'.) Check for updates

Received: 24 August 2025 Revised: 10 November 2025 Accepted: 17 November 2025

DOI: 10.1112/mtk.70066

RESEARCH ARTICLE Mathematika

New upper bound for lattice covering by spheres

Jun Gao' | XizhiLiu> | OlegPikhurko' | Shumin Sun’

IMathematics Institute and DIMAP,
University of Warwick, Coventry, UK

2School of Mathematical Sciences, USTC,
Hefei, China

Correspondence

Jun Gao, Mathematics Institute and
DIMAP, University of Warwick, Zeeman
Building, Coventry, CV4 7AL, UK.
Email: jungao@ibs.re.kr

Funding information

ERC, Grant/Award Number: 101020255;
National Natural Science Foundation of
China

1 | INTRODUCTION

Abstract

We show that there exists a lattice covering of R"
by Euclidean spheres of equal radius with density
O(nlnﬁ n)asn — oo, where

8me
34/3

g = %logz = 1.85837 ....

This improves upon the previously best known upper
bound by Rogers from 1959 of O(nIn® n), where a :=
% log,(27re) = 2.0471 ...

MSC 2020
52C07, 52C17 (primary)

Given n, we would like to cover the entire space R" by placing spheres’ of the same radius r at
each element of a lattice A, that is, we require that

A+B!'=R", M

where B :={x € R": ||x||, < r} denotes the Euclidean sphere of radius r in R" centred at the
originand X +Y :={x+y: x € X andy € Y} denotes the sum of two sets X,Y C R". We call
any such pair (A, B!') a (sphere) lattice covering of R" and define its density as

O(A,B) =

vol(B")
| det(A)I’

" Throughout this work, we adopt the convention that ‘sphere’ means a closed Euclidean ball.
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where vol(B)") denotes the volume of B and det(A) is the determinant of A which can be defined
as

det(A) :=det[by, ..., b, ],

the determinant of the matrix made of some (equivalently, any) linearly independent vectors’
b,,.., b, € R" that generate the lattice A, that is, satisfy

A={by+--+4,b,: 4, €Zfori e [n]}, 2
where [n] :={1, ..., n}. The covering density of A is then defined as
©(A) := min {e,B): R" =A+B'}.

The classical lattice covering problem, a central topic in the combinatorial geometry (see, e.g.,
books [7, 24]), asks for the optimal lattice covering density in dimension n, defined as
0, :=inf{®(A): A C R"is a lattice}.

Determining ©,, seems a very difficult problem, with exact values known only for n < 5 (see [2, 4,
11,16, 19, 25]) and with many questions (such as, for example, whether the Leech lattice is optimal)
being still open. Various lower and upper bounds for ®,, were obtained in a large number of works,
starting with the classical papers [3, 8,9, 14, 22] from the 1950s; we refer the reader to the papers [13,
26] that contain overviews of more recent results.

More generally, for any convex body K C R", one can similarly define the optimal lattice cover-
ing density ®,, i of K (see, e.g., [24] for details). Improving upon Rogers’ [22] upper bound ©,, =
O (n'og2nn+0) from 1959, a recent breakthrough by Ordentlich-Regev-Weiss [20] shows that
0,k = O(n?) holds universally for all convex bodies K C R". For convex bodies K C R" with
“rich” family of reflection symmetries, the bound was earlier improved by Gritzmann [17] to
O,k = O(nin'*&cp),

However, in perhaps the most fundamental case when K is the sphere, the above bounds do
not improve upon Rogers’ other result from [22] that ©,, = O (nIn® n), where a := % log,(27e) =
2.0471....

In this work, we establish the following upper bound for ©,, improving upon the above-
mentioned bound of Rogers [22].

Theorem 1.1. There exists a constant C such that for every integer n > 1, it holds that

©,<Cnlnfn, where B := llog2 8re ) _ 1.85837... .
2 373

Let us remark that the factor n in Theorem 1.1 is necessary, as shown by Coxeter-Few—Rogers 8]
who proved that ®,, > (e‘3/ 2+ 0(1)) n, improving upon earlier results of Bambah-Davenport [3]
and Erd6s-Rogers [14].

 Unless otherwise specified, all vectors in this work are considered column vectors.
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NEW UPPER BOUND FOR LATTICE COVERING BY SPHERES | 3 0f16

Another obstacle to improving the upper bound of ©,, is that, even when the condition that
A C R" is a lattice is removed and arbitrary sphere coverings of R" are allowed, the best known
asymptotic upper bound still has order nln n (see, e.g., [5, 6, 12, 15, 21, 23]).

Theorem 1.1 follows relatively quickly from the following more general theorem, which pro-
vides a general strategy for proving upper bounds on 0,,. To state the result, we first introduce
some necessary definitions.

Given a point x € R" and n linearly independent vectors by, ..., b, € R", the parallelepiped

P = P,(b,,...,b,) (3)
starting at x € R" and generated by {b,, ..., b, } is defined as the convex hull of
Vi(by,..,b,) :={x+A;b, + - +4,b,: 4, €{0,1} fori € [n]}.

Trivially, V4(by, ..., b,,) is exactly the set of the vertices of the polytope P and we will refer to this
set as V(P). We say that a parallelepiped P C R" is a A-parallelepiped if V(P) C A. If, in addi-
tion, vol(P) = |det(A)|, then P is called a fundamental parallelepiped of A. For example, any set of
vectors that generates A as in (2) produces a fundamental parallelepiped.

The following concept will be crucial for our result.

Definition 1.2 (Robust lattice covering). Let d > 1 be an integer and r > 0 be a real number. A
lattice covering (A, BY) of R is robust if every closed ball of radius r in R contains a fundamental
parallelepiped of A.

Extending the definition of ®,,, we define the optimal robust lattice covering density of R" as
0O, = inf{O(A, B!'): (A, Bl') is a robust lattice covering of R"}.

n

For every integer d > 1, define

> _ (nd)t

= aL
r(¢+1)
where I' denotes the gamma function.
The following result provides an asymptotic upper bound for ®,, in terms of © .

vy 1= vol (Bil/ﬁ

Theorem 1.3. For every integer d > 1, there exists a constant C, ; = C; 5(d) such that forn > d,

©,<Cysnln"n, where y=y,:= %logz(Zn'e) - élog2 (va/©y).

It is straightforward to verify that (Zd, B‘\i/z> is a robust lattice covering of R¢ with density v,

for any d > 1. Hence, O, < v,.
Thus that y,; < % log,(2me), which recovers Rogers’ bound by Theorem 1.3 (applied with any
chosend > 1).
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40f 16 GAO ET AL.

FIGURE 1 The lattice generated by v; = (1,0) and v, = (1/2, \/E/Z)t, three balls of radius 2/\/5 centred
at the origin O, D = 2v, and G = 2v,, and three different fundamental parallelepipeds OAEB, DABE, GBAE. The
point X is the centre of the triangle ABE.

Theorem 1.1 follows immediately from Theorem 1.3 and the following upper bound for ©,.
Lemma 1.4. There exists a robust lattice covering of R*> with density 87 /(3 \/5). In particular,

®2<_.

3V/3

Proof of Lemma 1.4. Let
t
v, :=(1,0), v, := (1/2, \/5/2) , and r:= 2/\/5,

where v! denotes the transposition of a vector v. Let A C R? denote the lattice generated by {v;, v,}
(see Figure 1). We claim that (A, B?) is a robust lattice covering of R?. By definition, it amounts
to showing that for every point w € R?, the sphere Bf(w) of radius r centred at w contains a
fundamental parallelepiped of A. By symmetry, it suffices to prove this statement for all points w
contained in the equilateral triangle A\ ,zr shown in Figure 1.

Let X denote the centre of /\ g It is easy to see that

* if w € A\ sxg, then the ball B2(w) contains the fundamental parallelepiped /7 ,gp;
* if w € A\ sxg then the ball B2(w) contains the fundamental parallelepiped /7,5
* if w € Agxg, then the ball BA(w) contains the fundamental parallelepiped /7 p, -

Therefore, (A, B?) is a robust lattice covering of R%. The covering density of (A, B?) is

2
vol(B?) (2/ \/§> T gn
det(A) V3/2 h 3\/5’

which completes the proof of Lemma 1.4. [l

In the next section, we present the proof of Theorem 1.3, assuming a key lemma (Lemma 2.3)
whose proof is deferred to Section 3. We include some concluding remarks in Section 4.
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NEW UPPER BOUND FOR LATTICE COVERING BY SPHERES 50f16

2 | PROOF OF THEOREM 1.3

In this section, we present the proof of Theorem 1.3. We begin by listing some auxiliary results
from Rogers’ earlier work [22].

Given a lattice A C R" and a measurable set K C R", let 5(A + K) denote the density of the
points in R" that are not covered by the (periodic) set A + K.

Lemma 2.1 [22, Lemma 2]. There exist constants N, and C, such that the following holds for
everyn = N, ;. For every convexbody K C R", there exists a lattice A C R" with det(A) = vol(K)/n,,,

wheren,, 1= gln <%) — 31Inn, such that

16)"/4' @

5(A+K) < C 3(—
A( ) 211 27

Lemma 2.2 [22, Lemma 4]. Let K C R" be a convex body and A C R" be a lattice. Suppose that
P(A +K) < (n" +1)7L. Then, (A, (1 + 1/n)K) is a lattice covering of R", that is, A + (1 + 1/n)K =
R™,

The following lemma, which extends [22, Lemma 3], will be crucial for our proof. Due to its
technical complexity, we postpone its proof to Section 3.

Lemma 2.3. For every integer d > 1, there is a constant C, 5 = C, 5(d) such that, for any n > 1, if
K C R" is a measurable set and A C R" is a lattice, then there is a lattice A C R"*® with det(A) =
det(A) satisfying
~ ~ d
P(A+R) < Cps(p(A+K),
where K C R"*4 denotes the Cartesian product of K and the d-dimensional sphere of volume 0.
We will also use the following simple fact.

Fact 2.4. Suppose that n,d, k > 1 are integers satisfying 1 < kd < n. Then

K g :=B"*_xB? x..xB*

Vnkd ~Vd Vd

k times

is a subset of B" _ and

\/Z

k
Vyokd "V
vol(Ky 4) = % -vol (B%)

n

Now, we present the proof of Theorem 1.3.

Proof of Theorem 1.3. Givend > 1, let C, ; = C, ;(d) be the constant given by Lemma 2.3.
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60f16 | GAO ET AL.

Let
C :=2e(2me)*¥/? /5.
Let n be a sufficiently large integer. Fix an integer k satisfying
élogzlnn+4<kéélogzlnn+5. )

Let

. n—kd 27\ _ _ n
7= 7 1n<16) 31n(n kd)<5. (6)

We aim to show that there exists a lattice covering (A, B") of R" with density at most
~ 1 1
Cn (Qd/Vd) d 10g2 " n(27‘[e)2 10g2 In ny

where n > C’ and C’ is a constant in terms of d. Then, we can take C, ; = max{C, (2C")°'} as
0, < (2n)" holds trivially.
Let K, € R"4 be a sphere with volume 7 at the origin. Let r € R be such that vol(BY) = ©,.

Since [ z¢, B4
(200,

) is a robust lattice covering of R¢ with density v, for any d > 1, we have that

@d < Vq-
Fori € [k], define K; :=K;_; X Bf. Note that for i € [0, k],
vol(K;) = n@fi.

By Fact 2.4, there exists an n-dimensional ball B C R" such that, after some linear transformation
T (scaling the radii of the balls K, and Bf), the set K, is contained in B, and

vol(B) = vol(T(K)) - ——
Vn—kd " Vg4

~ Kk
=|det(T>|-n<%> n ™)

d /) Vn-kd
Using the estimate I'(1 + x) = (1 + o(1))V/27x (x/e)* as x — o (see, e.g., [10]), we obtain

T _ g 4 oa) T

v, = ———
r<§+1> \Vmn

It follows from (7), together with the assumption that » is sufficiently large, that

04 >" (27e)3 \/7(n — kd)
Vi) (ame)'3" \/an

6,\" kd
< 2|det()| -77<E> (2re)s. ®)

vol(B) = (1 + o(1))|det(T)| -77<
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NEW UPPER BOUND FOR LATTICE COVERING BY SPHERES | 7 of 16

Let C, ; be the constant given by Lemma 2.1. Applying Lemma 2.1 to K, we obtain a lattice A, C
R"*d with det(A,) = vol(K,)/n = 1 such that (A, + K,) < &, that is, the set of points in R"~kd
not covered by K, + A, has density at most §,,, where

8, 1= Cy,(n — kd)*(16/27)" 5" < Cy,n3(16/27)5.

By applying Lemma 2.3 iteratively k times, we obtain lattices A, ..., A such that, foreachi € [k],
the following properties hold:
« the lattice A; C R"*d+id gatisfies det(A;) = 1, and
— d
© PN +K) <G i=Chs67

In particular,

- 20 _ ~12d g2 142042k Dd ookd
Ok =Co30, 1 =Cy5" G, = =C3 S
2kd_4 -1 1 2kd
P w0 2 A gl U g
- C2?3 1o = C22.3 ' <C22.3 150)
Since C, ;, C, 3, and d are fixed, we can choose n sufficiently large so that
=L L n. 27
n > max {szé_l’ C2.1C22.d3‘1 } and 4Inn — 5 In < 0.
Combining it with the assumption kd > log, In n + 4, we obtain
= 1 n/s
Ing, <InC" +251n <c;§—1 50> <Inn+ 2k <ln nt+n (32) >
<lnn+ 161nn<41nn ~ 2 z)
5 16

= —(Elnz)nlnn+64ln2n+lnn,
5 16

which is smaller than — In (n" + 1) = —(1 + 0o(1))n In n as n is sufficiently large. Thus,
Se<m" +1)7h.
So, it follows from Lemma 2.2 that Ay + (1 + 1/n)K; = R". Since T(X},) C B, we obtain
(A, +1/m)T1(B)) = R",

which implies that (T(A,), (1 + 1/n) B) forms a (sphere lattice) covering of R".
It remains to show that the density of (T(Ak), a+1/ n)B) gives the desired upper bound.
Indeed, by (5), (6), and (8), we have

vol ((1 + 1/n)B) _ (1 N 1 )” vol(B)

O A A+1/MB) = =T an) n) TdetD)|| det(Ap)]

A~ k A llog Inn
€] kd ®,;\d 2 1

< 2en<—d> (2me)2 < Cn(—d> (2me)z log2lnn,
V4 V4

as claimed. This completes the proof of Theorem 1.3. O
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8 of 16 | GAO ET AL.

3 | PROOF OF LEMMA 2.3

In this section, we present the proof of Lemma 2.3, starting with a few preliminary lemmas.
We use dist(x,y) := ||x — y||, denote the Euclidean distance between two points X,y € R9.
Given a set S C RY and a point x € R¢, we define

dist(x, S) := inf {dist(x,y) : y € S}.
In the following lemma, we make no attempt to optimise C5 ; as a function of d.
Lemma 3.1. Letd > 1 be an integer and D € [0,v,] be a real number. There exists a constant C; ;
depending only on d such that, for every robust lattice covering (A, Bfl) of R? with density D, the

number of fundamental parallelepipeds contained in B‘zir is at most Cs ;.

Proof of Lemma 3.1. By scaling A and r if necessary, we may assume that | det(A)| = 1. Conse-

quently, Vol(Bf) = D. Since D < vy, it follows that r < \/E First, we show that the number of
lattice points contained in B‘Zir is bounded.

Claim 3.2. There exists a constant C in terms of d such that we have

d
|AnBg|<c.

Proof of Claim 3.2. For1 <i<d,let

A

; :=min{l € [R>0,/1Bgr contains i linearly independent lattice points of A}.

be the ith successive minimum of B‘zir with respect to A. Since Bf contains a fundamental par-
allelepiped, we derive that 1; < 1/2. By Minkowski’s second theorem and the monotonicity, we
have

—d+1 24 d
A2 >MAy - Ag 2 a det(A)/ vol(B3,).

It follows from r < \/E that there exists a constant C’ in terms of d such that 4, > C’. By, for
example, [18, Theorem 1.5], there exists a constant C in terms of d such that ’A N Bgr’ <C. O

Note that each d-dimensional (fundamental) parallelepiped has 2¢ vertices, so it follows from
Claim 3.2 that the number of fundamental parallelepipeds contained in Bgr is at most Czd, which
completes the proof of Lemma 3.1. O

Let T" := R"/Z" denote the n-dimensional torus. The following two lemmas routinely follow
from standard results. For completeness, we include their proofs.

Lemma 3.3. Let K C R" be a measurable setand let§ := p(Z" + K). Lety € T" be a point chosen
uniformly at random, according to the Lebesgue measure restricted to the cube [0,1)". Let K := K U

A ‘T ‘9202 ‘2YBLTYOT
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NEW UPPER BOUND FOR LATTICE COVERING BY SPHERES 9 of 16

(K +Yy). Then
E[3(Z" + K)] = &°.

Proof of Lemma 3.3. Let y: R" — {0,1} be the characteristic function of Z" + K. Then, y is
periodic with period 1 in each of the coordinates. It follows from g (Z" + K) = ¢ that

[ = xedx, dx, = ©)
[0,1)"

Suppose thaty € T" is a point chosen uniformly at random according to the Lebesgue measure
restricted to the cube [0,1)"?, and K = K U (K +y). Using (9), we obtain

E[p(Z" + K)] = /

[o,1)*

< /m - 1= xx)A - yx+y)dx, - dxn)dy1 e dy,

= / 1- )((X))(/ 1=y +y)dy, - dyn>dx1 e dx,
[o,1)n [0,1)”

-/ @ —)((X))< [ a-xeus, ---dzn)dx1 edx, = 8,
[0,1)n [0,1)"
as desired. O

Lemma 3.4. Letn,d > 1 be integers. Suppose that M € 794 is a matrixwith | det(M)| = 1. Define
themap i : R — RPN pyh(X) = MX forall X € R¥*", Then, the map ¢ induced by 1 on TI¥",
that is,

#(X) := p(X) mod Z¥"  forevery X e TH",
is bijective and (Lebesgue) measure-preserving.

Proof of Lemma 3.4. Let M, = diag(M, ..., M) € Z%">4" be the matrix obtained by placing n copies
of the matrix M along the diagonal. It is clear that M, is an integer matrix with | det(M,)| = 1. By
Cramer’s rule, the inverse M ;1 of M, is also an integer matrix with | det(M;l)I =1.

Define the map ¥, : R — R by 1(x) = M,x for every x € R, It is clear that 3 and 3,
define the same linear map under the identification of R9*" with R%", Let ¢ be the map induced
by ¥, on T9", that is,

@(x) = ¥, (x) mod z%" forevery xe& T,

Since | det(M,)| = 1, it follows from standard results in analysis (see, e.g., [1, Lemma 40.4]) that ¢,
is measure-preserving. Thus, if we can show that ¢ is bijective, it will follow that ¢ is also measure-
preserving.

We begin by proving that ¢ is injective. Suppose to the contrary that there exist two distinct
points x,y € [0,1)%" such that p(x) = ¢(y). Then, we have p(x) — ¢(y) = 0, which means that

P(x—y) =) - h.(y) € 27", (10)
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10 of 16 | GAO ET AL.

Since both M, and M ! are integer matrices, the map 1, induces a bijection from z9" onto itself.
Combining it with (10), we conclude that x —y € z", which contradicts the assumption that
X #yandx,y € [0,1)4".

Next, we show that ¢ is surjective. Take an arbitrary point y € [0,1)". Since M, is invertible,
the inverse 1! (y) exists. Let x be the unique point in [0, 1)4" such that x — Pl (y) e 79" Then,
we have

p(x) = 3, (x) mod 29" = 9, (1 (y) + x — P, (y)) mod 2"

= 9. (¥.'®) + 9. (x = $.'(y) mod 2" =y,

where the last equality holds because ¥, maps Z4" into 4", This proves that ¢ is surjective, and
hence completes the proof of Lemma 3.4. O

We are now ready to prove Lemma 2.3.
Proof of Lemma 2.3. Given a measurable set K C R" and a lattice A C R", let
d :=p(A+K).

By applying a linear transformation to A if necessary, we may assume that A = Z". Let {e;: i €
[n]} be the standard basis of R".

Let d > 1 be an integer. Let C5; be the constant given in Lemma 3.1 and define C, 5 :=
(C31+1) d)2d_1 depending only on d. Fix a robust lattice covering (Ad,Bf) of R? with density
D, where D is sufficiently close to ©,. We can assume that D is at most v, which is the density
attained by z9. By scaling A, and r if necessary, we may assume that | det(A;)| = 1. Hence, r is
such that Vol(Bf) = D. By increasing the final constant C, 5 slightly, it suffices to prove that there
exists a lattice A C R"*¢ with det(A) = det(A) satisfying

p(A+R) < Cys(p(A+ K,

where K C R"*¢ denotes the Cartesian product of K and the d-dimensional sphere of volume D
(instead of ).

Letby,...,b; € RY be linearly independent vectors that generate the lattice A,. For i € [n], let
& = (‘:)‘) € R"*4 be the concatenation of e; € R" and 0 € R?. For each j € [d], choose a vector
y; € T" uniformly at random according to the Lebesgue measure restricted to the cube [0,1)",

andletb; := (?/) € R"*“ be the concatenation of y; and b;. Define a new (random) lattice
J

n d
Ay, s yg) i= { Z/liéi + Z/“‘J'BJ' A ezforie[n] and u; € Zforje [d]}.
i=1 j=1

Note that

| det(A(yy, -, Ya))| = | det(A)] - [det(Ag)] = 1,
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which can be seen by expanding the determinant of the corresponding matrix along the first n
columns (with each having only one non-zero entry, namely the diagonal entry 1).

Recall that K = K x B¢ C R"*. We will show that, with positive probability, the following
event occurs:

/5(7\(3/1’ s ¥Yd) +K) < C2.352d’

that is, the set of points (y;, ..., y,4) € T for which this inequality holds has positive Lebesgue
measure. For this we need some further definitions and two auxiliary claims.

Let B :=[by,..,b;] € R4 Letd, o 1 Ay — R" be the linear map defined by

by..ys@ = [y1:,¥4]B 'z forevery ze Ay (11)

In other words, ¢, . sendsalattice pointz € A, to 27:1 u;jy; € R", where (i, ..., uq) € 7%is

d
j=1

..... y

the unique collection of integers such thatz = Y 7_. u ;b;. For a set of points S C A, we define

..........

Define
P = {P c B‘Zir : Pis a fundamental parallelepiped with O as a Vertex}.

Lemma 3.1 implies that |P| < Cs ;.
Let P be a fundamental A -parallelepiped. For any y;, ..., y; € T", we define

.....

In other words, Kp(y;, ..., ¥4) is the union of 2¢ translations of K corresponding to the vertices in
P. Also, let Ep denote the event that

_ d
PN+ Kp(¥1, - ¥a)) < Cy38° .

Our goal is to show that for every P € P, the event Ep occurs with high probability. Recall-
ing the definition of Py(by, ..., b;) (see Equation (3)), we begin with the case of Ep , where, for
convenience, we define

P* = PO(bl’ ’bd)

Claim 3.5. We have

_ 1
Cyp+1°

P[5 ] 51
Proof of Claim 3.5. Define K, (y;, ..., ¥4) := K, and for each i € [d], let

Ki(y155¥a) := K1 (Y15 5 Ya) U (KiZ1 (Y15 -5 Ya) + Y0
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..........

Kp (Y15 ¥a) = Kg(¥1, - ¥a)-
Let
C:=C3; +1
For i € [0,d], define

o _(cdsy”
pPi = p(A+Kl) and 5[ = T,
and let E; denote the event that p; < §; = Cd5i2_1. By assumption, we have p, = § = §,.
Let us prove by induction oni = 0, ..., d that

1\
PIEg A AE]> (1= =) 12
[Eo 1 (1- 5 (12)
This is true for i = 0 since p, is the constant function J,. So suppose that i > 1. If we fix any
Y1, -, ¥ such that E;_; holds and take uniform random y; € [0, 1)" then we have by Markov’s
inequality and Lemma 3.3 that

‘ 2 52

s, 6 — cds>, Cd

Integrating the complement of this inequality over all choices of y, ..., y;_; € [0,1)" for which
Ey A -+ A E; holds, we obtain by Fubini-Tonelli’s theorem and induction that

1 1\!
1> - . > -
P[Ey A -+ ANE;] 2 (1 Cd)P[EO A ANE_1]2 <1 Cd) ,
which is the claimed inequality for i.
The claim now follows since
[P’[E ]—[P’E >P[EjA -+ AE >(1—L)d>1—l
p, | = PLEq] > P[E, al 2 cd) ° rok O

Next, we extend the conclusion of Claim 3.5 to all elements of P.

Claim 3.6. For every P € P, we have

1

PlEp] 21— .
[Ep] T+l

In particular, with positive probability, all of the events {Ep : P € P} occur simultaneously.

Proof of Claim 3.6. Fix P € P. Define sets
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NEW UPPER BOUND FOR LATTICE COVERING BY SPHERES 13 of 16

S = {(yl,...,yd) ET" X XT": Ep, holds} and
T :={(y;,-,¥q) € T" X --- x T" : Ep holds}

Note that P [EP*] and P [Ep] are equal to u(S) and u(T), respectively, where u denotes the

Lebesgue measure. Recall from Claim 3.5 that P EP*] >1—(C;; + 1)L So, it suffices to show

that u(T) > u(S) (In fact, a straightforward modification of the argument below shows that S and
T have the same Lebesgue measure).
Fix linearly independent vectors wy, ..., W, € A4 such that

d
V(P) = {z/liwi: A, €{0,1}fori e [d]}.

i=1

For each collection zy, ...,z; € T", let K, p(2y, ..., 24) := K, and for each i € [d], let

Similar to the proof of Claim 3.5, we have Kp(z,, ..., 2;) = K p(21, ... , Zy).
Recall that {b,,...,b,} is a basis of A; and B = [b,,...,b,] € R Tet W := [wWy,..,wy] €
R4 andlet M € R% be the matrix such that WM = B. It follows that MB~'W = I, and thus,
MB_lwl' = ei. (13)
Given an element (y,, ...,y ) € S, define the map ¢ : T" — T by

o([y1, > ¥al) 1= [By), s Py,

where

D), o YY) = [YV15 - » Y4 IM mod 274,

Combining (13) with definition (11), we obtain

.....

= [y1,, YaIMB™'W; = [y, ., Vgle; = V.

It follows that
Kp(@®(y1), > 9(¥4)) = Kp (V15> Ya)-
Since (y;, ..., ¥4) € S, it follows from the definition of S that
_ _ d
P+ Kpy1)s o ¥ = (A +Kp V1, ¥0) ) < C258%

which implies that ((y;), ..., ¥(yy)) € T.
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Since P is a fundamental parallelepiped of A,, the matrix M must be an integer matrix with
determinant +1.
It follows from Lemma 3.4 that the map ¢ on T9*" is measure-preserving. Therefore,

1

PEp] = W(T) > w(S) = P[Ep | > 1- REaT

which proves Claim 3.6. [

Fix a collection (yj,...,¥4) € T4 such that all of the events {E, : P € P} occur simultane-
ously. For convenience, let A := A(y;,...,yg) and ¢ 1= ¢y o .

For every lattice point z € Ay, define

A, = {x: (x,2) € A}.
Note that, by definition, for every z € A4, A, can be written as
A, = A+ ¢(2). (14)

This means that A, is simply a translation of the lattice A (which we assumed to be Z").

Fix a point w € R<. Since (A, Bf) is robust, there exists a fundamental parallelepiped Py, that
is contained in the ball B;i(w). Fix a point s € V(P ) and let P(V := P, — s be obtained from P,
by translating by —s. Note that P/ is a fundamental parallelepiped contained in Bgr and 0 is a
vertex in P/, , that is, P/, € P.

Consider the following restriction of the set K + A:

K +A) |y:={xeR": (x,w) eK+A}.

Since K = K x B, a pointx € R" is covered by (K + A) |, if there exists a point W € Ay N B,(w)
such that x € A, + K. In particular, the set Uﬁ,eV(PW) (A +K) C R"is covered by (K + A) |-

By (14) and the linearity of ¢, we have

U Ay +K)=A+¢(V(P,)+K=A+¢(V(Py,)—s+s)+K
weV (Py)

=¢(s) + A+ ¢(V(P,,)) +K = ¢(s) + A+ Kps (V1,5 Yq)-
Since P{N € P, the choice of vectors {y, ..., 4} guarantees that
ﬁ(A +Kpy (Y150 ’Yd)> < C2.352d-
Since translation (by ¢(s)) does not affect the density of uncovered points, we also have

— d
P(vaeV(Pw) (Aw + K)) < G387

Since w € RY was arbitrary, it follows that p(A+K) < C2‘352d. This completes the proof of
Lemma 2.3. ]
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4 | CONCLUDING REMARKS

Rogers’ original proof in [22] is essentially the same as our proof of Theorem 1.3 in the special
case d = 1. We hope that the idea of using an iterative step where the dimension increases by
more than 1 will lead to further improvements (via Theorem 1.3 or some other estimates).
Unfortunately, we have little intuition about the optimal robust lattice covering density in
dimensions d > 4. The presented constant § in Theorem 1.1 was the best one that came from our
sporadic search for d < 3. So, the natural question motivated by Theorem 1.3 is the following.

Problem 4.1. Determine 0,,. In particular, what is the infimum of

1 i
Zlog2 (0,/v,)?

A lower bound 6, > v, /2" can be established via the following argument. Let (A, B!") be a
robust lattice covering of R"” with det(A) = 1. By definition, B contains a fundamental paral-
lelepiped P. It is not hard to show that the largest volume of a parallelepiped (not necessarily
a A-parallelepiped) contained in B is <2r / \/ﬁ )n, attained by an inscribed cube centred at the
origin. Since P C B is a parallelepiped with volume det(A) = 1, it follows that

<2r/\/ﬁ)" > vol(P) = |detA] =1,

which implies that 7 > \/ﬁ /2. Therefore, we obtain the bound

B vol(B") 1 v
6 >—"" >vol(B" >—vol(B"_)=-2.
"2 Tdeny) - VO < ﬁﬂ) T < ﬁ) 2n

In particular, this yields % log, ((:)n / vn) > —1, which means that the best possible value we can
hope for y via an application of Theorem 1.3 as stated is at least % log,(2me) — 1 = 1.0471 ....
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