hand side is at most (80m(i −1) +2(i −1)) +80m ≤ 80mi +2i. 
Again by induction, we have

|Ai| ≤ |Ai−1| + |Q| + |Ã| ≤ 2 · 80m(i− 1) + 22m + 2 · 50m ≤ 2 · 80mi.

Truncate our units F i−1
1 and F̃2 in order to ensure that Ai is disjoint from V (F i−1

1 ) ∪
V (F̃2). Since i < 80m3 and n/d ≥ K, this requires removing in total at most |Ai| ≤
2 · 80mi ≤ m5 starsfrom each original unit.

It follows that, for some zi ∈ [2, 3], Pi := (vi−1
1 , w2, F

i−1
1 , F̃ i

2, zi, Ai) is a (80mi, i)-
adjuster with �(Pi) = �i. Furthermore, by induction and our choice of P̃ , we have |Ai| ≤
2�(Pi−1) + |e(Q)| + 2�(P̃ ) ≤ 2�(Pi), as claimed.

Thus we can always proceed until we reach an (80mi, i)-adjuster Pi = (vi1, vi2, F i
1, F

i
2,

zi, Ai, Pi) such that, in addition to zi ≥ 2 and |Ai| ≤ 2�(Pi), we have �(Pi) ≥ 80m3. 
By (2) we increase the length at each stage by at least 1 and at most 80m, so we have 
that �(Pi) ≤ 80m3 + 80m and i ≥ 80m3/80m = m2. Moreover, |Ai|/2 does not exceed 
�(Pi) ≤ 80m3 + 80m ≤ 100m3 so Pi is also a (100m3, i)-adjuster. Finally, by taking only 
the shortest m2 + 1 paths of Pi (and trimming the units F i

1 and F i
2 to make zi exactly 

2), we get a (100m3, m2)-adjuster with all required properties. �
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6. Using the adjusters

Lemma 6.1. For each 0 < ε1, ε2 < 1, the following holds for all sufficiently large K =
K(ε1, ε2). For d > 0, let G be an n-vertex bipartite (ε1, ε2d)-expander with δ(G) ≥ d

and n ≥ Kd. Suppose d ≥ m200 and G contains no copy of TK(1)√
dm

. Let W ⊆ V (G)
be such that |W | ≤ dm9. Let F1, F2 be two (

√
dm6 + 1, 

√
dm22, 10m)-units, with core 

vertices v1, v2 ∈ V (G) \W which lie on the same part of the bipartite graph G. Further, 
suppose that |(int(F1) ∪ int(F2)) ∩W | ≤

√
dm5. Then there exists a v1, v2-path L of length 

precisely 80m3 in G −W .

Proof. Let W ′ := W ∪ int(F1) ∪ int(F2). As |W ′| ≤ dm10/3, we can apply Lemma 5.4
to find a (100m3, m2)-adjuster P = (w1, w2, E1, E2, 2, A) in G −W ′ such that 80m3 ≤
�(P ) ≤ 80m3 + 80m.

For i = 1, 2, let Xi be the set of vertices v in bd(Fi) such that the path between vi
and v is internally vertex-disjoint from W . There are 

√
dm6 different paths in int(Fi), 

thus

|Xi| ≥ (
√
dm6 −

√
dm5) ·

√
dm22 ≥ dm15.

Let Y := bd(E1) and W ′′ := W ′ ∪ p(P ). We have |W ′′| ≤ dm10/2. Hence, we can 
apply Lemma 2.3 with (A, B, x) = (X1, Y, dm12) in order to find an X1, Y -path Q1 of 
length at most m connecting bd(F1) and bd(E1) in G −W ′′. Let W ′′′ := W ′′ ∪ V (Q1)
and observe that |W ′′′| ≤ dm10. Then apply Lemma 2.3 similarly as before to find a 
path Q2 of length at most m connecting X2 ⊆ bd(F2) and bd(E2) in G −W ′′′.

Let R1 be the path from v1 to Q1 ∩ bd(F1), S1 be the path from Q1 ∩ bd(E1) to w1, 
S2 be the path from w2 to Q2 ∩ bd(E2) and R2 be the path from Q2 ∩ bd(F2) to v2, 
with all these paths taken inside the respective units. Observe that |Ri| ≤ 10m + 1 and 
|Si| ≤ 10m + 1 for i = 1, 2. Removing the paths R1 and R2, and incident leaves, from 
F1 and F2, respectively, we see that

P ′ := (v1, v2, F1, F2, R1 ∪Q1 ∪ S1 ∪A ∪ S2 ∪Q2 ∪R2)

is a (101m3, m2)-adjuster in G −W . Furthermore, we have

80m3 ≤ �(P ) ≤ �(P ′) ≤ �(P ) + 100m ≤ 80m3 + 200m.

Since v1 and v2 lie on the same part of G, �(P ′) is even. Thus, since P ′ is a (101m3, m2)-
adjuster and m2 ≥ 200m (as n ≥ Kd), we can find a v1, v2-path L of length precisely 
80m3 in G −W . �

We can now prove our main result, Theorem 2.8.
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Proof. Set t :=
√
dm. Using Lemma 4.2 iteratively, we choose 2t (

√
dm6+1, 

√
dm22, 10m)-

units such that their interiors are pairwise vertex disjoint. This is possible since each 
interior has at most 

√
dm6 · 10m vertices, which is smaller than dm30/(2t). Clearly, we 

can choose some t of these units F1, F2, · · · , Ft such that their core vertices v1, v2, . . . , vt
lie in the same part of the bipartite graph G.

We have to show that G contains a copy of TK(1)
t or TK(�)

t , where � := 80m3. To this 
end, assume G is TK(1)

t -free. Let P := {P1, . . . , PS} be a maximal collection of internally 
vertex disjoint paths such that:

• for each s ∈ [S], Ps is a vi, vj-path of length precisely � for some distinct i, j ∈ [t];
• if Ps is a vi, vj-path, then for every k ∈ [t] \ {i, j}, Ps is disjoint from int(Fk);
• for distinct i, j ∈ [t], there is at most one path in P with vi and vj as end vertices.

If S =
(
t
2
)
, then the graph formed by all the paths in P is our desired copy of TK(�)

t . 
Hence, we may assume that there exist distinct i, j ∈ [t] such that P contains no vi, vj-
path.

Let W := (∪s∈SV (Ps) \ {vi, vj}) ∪ {int(Fq) : q ∈ [t] \ {i, j}}. Then

|W | ≤ t2� + t ·
√
dm6 · 10m ≤ dm9.

Furthermore,

|int(Fi) ∩W | = |int(Fi) ∩ (∪s∈SV (Ps) \ {vi})| ≤
√
dm · 80m3 ≤ 1

2
√
dm5,

and similarly |int(Fj) ∩ W | ≤ 1
2
√
dm5. Thus, by Lemma 6.1 there exists a vi, vj-path 

PS+1 of length � in G −W . Also, since PS+1 is in G −W , this path is disjoint from int(Fk)
for k �= i, j and internally disjoint from all paths in P. This contradicts the maximality 
of P. Thus S =

(
t
2
)

and we are done. �
7. Concluding remarks

While our main result gives the optimal degree bound forcing balanced clique subdi-
visions, it would be very interesting to consider balanced subdivisions of more general 
graphs. Let H be a graph with p vertices and q edges. It is known that if G is a graph 
with average degree at least 88(p + q), then G contains a subdivision of H. Let us give 
a proof of this, for which we need the following definition. A graph is k-linked if, for any 
choices x1, ..., xk, y1, ..., yk of 2k distinct vertices there are vertex disjoint paths P1, ..., Pk

with Pi joinings xi to yi, for all i ∈ [k]. We first find a subgraph G′ in G which is 
22(p + q)-connected due to a result of Mader [18]. Then G′ contains a subgraph G′′

which is (p + q)-linked due to a result of Bollobás and Thomason [2]. One can then 
embed an H-subdivision in G′′ by taking {xi, yi}i∈[q] to be the pair of endvertices of 
edges of H.
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Perhaps the following is true.

Problem 7.1. Does there exist a constant C such that for any p-vertex q-edge graph H, 
if a graph G has average degree at least C(p + q) then G contains a balanced subdivision 
of H?

Note added before submission While preparing this paper, we learnt that Bingyu Luan, 
Yantao Tang, Guanghui Wang and Donglei Yang [16] independently proved Theorem 1.1.
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