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Abstract
We show that there exists a lattice covering of ℝ𝑛

by Euclidean spheres of equal radius with density
𝑂
(
𝑛 ln𝛽 𝑛

)
as 𝑛 → ∞, where

𝛽 ∶=
1

2
log2

(
8𝜋e

3
√
3

)
= 1.85837 … .

This improves upon the previously best known upper
bound by Rogers from 1959 of 𝑂

(
𝑛 ln𝛼 𝑛

)
, where 𝛼 ∶=

1

2
log2(2𝜋e) = 2.0471….

MSC 2020
52C07, 52C17 (primary)

1 INTRODUCTION

Given 𝑛, we would like to cover the entire space ℝ𝑛 by placing spheres† of the same radius 𝑟 at
each element of a lattice Λ, that is, we require that

Λ + 𝐵𝑛𝑟 = ℝ𝑛, (1)

where 𝐵𝑛𝑟 ∶= {𝐱 ∈ ℝ𝑛 ∶ ‖𝐱‖2 ⩽ 𝑟} denotes the Euclidean sphere of radius 𝑟 in ℝ𝑛 centred at the
origin and 𝑋 + 𝑌 ∶= {𝐱 + 𝐲∶ 𝐱 ∈ 𝑋 and 𝐲 ∈ 𝑌} denotes the sum of two sets 𝑋,𝑌 ⊆ ℝ𝑛. We call
any such pair (Λ, 𝐵𝑛𝑟 ) a (sphere) lattice covering of ℝ

𝑛 and define its density as

Θ(Λ, 𝐵𝑛𝑟 ) ∶=
vol(𝐵𝑛𝑟 )| det(Λ)| ,

† Throughout this work, we adopt the convention that ‘sphere’ means a closed Euclidean ball.
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where vol(𝐵𝑛𝑟 ) denotes the volume of 𝐵
𝑛
𝑟 and det(Λ) is the determinant of Λwhich can be defined

as

det(Λ) ∶= det [𝐛1, … , 𝐛𝑛],

the determinant of the matrix made of some (equivalently, any) linearly independent vectors†
𝐛1, … , 𝐛𝑛 ∈ ℝ𝑛 that generate the lattice Λ, that is, satisfy

Λ = {𝜆1𝐛1 +⋯ + 𝜆𝑛𝐛𝑛 ∶ 𝜆𝑖 ∈ ℤ for 𝑖 ∈ [𝑛]}, (2)

where [𝑛] ∶= {1, … , 𝑛}. The covering density of Λ is then defined as

Θ(Λ) ∶= min
𝑟⩾0

{
Θ(Λ, 𝐵𝑛𝑟 )∶ ℝ

𝑛 = Λ + 𝐵𝑛𝑟
}
.

The classical lattice covering problem, a central topic in the combinatorial geometry (see, e.g.,
books [7, 24]), asks for the optimal lattice covering density in dimension 𝑛, defined as

Θ𝑛 ∶= inf {Θ(Λ)∶ Λ ⊆ ℝ𝑛 is a lattice}.

DeterminingΘ𝑛 seems a very difficult problem, with exact values known only for 𝑛 ⩽ 5 (see [2, 4,
11, 16, 19, 25]) andwithmany questions (such as, for example, whether the Leech lattice is optimal)
being still open. Various lower and upper bounds forΘ𝑛 were obtained in a large number ofworks,
startingwith the classical papers [3, 8, 9, 14, 22] from the 1950s;we refer the reader to the papers [13,
26] that contain overviews of more recent results.
More generally, for any convex body𝐾 ⊆ ℝ𝑛, one can similarly define the optimal lattice cover-

ing densityΘ𝑛,𝐾 of𝐾 (see, e.g., [24] for details). Improving upon Rogers’ [22] upper boundΘ𝑛,𝐾 =
𝑂
(
𝑛log2 ln 𝑛+𝑂(1)

)
from 1959, a recent breakthrough by Ordentlich–Regev–Weiss [20] shows that

Θ𝑛,𝐾 = 𝑂(𝑛
2) holds universally for all convex bodies 𝐾 ⊆ ℝ𝑛. For convex bodies 𝐾 ⊆ ℝ𝑛 with

“rich” family of reflection symmetries, the bound was earlier improved by Gritzmann [17] to
Θ𝑛,𝐾 = 𝑂(𝑛 ln

1+log2 e 𝑛).
However, in perhaps the most fundamental case when 𝐾 is the sphere, the above bounds do

not improve upon Rogers’ other result from [22] thatΘ𝑛 = 𝑂
(
𝑛 ln𝛼 𝑛

)
, where 𝛼 ∶= 1

2
log2(2𝜋e) =

2.0471… .
In this work, we establish the following upper bound for Θ𝑛, improving upon the above-

mentioned bound of Rogers [22].

Theorem 1.1. There exists a constant 𝐶 such that for every integer 𝑛 ⩾ 1, it holds that

Θ𝑛 ⩽ 𝐶𝑛 ln
𝛽 𝑛, where 𝛽 ∶=

1

2
log2

(
8𝜋e

3
√
3

)
= 1.85837… .

Let us remark that the factor𝑛 in Theorem 1.1 is necessary, as shownbyCoxeter–Few–Rogers [8]
who proved thatΘ𝑛 ⩾

(
e−3∕2 + 𝑜(1)

)
𝑛, improving upon earlier results of Bambah–Davenport [3]

and Erdős–Rogers [14].

†Unless otherwise specified, all vectors in this work are considered column vectors.
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Another obstacle to improving the upper bound of Θ𝑛 is that, even when the condition that
Λ ⊆ ℝ𝑛 is a lattice is removed and arbitrary sphere coverings of ℝ𝑛 are allowed, the best known
asymptotic upper bound still has order 𝑛 ln 𝑛 (see, e.g., [5, 6, 12, 15, 21, 23]).
Theorem 1.1 follows relatively quickly from the following more general theorem, which pro-

vides a general strategy for proving upper bounds on Θ𝑛. To state the result, we first introduce
some necessary definitions.
Given a point 𝐱 ∈ ℝ𝑛 and 𝑛 linearly independent vectors 𝐛1, … , 𝐛𝑛 ∈ ℝ𝑛, the parallelepiped

P = P𝐱(𝐛1, … , 𝐛𝑛) (3)

starting at 𝐱 ∈ ℝ𝑛 and generated by {𝐛1, … , 𝐛𝑛} is defined as the convex hull of

𝑉𝐱(𝐛1, … , 𝐛𝑛) ∶= {𝐱 + 𝜆1𝐛1 +⋯ + 𝜆𝑛𝐛𝑛 ∶ 𝜆𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑛]}.

Trivially, 𝑉𝐱(𝐛1, … , 𝐛𝑛) is exactly the set of the vertices of the polytope P and we will refer to this
set as 𝑉(P). We say that a parallelepiped P ⊆ ℝ𝑛 is a Λ-parallelepiped if 𝑉(P) ⊆ Λ. If, in addi-
tion, vol(P) = |det(Λ)|, then P is called a fundamental parallelepiped ofΛ. For example, any set of
vectors that generates Λ as in (2) produces a fundamental parallelepiped.
The following concept will be crucial for our result.

Definition 1.2 (Robust lattice covering). Let 𝑑 ⩾ 1 be an integer and 𝑟 ⩾ 0 be a real number. A
lattice covering (Λ, 𝐵𝑑𝑟 ) ofℝ

𝑑 is robust if every closed ball of radius 𝑟 inℝ𝑑 contains a fundamental
parallelepiped of Λ.

Extending the definition of Θ𝑛, we define the optimal robust lattice covering density of ℝ𝑛 as

Θ̃𝑛 ∶= inf {Θ(Λ, 𝐵
𝑛
𝑟 )∶ (Λ, 𝐵

𝑛
𝑟 ) is a robust lattice covering of ℝ

𝑛}.

For every integer 𝑑 ⩾ 1, define

𝜈𝑑 ∶= vol

(
𝐵𝑑√

𝑑

)
=

(𝜋𝑑)
𝑑
2

Γ
(
𝑑

2
+ 1

) ,
where Γ denotes the gamma function.
The following result provides an asymptotic upper bound for Θ𝑛 in terms of Θ̃𝑑.

Theorem 1.3. For every integer 𝑑 ⩾ 1, there exists a constant 𝐶1.3 = 𝐶1.3(𝑑) such that for 𝑛 ⩾ 𝑑,

Θ𝑛 ⩽ 𝐶1.3𝑛 ln
𝛾 𝑛, where 𝛾 = 𝛾𝑑 ∶=

1

2
log2(2𝜋e) −

1

𝑑
log2

(
𝜈𝑑∕Θ̃𝑑

)
.

It is straightforward to verify that
(
ℤ𝑑, 𝐵𝑑√

𝑑

)
is a robust lattice covering of ℝ𝑑 with density 𝜈𝑑

for any 𝑑 ⩾ 1. Hence, Θ̃𝑑 ⩽ 𝜈𝑑.
Thus that 𝛾𝑑 ⩽

1

2
log2(2𝜋e), which recovers Rogers’ bound by Theorem 1.3 (applied with any

chosen 𝑑 ⩾ 1).
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4 of 16 GAO et al.

F IGURE 1 The lattice generated by 𝐯1 = (1, 0)𝑡 and 𝐯2 =
(
1∕2,

√
3∕2

)𝑡 , three balls of radius 2∕√3 centred
at the origin 𝑂, 𝐷 = 2𝐯1 and 𝐺 = 2𝐯2, and three different fundamental parallelepipeds OAEB,DABE,GBAE. The
point 𝑋 is the centre of the triangle ABE.

Theorem 1.1 follows immediately from Theorem 1.3 and the following upper bound for Θ̃2.

Lemma 1.4. There exists a robust lattice covering of ℝ2 with density 8𝜋∕(3
√
3). In particular,

Θ̃2 ⩽
8𝜋

3
√
3
.

Proof of Lemma 1.4. Let

𝐯1 ∶= (1, 0)
𝑡, 𝐯𝟐 ∶=

(
1∕2,

√
3∕2

)𝑡
, and 𝑟 ∶= 2∕

√
3,

where𝐯𝑡 denotes the transposition of a vector𝐯. LetΛ ⊆ ℝ2 denote the lattice generated by {𝐯1, 𝐯2}
(see Figure 1). We claim that

(
Λ, 𝐵2𝑟

)
is a robust lattice covering of ℝ2. By definition, it amounts

to showing that for every point 𝐰 ∈ ℝ2, the sphere 𝐵2𝑟 (𝐰) of radius 𝑟 centred at 𝐰 contains a
fundamental parallelepiped of Λ. By symmetry, it suffices to prove this statement for all points𝐰
contained in the equilateral triangle△ABE shown in Figure 1.
Let 𝑋 denote the centre of△ABE. It is easy to see that

∙ if𝐰 ∈△AXB, then the ball 𝐵2𝑟 (𝐰) contains the fundamental parallelepiped ;
∙ if𝐰 ∈△AXE, then the ball 𝐵2𝑟 (𝐰) contains the fundamental parallelepiped ;
∙ if𝐰 ∈△BXE, then the ball 𝐵2𝑟 (𝐰) contains the fundamental parallelepiped .

Therefore,
(
Λ, 𝐵2𝑟

)
is a robust lattice covering of ℝ2. The covering density of (Λ, 𝐵2𝑟 ) is

vol(𝐵2𝑟 )

det(Λ)
=

(
2∕

√
3
)2
𝜋√

3∕2
=

8𝜋

3
√
3
,

which completes the proof of Lemma 1.4. □

In the next section, we present the proof of Theorem 1.3, assuming a key lemma (Lemma 2.3)
whose proof is deferred to Section 3. We include some concluding remarks in Section 4.
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NEWUPPER BOUND FOR LATTICE COVERING BY SPHERES 5 of 16

2 PROOF OF THEOREM 1.3

In this section, we present the proof of Theorem 1.3. We begin by listing some auxiliary results
from Rogers’ earlier work [22].
Given a lattice Λ ⊆ ℝ𝑛 and a measurable set 𝐾 ⊆ ℝ𝑛, let 𝜌̄(Λ + 𝐾) denote the density of the

points in ℝ𝑛 that are not covered by the (periodic) set Λ + 𝐾.

Lemma 2.1 [22, Lemma 2]. There exist constants 𝑁2.1 and 𝐶2.1 such that the following holds for
every 𝑛 ⩾ 𝑁2.1. For every convex body𝐾 ⊆ ℝ𝑛, there exists a latticeΛ ⊆ ℝ𝑛 with det(Λ) = vol(𝐾)∕𝜂𝑛,
where 𝜂𝑛 ∶=

𝑛

4
ln

(
27

16

)
− 3 ln 𝑛, such that

𝜌̄(Λ + 𝐾) ⩽ 𝐶2.1𝑛
3
(
16

27

)𝑛∕4
. (4)

Lemma 2.2 [22, Lemma 4]. Let 𝐾 ⊆ ℝ𝑛 be a convex body and Λ ⊆ ℝ𝑛 be a lattice. Suppose that
𝜌̄(Λ + 𝐾) ⩽ (𝑛𝑛 + 1)−1. Then, (Λ, (1 + 1∕𝑛)𝐾) is a lattice covering of ℝ𝑛, that is, Λ + (1 + 1∕𝑛)𝐾 =
ℝ𝑛.

The following lemma, which extends [22, Lemma 3], will be crucial for our proof. Due to its
technical complexity, we postpone its proof to Section 3.

Lemma 2.3. For every integer 𝑑 ⩾ 1, there is a constant 𝐶2.3 = 𝐶2.3(𝑑) such that, for any 𝑛 ⩾ 1, if
𝐾 ⊆ ℝ𝑛 is a measurable set and Λ ⊆ ℝ𝑛 is a lattice, then there is a lattice Λ̃ ⊆ ℝ𝑛+𝑑 with det(Λ̃) =
det(Λ) satisfying

𝜌̄
(
Λ̃ + 𝐾̃

)
⩽ 𝐶2.3(𝜌̄(Λ + 𝐾))

2𝑑 ,

where 𝐾̃ ⊆ ℝ𝑛+𝑑 denotes the Cartesian product of 𝐾 and the 𝑑-dimensional sphere of volume Θ̃𝑑.

We will also use the following simple fact.

Fact 2.4. Suppose that 𝑛, 𝑑, 𝑘 ⩾ 1 are integers satisfying 1 ⩽ 𝑘𝑑 ⩽ 𝑛. Then

𝐾𝑘,𝑑 ∶= 𝐵
𝑛−𝑘𝑑√
𝑛−𝑘𝑑

× 𝐵𝑑√
𝑑
×⋯ × 𝐵𝑑√

𝑑
⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

𝑘 times

is a subset of 𝐵𝑛√
𝑛
and

vol(𝐾𝑘,𝑑) =
𝜈𝑛−𝑘𝑑 ⋅ 𝜈

𝑘
𝑑

𝜈𝑛
⋅ vol

(
𝐵𝑛√

𝑛

)
.

Now, we present the proof of Theorem 1.3.

Proof of Theorem 1.3. Given 𝑑 ⩾ 1, let 𝐶2.3 = 𝐶2.3(𝑑) be the constant given by Lemma 2.3.
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6 of 16 GAO et al.

Let

𝐶 ∶= 2e(2𝜋e)5𝑑∕2∕5.

Let 𝑛 be a sufficiently large integer. Fix an integer 𝑘 satisfying

1

𝑑
log2 ln 𝑛 + 4 ⩽ 𝑘 ⩽

1

𝑑
log2 ln 𝑛 + 5. (5)

Let

𝜂 ∶=
𝑛 − 𝑘𝑑

4
ln

(
27

16

)
− 3 ln(𝑛 − 𝑘𝑑) <

𝑛

5
. (6)

We aim to show that there exists a lattice covering (Λ, 𝐵𝑛) of ℝ𝑛 with density at most

𝐶𝑛
(
Θ̃𝑑∕𝜈𝑑

) 1
𝑑
log2 ln 𝑛(2𝜋e)

1
2
log2 ln 𝑛,

where 𝑛 ⩾ 𝐶′ and 𝐶′ is a constant in terms of 𝑑. Then, we can take 𝐶1.3 = max{𝐶, (2𝐶′)𝐶
′
} as

Θ𝑛 ⩽ (2𝑛)
𝑛 holds trivially.

Let 𝐾0 ⊆ ℝ𝑛−𝑘𝑑 be a sphere with volume 𝜂 at the origin. Let 𝑟 ∈ ℝ be such that vol(𝐵𝑑𝑟 ) = Θ̃𝑑.

Since
(
ℤ𝑑, 𝐵𝑑√

𝑑

)
is a robust lattice covering of ℝ𝑑 with density 𝜈𝑑 for any 𝑑 ⩾ 1, we have that

Θ̃𝑑 ⩽ 𝜈𝑑.

For 𝑖 ∈ [𝑘], define 𝐾𝑖 ∶= 𝐾𝑖−1 × 𝐵𝑑𝑟 . Note that for 𝑖 ∈ [0, 𝑘],

vol(𝐾𝑖) = 𝜂Θ̃
𝑖
𝑑
.

By Fact 2.4, there exists an 𝑛-dimensional ball 𝐵 ⊆ ℝ𝑛 such that, after some linear transformation
𝑇 (scaling the radii of the balls 𝐾0 and 𝐵𝑑𝑟 ), the set 𝐾𝑘 is contained in 𝐵, and

vol(𝐵) = vol(𝑇(𝐾𝑘)) ⋅
𝜈𝑛

𝜈𝑛−𝑘𝑑 ⋅ 𝜈
𝑘
𝑑

= |det(𝑇)| ⋅ 𝜂( Θ̃𝑑
𝜈𝑑

)𝑘
𝜈𝑛

𝜈𝑛−𝑘𝑑
. (7)

Using the estimate Γ(1 + 𝑥) = (1 + 𝑜(1))
√
2𝜋𝑥 (𝑥∕e)

𝑥 as 𝑥 → ∞ (see, e.g., [10]), we obtain

𝜈𝑛 =
(𝜋𝑛)

𝑛
2

Γ
(
𝑛

2
+ 1

) = (1 + 𝑜(1))
(2𝜋e)

𝑛
2√

𝜋𝑛
.

It follows from (7), together with the assumption that 𝑛 is sufficiently large, that

vol(𝐵) = (1 + 𝑜(1))|det(𝑇)| ⋅ 𝜂( Θ̃𝑑
𝜈𝑑

)𝑘 (2𝜋e) 𝑛2√𝜋(𝑛 − 𝑘𝑑)
(2𝜋e)

𝑛−𝑘𝑑
2

√
𝜋𝑛

⩽ 2 |det(𝑇)| ⋅ 𝜂( Θ̃𝑑
𝜈𝑑

)𝑘
(2𝜋e)

𝑘𝑑
2 . (8)
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NEWUPPER BOUND FOR LATTICE COVERING BY SPHERES 7 of 16

Let 𝐶2.1 be the constant given by Lemma 2.1. Applying Lemma 2.1 to 𝐾0, we obtain a lattice Λ0 ⊆
ℝ𝑛−𝑘𝑑 with det(Λ0) = vol(𝐾0)∕𝜂 = 1 such that 𝜌̄(Λ0 + 𝐾0) ⩽ 𝛿0, that is, the set of points in ℝ𝑛−𝑘𝑑
not covered by 𝐾0 + Λ0 has density at most 𝛿0, where

𝛿0 ∶= 𝐶2.1(𝑛 − 𝑘𝑑)
3(16∕27)

𝑛−𝑘𝑑
4 ⩽ 𝐶2.1𝑛

3(16∕27)
𝑛
5 .

By applying Lemma 2.3 iteratively 𝑘 times, we obtain latticesΛ1,… ,Λ𝑘 such that, for each 𝑖 ∈ [𝑘],
the following properties hold:

∙ the lattice Λ𝑖 ⊆ ℝ𝑛−𝑘𝑑+𝑖𝑑 satisfies det(Λ𝑖) = 1, and
∙ 𝜌̄(Λ𝑖 + 𝐾𝑖) ⩽ 𝛿𝑖 ∶= 𝐶2.3 𝛿

2𝑑

𝑖−1
.

In particular,

𝛿𝑘 = 𝐶2.3 𝛿
2𝑑

𝑘−1
= 𝐶1+2

𝑑

2.3
𝛿2

2𝑑

𝑘−2
= ⋯ = 𝐶1+2

𝑑+⋯+2(𝑘−1)𝑑
2.3

𝛿2
𝑘𝑑

0

= 𝐶
2𝑘𝑑−1

2𝑑−1

2.3
𝛿2

𝑘𝑑

0 = 𝐶
−1

2𝑑−1

2.3

(
𝐶

1

2𝑑−1

2.3
𝛿0

)2𝑘𝑑
.

Since 𝐶2.1, 𝐶2.3, and 𝑑 are fixed, we can choose 𝑛 sufficiently large so that

𝑛 ⩾ max

{
𝐶

−1

2𝑑−1

2.3
, 𝐶2.1𝐶

1

2𝑑−1

2.3

}
, and 4 ln 𝑛 − 𝑛

5
ln
27

16
< 0.

Combining it with the assumption 𝑘𝑑 ⩾ log2 ln 𝑛 + 4, we obtain

ln 𝛿𝑘 ⩽ ln𝐶
−1

2𝑑−1

2.3
+ 2𝑘𝑑 ln

(
𝐶

1

2𝑑−1

2.3
𝛿0

)
⩽ ln 𝑛 + 2𝑘𝑑

(
ln 𝑛4 + ln

(
16

27

)𝑛∕5)
⩽ ln 𝑛 + 16 ln 𝑛

(
4 ln 𝑛 −

𝑛

5
ln
27

16

)
= −

(
16

5
ln
27

16

)
𝑛 ln 𝑛 + 64 ln2 𝑛 + ln 𝑛,

which is smaller than − ln (𝑛𝑛 + 1) = −(1 + 𝑜(1))𝑛 ln 𝑛 as 𝑛 is sufficiently large. Thus,

𝛿𝑘 ⩽ (𝑛
𝑛 + 1)

−1.

So, it follows from Lemma 2.2 that Λ𝑘 + (1 + 1∕𝑛)𝐾𝑘 = ℝ𝑛. Since 𝑇(𝐾𝑘) ⊆ 𝐵, we obtain(
Λ𝑘, (1 + 1∕𝑛)𝑇

−1(𝐵)
)
= ℝ𝑛,

which implies that
(
𝑇(Λ𝑘), (1 + 1∕𝑛) 𝐵

)
forms a (sphere lattice) covering of ℝ𝑛.

It remains to show that the density of
(
𝑇(Λ𝑘), (1 + 1∕𝑛) 𝐵

)
gives the desired upper bound.

Indeed, by (5), (6), and (8), we have

Θ(𝑇(Λ𝑘), (1 + 1∕𝑛)𝐵) =
vol ((1 + 1∕𝑛)𝐵)| det(𝑇(Λ𝑘))| =

(
1 +

1

𝑛

)𝑛 vol(𝐵)| det(𝑇)|| det(Λ𝑘)|
⩽ 2e𝜂

(
Θ̃𝑑
𝜈𝑑

)𝑘
(2𝜋e)

𝑘𝑑
2 ⩽ 𝐶𝑛

(
Θ̃𝑑
𝜈𝑑

) 1
𝑑
log2 ln 𝑛

(2𝜋e)
1
2
log2 ln 𝑛,

as claimed. This completes the proof of Theorem 1.3. □
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8 of 16 GAO et al.

3 PROOF OF LEMMA 2.3

In this section, we present the proof of Lemma 2.3, starting with a few preliminary lemmas.
We use dist(𝐱, 𝐲) ∶= ‖𝐱 − 𝐲‖2 denote the Euclidean distance between two points 𝐱, 𝐲 ∈ ℝ𝑑.

Given a set 𝑆 ⊆ ℝ𝑑 and a point 𝐱 ∈ ℝ𝑑, we define

dist(𝐱, 𝑆) ∶= inf {dist(𝐱, 𝐲)∶ 𝐲 ∈ 𝑆}.

In the following lemma, we make no attempt to optimise 𝐶3.1 as a function of 𝑑.

Lemma 3.1. Let 𝑑 ⩾ 1 be an integer and 𝐷 ∈ [0, 𝜈𝑑] be a real number. There exists a constant 𝐶3.1
depending only on 𝑑 such that, for every robust lattice covering (Λ, 𝐵𝑑𝑟 ) of ℝ

𝑑 with density 𝐷, the
number of fundamental parallelepipeds contained in 𝐵𝑑

2𝑟
is at most 𝐶3.1.

Proof of Lemma 3.1. By scaling Λ and 𝑟 if necessary, we may assume that | det(Λ)| = 1. Conse-
quently, vol(𝐵𝑑𝑟 ) = 𝐷. Since 𝐷 ⩽ 𝜈𝑑, it follows that 𝑟 ⩽

√
𝑑. First, we show that the number of

lattice points contained in 𝐵𝑑
2𝑟
is bounded.

Claim 3.2. There exists a constant 𝐶 in terms of 𝑑 such that we have

|||Λ ∩ 𝐵𝑑2𝑟||| ⩽ 𝐶.
Proof of Claim 3.2. For 1 ⩽ 𝑖 ⩽ 𝑑, let

𝜆𝑖 ∶= min{𝜆 ∈ ℝ⩾0, 𝜆𝐵
𝑑
2𝑟 contains 𝑖 linearly independent lattice points of Λ}.

be the 𝑖th successive minimum of 𝐵𝑑
2𝑟
with respect to Λ. Since 𝐵𝑑𝑟 contains a fundamental par-

allelepiped, we derive that 𝜆𝑑 ⩽ 1∕2. By Minkowski’s second theorem and the monotonicity, we
have

𝜆1 ⋅ 2
−𝑑+1 ⩾ 𝜆1𝜆2⋯ 𝜆𝑑 ⩾

2𝑑

𝑑!
det(Λ)∕ vol(𝐵𝑑2𝑟).

It follows from 𝑟 ⩽
√
𝑑 that there exists a constant 𝐶′ in terms of 𝑑 such that 𝜆1 ⩾ 𝐶′. By, for

example, [18, Theorem 1.5], there exists a constant 𝐶 in terms of 𝑑 such that |||Λ ∩ 𝐵𝑑2𝑟||| ⩽ 𝐶. □

Note that each 𝑑-dimensional (fundamental) parallelepiped has 2𝑑 vertices, so it follows from
Claim 3.2 that the number of fundamental parallelepipeds contained in 𝐵𝑑

2𝑟
is at most 𝐶2𝑑 , which

completes the proof of Lemma 3.1. □

Let 𝕋𝑛 ∶= ℝ𝑛∕ℤ𝑛 denote the 𝑛-dimensional torus. The following two lemmas routinely follow
from standard results. For completeness, we include their proofs.

Lemma 3.3. Let𝐾 ⊆ ℝ𝑛 be ameasurable set and let 𝛿 ∶= 𝜌̄ (ℤ𝑛 + 𝐾). Let 𝐲 ∈ 𝕋𝑛 be a point chosen
uniformly at random, according to the Lebesgue measure restricted to the cube [0, 1)𝑛. Let 𝐾̃ ∶= 𝐾 ∪
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NEWUPPER BOUND FOR LATTICE COVERING BY SPHERES 9 of 16

(𝐾 + 𝐲). Then

𝔼[𝜌̄(ℤ𝑛 + 𝐾̃)] = 𝛿2.

Proof of Lemma 3.3. Let 𝜒∶ ℝ𝑛 → {0, 1} be the characteristic function of ℤ𝑛 + 𝐾. Then, 𝜒 is
periodic with period 1 in each of the coordinates. It follows from 𝜌̄ (ℤ𝑛 + 𝐾) = 𝛿 that

∫[0,1)𝑛 (1 − 𝜒(𝐱))𝑑𝑥1⋯𝑑𝑥𝑛 = 𝛿. (9)

Suppose that 𝐲 ∈ 𝕋𝑛 is a point chosen uniformly at random according to the Lebesguemeasure
restricted to the cube [0, 1)𝑛, and 𝐾̃ = 𝐾 ∪ (𝐾 + 𝐲). Using (9), we obtain

𝔼[𝜌̄(ℤ𝑛 + 𝐾̃)] = ∫[0,1)𝑛
(
∫[0,1)𝑛 (1 − 𝜒(𝐱))(1 − 𝜒(𝐱 + 𝐲))𝑑𝑥1⋯𝑑𝑥𝑛

)
𝑑𝑦1⋯𝑑𝑦𝑛

= ∫[0,1)𝑛 (1 − 𝜒(𝐱))
(
∫[0,1)𝑛 (1 − 𝜒(𝐱 + 𝐲))𝑑𝑦1⋯𝑑𝑦𝑛

)
𝑑𝑥1⋯𝑑𝑥𝑛

= ∫[0,1)𝑛 (1 − 𝜒(𝐱))
(
∫[0,1)𝑛 (1 − 𝜒(𝐳))𝑑𝑧1⋯𝑑𝑧𝑛

)
𝑑𝑥1⋯𝑑𝑥𝑛 = 𝛿

2,

as desired. □

Lemma 3.4. Let 𝑛, 𝑑 ⩾ 1 be integers. Suppose that𝑀 ∈ ℤ𝑑×𝑑 is a matrix with | det(𝑀)| = 1. Define
the map 𝜓∶ ℝ𝑑×𝑛 → ℝ𝑑×𝑛 by 𝜓(𝑋) = 𝑀𝑋 for all𝑋 ∈ ℝ𝑑×𝑛. Then, the map 𝜙 induced by 𝜓 on 𝕋𝑑×𝑛,
that is,

𝜙(𝑋) ∶= 𝜓(𝑋) mod ℤ𝑑×𝑛 for every 𝑋 ∈ 𝕋𝑑×𝑛,

is bijective and (Lebesgue) measure-preserving.

Proof of Lemma 3.4. Let𝑀∗ = diag(𝑀,… ,𝑀) ∈ ℤ𝑑𝑛×𝑑𝑛 be thematrix obtained by placing 𝑛 copies
of the matrix𝑀 along the diagonal. It is clear that𝑀∗ is an integer matrix with | det(𝑀∗)| = 1. By
Cramer’s rule, the inverse𝑀−1

∗ of𝑀∗ is also an integer matrix with | det(𝑀−1
∗ )| = 1.

Define the map 𝜓∗ ∶ ℝ𝑑𝑛 → ℝ𝑑𝑛 by 𝜓(𝐱) = 𝑀∗𝐱 for every 𝐱 ∈ ℝ𝑑𝑛. It is clear that 𝜓 and 𝜓∗
define the same linear map under the identification of ℝ𝑑×𝑛 with ℝ𝑑𝑛. Let 𝜑 be the map induced
by 𝜓∗ on 𝕋𝑑×𝑛, that is,

𝜑(𝐱) = 𝜓∗(𝐱) mod ℤ
𝑑𝑛 for every 𝐱 ∈ 𝕋𝑑𝑛.

Since | det(𝑀∗)| = 1, it follows from standard results in analysis (see, e.g., [1, Lemma 40.4]) that𝜓∗
ismeasure-preserving. Thus, if we can show that𝜑 is bijective, it will follow that𝜑 is alsomeasure-
preserving.
We begin by proving that 𝜑 is injective. Suppose to the contrary that there exist two distinct

points 𝐱, 𝐲 ∈ [0, 1)𝑑𝑛 such that 𝜑(𝐱) = 𝜑(𝐲). Then, we have 𝜑(𝐱) − 𝜑(𝐲) = 𝟎, which means that

𝜓∗(𝐱 − 𝐲) = 𝜓∗(𝐱) − 𝜓∗(𝐲) ∈ ℤ𝑑𝑛. (10)
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10 of 16 GAO et al.

Since both𝑀∗ and𝑀−1
∗ are integer matrices, the map 𝜓∗ induces a bijection from ℤ𝑑𝑛 onto itself.

Combining it with (10), we conclude that 𝐱 − 𝐲 ∈ ℤ𝑑𝑛, which contradicts the assumption that
𝐱 ≠ 𝐲 and 𝐱, 𝐲 ∈ [0, 1)𝑑𝑛.
Next, we show that 𝜑 is surjective. Take an arbitrary point 𝐲 ∈ [0, 1)𝑑𝑛. Since𝑀∗ is invertible,

the inverse 𝜓−1∗ (𝐲) exists. Let 𝐱 be the unique point in [0, 1)
𝑑𝑛 such that 𝐱 − 𝜓−1∗ (𝐲) ∈ ℤ𝑑𝑛. Then,

we have

𝜑(𝐱) = 𝜓∗(𝐱) mod ℤ
𝑑𝑛 = 𝜓∗

(
𝜓−1∗ (𝐲) + 𝐱 − 𝜓

−1
∗ (𝐲)

)
mod ℤ𝑑𝑛

= 𝜓∗
(
𝜓−1∗ (𝐲)

)
+ 𝜓∗

(
𝐱 − 𝜓−1∗ (𝐲)

)
mod ℤ𝑑𝑛 = 𝐲,

where the last equality holds because 𝜓∗ maps ℤ𝑑𝑛 into ℤ𝑑𝑛. This proves that 𝜑 is surjective, and
hence completes the proof of Lemma 3.4. □

We are now ready to prove Lemma 2.3.

Proof of Lemma 2.3. Given a measurable set 𝐾 ⊆ ℝ𝑛 and a lattice Λ ⊆ ℝ𝑛, let

𝛿 ∶= 𝜌̄(Λ + 𝐾).

By applying a linear transformation to Λ if necessary, we may assume that Λ = ℤ𝑛. Let {𝐞𝑖 ∶ 𝑖 ∈
[𝑛]} be the standard basis of ℝ𝑛.
Let 𝑑 ⩾ 1 be an integer. Let 𝐶3.1 be the constant given in Lemma 3.1 and define 𝐶2.3 ∶=

((𝐶3.1 + 1) 𝑑)
2𝑑−1 depending only on 𝑑. Fix a robust lattice covering (Λ𝑑, 𝐵𝑑𝑟 ) of ℝ

𝑑 with density
𝐷, where 𝐷 is sufficiently close to Θ̃𝑑. We can assume that 𝐷 is at most 𝜈𝑑, which is the density
attained by ℤ𝑑. By scaling Λ𝑑 and 𝑟 if necessary, we may assume that | det(Λ𝑑)| = 1. Hence, 𝑟 is
such that vol(𝐵𝑑𝑟 ) = 𝐷. By increasing the final constant 𝐶2.3 slightly, it suffices to prove that there
exists a lattice Λ̃ ⊆ ℝ𝑛+𝑑 with det(Λ̃) = det(Λ) satisfying

𝜌̄
(
Λ̃ + 𝐾̃

)
⩽ 𝐶2.3(𝜌̄(Λ + 𝐾))

2𝑑 ,

where 𝐾̃ ⊆ ℝ𝑛+𝑑 denotes the Cartesian product of 𝐾 and the 𝑑-dimensional sphere of volume 𝐷
(instead of Θ̃𝑑).
Let 𝐛1, … , 𝐛𝑑 ∈ ℝ𝑑 be linearly independent vectors that generate the lattice Λ𝑑. For 𝑖 ∈ [𝑛], let

𝐞̃𝑖 ∶=
(𝐞𝑖
𝟎

)
∈ ℝ𝑛+𝑑 be the concatenation of 𝐞𝑖 ∈ ℝ𝑛 and 𝟎 ∈ ℝ𝑑. For each 𝑗 ∈ [𝑑], choose a vector

𝐲𝑖 ∈ 𝕋𝑛 uniformly at random according to the Lebesgue measure restricted to the cube [0, 1)𝑛,
and let 𝐛̃𝑗 ∶=

(𝐲𝑗
𝐛𝑗

)
∈ ℝ𝑛+𝑑 be the concatenation of 𝐲𝑖 and 𝐛𝑖 . Define a new (random) lattice

Λ̃(𝐲1, … , 𝐲𝑑) ∶=

{
𝑛∑
𝑖=1

𝜆𝑖𝐞̃𝑖 +

𝑑∑
𝑗=1

𝜇𝑗𝐛̃𝑗 ∶ 𝜆𝑖 ∈ ℤ for 𝑖 ∈ [𝑛] and 𝜇𝑗 ∈ ℤ for 𝑗 ∈ [𝑑]

}
.

Note that

| det(Λ̃(𝐲1, … , 𝐲𝑑))| = | det(Λ)| ⋅ | det(Λ𝑑)| = 1,
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NEWUPPER BOUND FOR LATTICE COVERING BY SPHERES 11 of 16

which can be seen by expanding the determinant of the corresponding matrix along the first 𝑛
columns (with each having only one non-zero entry, namely the diagonal entry 1).
Recall that 𝐾̃ = 𝐾 × 𝐵𝑑𝑟 ⊆ ℝ𝑛+𝑑. We will show that, with positive probability, the following

event occurs:

𝜌̄
(
Λ̃(𝐲1, … , 𝐲𝑑) + 𝐾̃

)
⩽ 𝐶2.3𝛿

2𝑑 ,

that is, the set of points (𝐲1, … , 𝐲𝑑) ∈ 𝕋𝑛×𝑑 for which this inequality holds has positive Lebesgue
measure. For this we need some further definitions and two auxiliary claims.
Let 𝐵 ∶= [𝐛1, … , 𝐛𝑑] ∈ ℝ𝑑×𝑑. Let 𝜙𝐲1,…,𝐲𝑑 ∶ Λ𝑑 → ℝ𝑛 be the linear map defined by

𝜙𝐲1,…,𝐲𝑑 (𝐳) = [𝐲1, … , 𝐲𝑑]𝐵
−1𝐳 for every 𝐳 ∈ Λ𝑑. (11)

In other words, 𝜙𝐲1,…,𝐲𝑑 sends a lattice point 𝐳 ∈ Λ𝑑 to
∑𝑑
𝑗=1 𝜇𝑗𝐲𝑗 ∈ ℝ𝑛, where (𝜇1, … , 𝜇𝑑) ∈ ℤ𝑑 is

the unique collection of integers such that 𝐳 =
∑𝑑
𝑗=1 𝜇𝑗𝐛𝑗 . For a set of points 𝑆 ⊆ Λ𝑑, we define

𝜙𝐲1,…,𝐲𝑑 (𝑆) ∶= {𝜙𝐲1,…,𝐲𝑑 (𝑥)∶ 𝑥 ∈ 𝑆}.

Define

 ∶=
{
P ⊆ 𝐵𝑑2𝑟 ∶ P is a fundamental parallelepiped with 𝟎 as a vertex

}
.

Lemma 3.1 implies that || ⩽ 𝐶3.1.
Let P be a fundamental Λ𝑑-parallelepiped. For any 𝐲1, … , 𝐲𝑑 ∈ 𝕋𝑛, we define

𝐾P(𝐲1, … , 𝐲𝑑) ∶= 𝐾 + 𝜙𝐲1,…,𝐲𝑑 (𝑉(P)).

In other words, 𝐾P(𝐲1, … , 𝐲𝑑) is the union of 2𝑑 translations of 𝐾 corresponding to the vertices in
P. Also, let 𝐸P denote the event that

𝜌̄(Λ + 𝐾P(𝐲1, … , 𝐲𝑑)) ⩽ 𝐶2.3𝛿
2𝑑 .

Our goal is to show that for every P ∈  , the event 𝐸P occurs with high probability. Recall-
ing the definition of P𝟎(𝐛1, … , 𝐛𝑑) (see Equation (3)), we begin with the case of 𝐸P∗ , where, for
convenience, we define

P∗ ∶= P𝟎(𝐛1, … , 𝐛𝑑)

Claim 3.5. We have

ℙ
[
𝐸P∗

]
⩾ 1 −

1

𝐶3.1 + 1
.

Proof of Claim 3.5. Define 𝐾0 (𝐲1, … , 𝐲𝑑) ∶= 𝐾, and for each 𝑖 ∈ [𝑑], let

𝐾𝑖(𝐲1, … , 𝐲𝑑) ∶= 𝐾𝑖−1(𝐲1, … , 𝐲𝑑) ∪ (𝐾𝑖−1(𝐲1, … , 𝐲𝑑) + 𝐲𝑖).
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12 of 16 GAO et al.

It follows from the definition of 𝜙𝐲1,…,𝐲𝑑 that 𝜙𝐲1,…,𝐲𝑑 (𝐛𝑖) = 𝐲𝑖 for 𝑖 ∈ [𝑑]. Therefore,

𝐾P∗(𝐲1, … , 𝐲𝑑) = 𝐾𝑑(𝐲1, … , 𝐲𝑑).

Let

𝐶 ∶= 𝐶3.1 + 1.

For 𝑖 ∈ [0, 𝑑], define

𝜌𝜌𝜌𝑖 ∶= 𝜌̄(Λ + 𝐾𝑖) and 𝛿𝑖 ∶=
(𝐶𝑑𝛿)2

𝑖

𝐶𝑑
,

and let 𝐸𝑖 denote the event that 𝜌𝜌𝜌𝑖 ⩽ 𝛿𝑖 = 𝐶𝑑𝛿2𝑖−1. By assumption, we have 𝜌𝜌𝜌0 = 𝛿 = 𝛿0.
Let us prove by induction on 𝑖 = 0, … , 𝑑 that

ℙ[𝐸0 ∧⋯ ∧ 𝐸𝑖] ⩾
(
1 −

1

𝐶𝑑

)𝑖
. (12)

This is true for 𝑖 = 0 since 𝜌𝜌𝜌0 is the constant function 𝛿0. So suppose that 𝑖 ⩾ 1. If we fix any
𝐲1, … , 𝐲𝑖−1 such that 𝐸𝑖−1 holds and take uniform random 𝐲𝑖 ∈ [0, 1)

𝑛 then we have by Markov’s
inequality and Lemma 3.3 that

ℙ[𝜌𝜌𝜌𝑖 > 𝛿𝑖] ⩽
𝔼[𝜌𝜌𝜌𝑖]

𝛿𝑖
=
𝜌𝜌𝜌2
𝑖−1

𝛿𝑖
⩽

𝛿2
𝑖−1

𝐶𝑑𝛿2
𝑖−1

=
1

𝐶𝑑
.

Integrating the complement of this inequality over all choices of 𝐲1, … , 𝐲𝑖−1 ∈ [0, 1)𝑛 for which
𝐸0 ∧⋯ ∧ 𝐸𝑖 holds, we obtain by Fubini–Tonelli’s theorem and induction that

ℙ[𝐸0 ∧⋯ ∧ 𝐸𝑖] ⩾
(
1 −

1

𝐶𝑑

)
ℙ[𝐸0 ∧⋯ ∧ 𝐸𝑖−1] ⩾

(
1 −

1

𝐶𝑑

)𝑖
,

which is the claimed inequality for 𝑖.
The claim now follows since

ℙ
[
𝐸P∗

]
= ℙ[𝐸𝑑] ⩾ ℙ[𝐸0 ∧⋯ ∧ 𝐸𝑑] ⩾

(
1 −

1

𝐶𝑑

)𝑑
⩾ 1 −

1

𝐶
. □

Next, we extend the conclusion of Claim 3.5 to all elements of  .
Claim 3.6. For every P ∈  , we have

ℙ[𝐸P] ⩾ 1 −
1

𝐶3.1 + 1
.

In particular, with positive probability, all of the events {𝐸P ∶ P ∈ } occur simultaneously.
Proof of Claim 3.6. Fix P ∈  . Define sets
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NEWUPPER BOUND FOR LATTICE COVERING BY SPHERES 13 of 16

𝑆 ∶=
{
(𝐲1, … , 𝐲𝑑) ∈ 𝕋𝑛 ×⋯ × 𝕋𝑛 ∶ 𝐸P∗ holds

}
and

𝑇 ∶= {(𝐲1, … , 𝐲𝑑) ∈ 𝕋𝑛 ×⋯ × 𝕋𝑛 ∶ 𝐸P holds}

Note that ℙ
[
𝐸P∗

]
and ℙ [𝐸P] are equal to 𝜇(𝑆) and 𝜇(𝑇), respectively, where 𝜇 denotes the

Lebesgue measure. Recall from Claim 3.5 that ℙ
[
𝐸P∗

]
⩾ 1 − (𝐶3.1 + 1)

−1. So, it suffices to show
that 𝜇(𝑇) ⩾ 𝜇(𝑆) (In fact, a straightforward modification of the argument below shows that 𝑆 and
𝑇 have the same Lebesgue measure).
Fix linearly independent vectors𝐰1,… ,𝐰𝑑 ∈ Λ

𝑑 such that

𝑉(P) =

{
𝑑∑
𝑖=1

𝜆𝑖𝐰𝑖 ∶ 𝜆𝑖 ∈ {0, 1} for 𝑖 ∈ [𝑑]

}
.

For each collection 𝐳1, … , 𝐳𝑑 ∈ 𝕋𝑛, let 𝐾0,P(𝐳1, … , 𝐳𝑑) ∶= 𝐾, and for each 𝑖 ∈ [𝑑], let

𝐾𝑖,P(𝐳1, … , 𝐳𝑑) ∶= 𝐾𝑖−1,P(𝐳1, … , 𝐳𝑑) ∪
(
𝐾𝑖−1,P(𝐳1, … , 𝐳𝑑) + 𝜙𝐳1,…,𝐳𝑑 (𝐰𝑖)

)
.

Similar to the proof of Claim 3.5, we have 𝐾P(𝐳1, … , 𝐳𝑑) = 𝐾𝑑,P(𝐳1, … , 𝐳𝑑).
Recall that {𝐛1, … , 𝐛𝑑} is a basis of Λ𝑑 and 𝐵 = [𝐛1, … , 𝐛𝑑] ∈ ℝ𝑑×𝑑. Let 𝑊 ∶= [𝐰1,… ,𝐰𝑑] ∈

ℝ𝑑×𝑑, and let𝑀 ∈ ℝ𝑑×𝑑 be the matrix such that𝑊𝑀 = 𝐵. It follows that𝑀𝐵−1𝑊 = 𝐼, and thus,

𝑀𝐵−1𝐰𝑖 = 𝐞𝑖. (13)

Given an element (𝐲1, … , 𝐲𝑑) ∈ 𝑆, define the map 𝜑∶ 𝕋𝑑×𝑛 → 𝕋𝑑×𝑛 by

𝜑([𝐲1, … , 𝐲𝑑]
𝑡) ∶= [𝜓(𝐲1), … , 𝜓(𝐲𝑑)]

𝑡,

where

[𝜓(𝐲1), … , 𝜓(𝐲𝑑)] ∶= [𝐲1, … , 𝐲𝑑]𝑀 mod ℤ𝑛×𝑑.

Combining (13) with definition (11), we obtain

𝜙𝜓(𝐲1),…,𝜓(𝐲𝑑)(𝐰𝑖) = [𝜓(𝐲1), … , 𝜓(𝐲𝑑)]𝐵
−1𝐰𝑖

= [𝐲1, … , 𝐲𝑑]𝑀𝐵
−1𝐰𝑖 = [𝐲1, … , 𝐲𝑑]𝐞𝑖 = 𝐲𝑖.

It follows that

𝐾P(𝜓(𝐲1), … , 𝜓(𝐲𝑑)) = 𝐾P∗(𝐲1, … , 𝐲𝑑).

Since (𝐲1, … , 𝐲𝑑) ∈ 𝑆, it follows from the definition of 𝑆 that

𝜌̄(Λ + 𝐾P(𝜓(𝐲1), … , 𝜓(𝐲𝑑))) = 𝜌̄
(
Λ + 𝐾P∗(𝐲1, … , 𝐲𝑑)

)
⩽ 𝐶2.3𝛿

2𝑑 ,

which implies that (𝜓(𝐲1), … , 𝜓(𝐲𝑑)) ∈ 𝑇.
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14 of 16 GAO et al.

Since P is a fundamental parallelepiped of Λ𝑑, the matrix 𝑀 must be an integer matrix with
determinant ±1.
It follows from Lemma 3.4 that the map 𝜑 on 𝕋𝑑×𝑛 is measure-preserving. Therefore,

ℙ[𝐸P] = 𝜇(𝑇) ⩾ 𝜇(𝑆) = ℙ
[
𝐸P∗

]
⩾ 1 −

1

𝐶3.1 + 1
,

which proves Claim 3.6. □

Fix a collection (𝐲1, … , 𝐲𝑑) ⊆ 𝕋𝑛×𝑑 such that all of the events {𝐸P ∶ P ∈ } occur simultane-
ously. For convenience, let Λ̃ ∶= Λ̃(𝐲1, … , 𝐲𝑑) and 𝜙 ∶= 𝜙𝐲1,…,𝐲𝑑 .
For every lattice point 𝐳 ∈ Λ𝑑, define

Λ𝐳 ∶=
{
𝐱∶ (𝐱, 𝐳) ∈ Λ̃

}
.

Note that, by definition, for every 𝐳 ∈ Λ𝑑, Λ𝐳 can be written as

Λ𝐳 = Λ + 𝜙(𝐳). (14)

This means that Λ𝐳 is simply a translation of the lattice Λ (which we assumed to be ℤ𝑛).
Fix a point𝐰 ∈ ℝ𝑑. Since (Λ𝑑, 𝐵𝑑𝑟 ) is robust, there exists a fundamental parallelepiped P𝐰 that

is contained in the ball 𝐵𝑑𝑟 (𝐰). Fix a point 𝐬 ∈ 𝑉(P𝐰) and let P
′
𝐰 ∶= P𝐰 − 𝐬 be obtained from P𝐰

by translating by −𝐬. Note that P′𝐰 is a fundamental parallelepiped contained in 𝐵𝑑
2𝑟
and 𝟎 is a

vertex in P′𝐰 , that is, P
′
𝐰 ∈  .

Consider the following restriction of the set 𝐾̃ + Λ̃:

(𝐾̃ + Λ̃) ∣𝐰∶=
{
𝐱 ∈ ℝ𝑛 ∶ (𝐱,𝐰) ∈ 𝐾̃ + Λ̃

}
.

Since 𝐾̃ = 𝐾 × 𝐵𝑑𝑟 , a point 𝐱 ∈ ℝ𝑛 is covered by (𝐾̃ + Λ̃) ∣𝐰 if there exists a point 𝐰̃ ∈ Λ𝑑 ∩ 𝐵𝑟(𝐰)

such that 𝐱 ∈ Λ𝐰̃ + 𝐾. In particular, the set
⋃
𝐰̃∈𝑉(P𝐰)

(Λ𝐰̃ + 𝐾) ⊆ ℝ𝑛 is covered by (𝐾̃ + Λ̃) ∣𝐰 .
By (14) and the linearity of 𝜙, we have⋃

𝐰̃∈𝑉(P𝐰)

(Λ𝐰̃ + 𝐾) = Λ + 𝜙(𝑉(P𝐰)) + 𝐾 = Λ + 𝜙(𝑉(P𝐰) − 𝐬 + 𝐬) + 𝐾

= 𝜙(𝐬) + Λ + 𝜙
(
𝑉
(
P′𝐰

))
+ 𝐾 = 𝜙(𝐬) + Λ + 𝐾P′𝐰 (𝐲1, … , 𝐲𝑑).

Since P′𝐰 ∈  , the choice of vectors {𝐲1, … , 𝐲𝑑} guarantees that

𝜌̄
(
Λ + 𝐾P′𝐰 (𝐲1, … , 𝐲𝑑)

)
⩽ 𝐶2.3𝛿

2𝑑 .

Since translation (by 𝜙(𝐬)) does not affect the density of uncovered points, we also have

𝜌̄
(⋃

𝐰̃∈𝑉(P𝐰)
(Λ𝐰̃ + 𝐾)

)
⩽ 𝐶2.3𝛿

2𝑑 .

Since 𝐰 ∈ ℝ𝑑 was arbitrary, it follows that 𝜌̄
(
Λ̃ + 𝐾̃

)
⩽ 𝐶2.3𝛿

2𝑑 . This completes the proof of
Lemma 2.3. □
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NEWUPPER BOUND FOR LATTICE COVERING BY SPHERES 15 of 16

4 CONCLUDING REMARKS

Rogers’ original proof in [22] is essentially the same as our proof of Theorem 1.3 in the special
case 𝑑 = 1. We hope that the idea of using an iterative step where the dimension increases by
more than 1 will lead to further improvements (via Theorem 1.3 or some other estimates).
Unfortunately, we have little intuition about the optimal robust lattice covering density in

dimensions 𝑑 ⩾ 4. The presented constant 𝛽 in Theorem 1.1 was the best one that came from our
sporadic search for 𝑑 ⩽ 3. So, the natural question motivated by Theorem 1.3 is the following.

Problem 4.1. Determine Θ̃𝑛. In particular, what is the infimum of

1

𝑛
log2

(
Θ̃𝑛∕𝜈𝑛

)
?

A lower bound Θ̃𝑛 ⩾ 𝜈𝑛∕2𝑛 can be established via the following argument. Let (Λ, 𝐵𝑛𝑟 ) be a
robust lattice covering of ℝ𝑛 with det(Λ) = 1. By definition, 𝐵𝑛𝑟 contains a fundamental paral-
lelepiped P. It is not hard to show that the largest volume of a parallelepiped (not necessarily
a Λ-parallelepiped) contained in 𝐵𝑛𝑟 is

(
2𝑟∕

√
𝑛
)𝑛
, attained by an inscribed cube centred at the

origin. Since P ⊆ 𝐵𝑛𝑟 is a parallelepiped with volume det(Λ) = 1, it follows that(
2𝑟∕

√
𝑛
)𝑛

⩾ vol(P) = | detΛ| = 1,
which implies that 𝑟 ⩾

√
𝑛∕2. Therefore, we obtain the bound

Θ̃𝑛 ⩾
vol(𝐵𝑛𝑟 )| det(Λ)| ⩾ vol

(
𝐵𝑛√

𝑛∕2

)
⩾
1

2𝑛
vol

(
𝐵𝑛√

𝑛

)
=
𝜈𝑛
2𝑛
.

In particular, this yields 1
𝑛
log2

(
Θ̃𝑛∕𝜈𝑛

)
⩾ −1, whichmeans that the best possible value we can

hope for 𝛾 via an application of Theorem 1.3 as stated is at least 1
2
log2(2𝜋e) − 1 = 1.0471….
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