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PHASE TRANSITION OF DEGENERATE TURAN PROBLEMS
IN p-NORMS*
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Abstract. For a positive real number p, the p-norm [|G||, of a graph G is the sum of the
pth powers of all vertex degrees. We study the maximum p-norm exp(n, F') of F-free graphs on n
vertices. Firedi and Kiindgen [J. Graph Theory, 51 (2006), pp. 37-48] showed that for every bipartite
graph F, there exists a threshold pr such that for p < pp, the order of ex,(n,F') is governed by
pseudorandom constructions, while for p > pp, it is governed by star-like constructions, assuming a
mild assumption on the growth rate of ex(n, F). The main contribution of our paper is extending this
result to hypergraphs. Moreover, in the case of graphs, our proof differs from that in [Z. Firedi and
A. Kiindgen, J. Graph Theory, 51 (2006), pp. 37-48], offering the advantage of producing the correct
constant factor when p > pp. When p = pp, Fiiredi and Kiindgen proved a general upper bound
on exp(n, F') that is tight up to a logn factor and conjectured that this factor is unnecessary. We
confirm this conjecture for several well-studied bipartite graphs, including one-sided degree-bounded
graphs that meet Fiiredi’s bound and families of short even cycles.
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1. Introduction. Given an integer r > 2, an r-uniform hypergraph (henceforth
an r-graph) on a set V is a subset H of (‘:) ={X CV:|X|=r} We identify a
hypergraph H with its edge set and use V(#) to denote its vertex set. The size of
V(H) is denoted by v(H). The degree dy(v) of v in H is the number of edges in H
containing v.

Given an r-graph H and a real number p > 0, let the p-norm of H be defined as

1M, = S dy(v),

veEV(H)

where, for convenience, we write d%,(v) := (dy (v))”.

Given a family F of r-graphs, we say that an r-graph H is F-free if it does not
contain any member of F as a subgraph. The p-norm Turdn number of F is defined
as

ex,(n, F):=max< [|H|, : v(H)=n and H is F -free ;.
P p
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DEGENERATE TURAN PROBLEMS IN p-NORMS 1713

The case p = 1 corresponds to the Turdn number ex(n,F) of F (differing only by
a multiplicative factor of r), which represents the maximum number of edges in an
n-vertex F-free r-graph.

Extending the seminal work of Turdn [Tur4l], Caro—Yuster [CY00, CY04] initi-
ated! the study of the p-norm Turdn problem for graphs by determining the value
of ex,(n, K;41) for p> 1. This line of research has since been extended to various other
graphs and hypergraphs, as explored in works such as [Nik09, BN12, LLQS19, BCL22b,
BCL22a, Zha22, Ger24, CIL*24]. In this work, we focus on the case where F is de-
generate.

The Turdn density of F is defined as m(F) := lim,_,o0 ex(n, F)/("). A family F
of r-graphs is called degenerate if w(F) = 0. According to a classical theorem of Erdds
[Erd64b], this is equivalent to stating that F contains at least one r-partite r-graph.
Determining the growth rate of ex(n, F) for degenerate families is a central and noto-
riously difficult topic in extremal combinatorics, and it remains unresolved for most
families. For example, the Even Cycle Problem proposed by Erdds [Erd64a, BS74],
which asks for the exponent of ex(n,Cay), is still open for every k not in {2,3,5} (see,
e.g., [ERS66, Ben66, Wen91, LU93, LUW99]). For more results on degenerate Turdn
problems, we refer the reader to the survey [FS13].

For an r-partite r-graph F, the partition number Tpa(F') of F' is defined as the
minimum size of a set S C V(F) such that V(F)\ S can be partitioned into r — 1
sets Sa, ..., S, with each edge of F' containing exactly one vertex from each S;. The
independent covering number Tina(F') of F is defined as the minimum size of a set S
such that every edge of F' contains exactly one vertex from S. It is clear from the
definition that Tinq (F') < Tpar (F') for every r-partite r-graph F', and Ting (F') = part (F)
for every bipartite graph F.

Given the definitions that we have introduced, we can immediately derive the
following two general lower bounds for ex,(n, F).

FACT 1.1. Let r > 2 be an integer and F be an r-partite r-graph. For every real
number p > 1, we have

eyt ) 2 oo (LN )y (M7 D

r—1

The first lower bound arises from an optimal construction for ex(n,F) as well
as convexity (see Corollary 2.5). The second lower bound is based on the star-like
r-graph S"(n,t) for t = 1inq(F) — 1, where

Sr(n,t);z{eeCZ]);|em[t]|=1}, and [n]:={1,...,n}).

Our work is motivated by the combination of the following facts in graphs. For
p =1, the lower bound constructions for ex; (n, F) often exhibit certain pseudorandom
properties (see, e.g., [KRS96, ARS99, MYZ18, PZ21]) and, in particular, are almost
regular, meaning that the maximum and minimum degrees differ by only a constant
factor. In contrast, works of Caro and Yuster [CY00], Nikiforov [Nik09], and Gerbner
[Ger24] on even cycles and complete bipartite graphs showed that for large p, the
lower bound constructions for ex,(n,F) are highly structured and resemble S?(n,t)
for some appropriate choice of t.

L According to the introduction in [FKO6], it seems that ex,(n, ;) was already considered by
Erdés in the 1970s (see [Erd70]).
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Fic. 1. Ezponents of exp(n, K3 3), exp(n,Ca), and exp(n,Cs).

This contrast suggests that a general phenomenon (see Figure 1) may hold: for
every degenerate family JF of r-graphs with ex(n, F) = Q(n'*%) for some a > r — 2,
there exists a threshold pr > 1 such that, for p € (1,pr), ex,(n, F) = O(n(%)p)7
while for p > pr, ex,(n,F) =0 (np(r’l)). Fiiredi and Kiindgen [FK06] showed that
this holds for r = 2. In the following theorem, we show that this holds for all r > 2.

For a family F of r-graphs, we define

Tpart (F) :=min{mpart (F): F € F is r -partite} and
Tind(F) :==min{rinq(F): F € F is r -partite} .
THEOREM 1.2. Let r > 2 be an integer and p > 1 be a real number. Suppose that
F is a degenerate family of r-graphs satisfying ex(n, F) = O(n**®) for some constant
a€lr—2,r—1). Then there exists a constant Cx >0 such that
Cr - nltra, if 1<p<-——,
(Tpart(F) =1+ 0(1) (,7)", if p> ==

1
1-a’

exp(n, F) <{

In particular, for r =2, we have, for every p >
exp(n, F) = (Tina(F) — 1+ o(1)) nP.

Remarks.

e The Rational Exponent Conjecture of Erdds and Simonovits (see [FS13, Con-
jecture 1.6]) states that for every degenerate finite family F of graphs, there
exist a rational number o and a constant ¢ > 0 such that

. ex(n,F)
A Ttk
Note that by Corollary 2.5, if this conjecture holds, then Theorem 1.2 is tight
in the exponent for every p € (1,——) when r=2.

o If ex(n,F) = O(n'*?) for some 8 < r — 2, then by taking a = r — 2 in

Theorem 1.2, we obtain =1, and hence,

r—l—«

p
exp(n, F) < (Tpart (F) — 14 0(1)) <r ﬁ 1> for every p>1.
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This bound is tight in the exponent unless F contains an r-graph F with
Tpart (F') = 1. In that case, it is straightforward to show that, for r = 2, either
exp(n, F) =0(n) (ifex(n, F) =0O(n)) or ex,(n, F) = O(1) (if ex(n, F) = 0(1))
for every p > 1. The case r > 3 seems to be more complex, even in the special
case of intersection problems (when each forbidden r-graph has only 2 edges);
see [FT16] for a survey.
For p at the threshold, i.e., for p = r—ll—a7 Fiiredi and Kiindgen [FKO06] prove a
general upper bound that is tight up to a logn factor for ex,(n,F) when r = 2. In
the following theorem, we generalize this result to r > 3.

THEOREM 1.3. Let r > 2 be an integer. Suppose that F is a degenerate family of
r-graphs satisfying ex(n, F) = O(n'*T%) for some constant a>1r —2. Then

ex,. (n,F)=0 (np*(rfl) logn) where  p, = ﬁ.

We conjecture that the logn factor in Theorem 1.3 can be removed, thus extending
the conjecture of Fiiredi and Kiindgen [FKO06], who made it for » = 2. In support of
this conjecture, we prove it for several well-studied families of bipartite graphs in the
following theorem.

Given a bipartite graph F' with two parts V1 and Vs, we say F is s-bounded if every
vertex in V3 has degree at most s. A celebrated theorem of Fiiredi [Fiir91], later refined
by Alon, Krivelevich, and Sudakov [AKS03], establishes that ex(n, F) = O(n?~+) for
every s-bounded bipartite graph F. This bound is tight for graphs such as complete
bipartite graphs K, when ¢ is sufficiently large [KRS96, ARS99, Buk24].

THEOREM 1.4. The following statements hold for sufficiently large n.

(i) ex¢/(-1)(1,{C4,Cs, .., Car}) <T65MTT for every £>3.

(i) exs/2(n,Cs) < 2164n3/2.

(iii) Suppose that F is an s-bounded bipartite graph. Then

S
exs(n, F) <2 (W(j)l + |V(F)|) n’.

This paper is organized as follows. In section 2, we present some preliminary
results. In section 3, we introduce a p-norm extension of the classical A-Almost-
Regularization Theorem by Erd6s and Simonovits. The proofs of Theorems 1.2, 1.3,
and 1.4 are provided in sections 4, 5, and 6, respectively. Section 7 includes some
open problems and concluding remarks.

Remark. After the preprint was posted on arXiv, Daniel Gerbner informed us
that results similar to Theorems 1.2 and 1.4 for the case r = 2 were already proved by
Fiiredi and Kiindgen in [FK06, Theorem 3.3] using an elegant and concise argument.
Our proofs of both theorems appear to be quite different from the approach taken by
Fiiredi and Kiindgen. In the case p < 1/(1—a), our proof relies on a p-norm adaptation
of the classical A-Almost-Regularization Theorem by Erd&és and Simonovits, which
is of independent interest. In the case p > 1/(1 — a), our proof has the additional
advantage of providing the tight main term.

2. Preliminaries. We present some notation and preliminary results that will
be used in the subsequent proofs.

Given an r-graph H, we use §(H), A(H), and d(#) to denote the minimum,
mazximum, and average degree of H, respectively. For a vertex v € V(H), the link
Ly (v) of v is defined as the (r — 1)-graph consisting of all (r — 1)-sets S such that
SU{v} € H. We will omit the subscript H if it is clear from the context.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Unless otherwise stated, all asymptotic notations in this paper are considered
with respect to n. Floors and ceilings will be omitted when they are not critical to
the proofs. The base of log is assumed to be 2.

FACT 2.1. Let p>1 and x>y >0 be real numbers. Then

)z T

FACT 2.2 (power mean inequality). Let p > g > 1 be two real numbers and
x1,...,T, be nonnegative real numbers. Then

1/p 1/q
Zze[n] If > Zze[n] 1'3
n - n '

FACT 2.3 (Minkowski’s inequality). Let p > 1 and z1,...,Zn,Y1,...,Yyn be real
numbers. Then

n 1/p n 1/p n 1/p
<Z|$z +yip> < <Z|$i|p> + <Z|yz|p> :
i=1 i=1 i=1

In particular, for every p>1 and z,y >0,
(2 + )17 <zt

FACT 2.4. Let p>q>1 be two real numbers and H be an r-graph on n vertices.
Then

M= Y =Y " W)

veV (H) veV (H)
< >0 d(0)- (AR = H, - (AH)T

In particular, |H||, <[H]l,- nr=1(—aq)
The following result is an immediate corollary of Fact 2.2.

COROLLARY 2.5. Letp > q>1 be two real numbers and H be an n-vertex r-graph.

Then
1/ 1/
(1) (2™
n n

Consequently, ||H|,, > n([|H], /n)P/, and hence,

eX1(n,]-"))p:n (r-ex(n,]-'))p.

n n

(2.1) exp(n, F) >n (

Given an r-graph H and a vertex set U C V(H), we use H[U] to denote the induced
subgraph of H on U. Similarly, for r pairwise disjoint vertex sets V1,...,V,. CV(H),
we use H[Vi,...,V;] to denote the collection of edges in H that contain exactly one
vertex from each V;.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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PROPOSITION 2.6. Let r > 2 be an integer and p > 1 be a real number. Let G be
an r-graph on an n-set V and let U CV be a vertex set. For every m <n, there exists
a set W CV of size m such that the induced subgraph H := G[U UW] satisfies

> &)= (1 +om(1) (2 )(T UZd”

velU velU

Proof of Proposition 2.6. Choose uniformly at random an m-set W from V. For
each v € U, an edge e € Lg(v) is contained in W with probability

n—(r—1
(m—((r—l)))
o W . .
For every v € U, let dg(v,W) := |Lg(v) N (,,)|, noting from the equation above
that E[dg(v, W)] = (14 0, (1)) ()"~ dg(v). Combining this with Fact 2.2 and the

n
linearity of expectation, we obtain

> dg(v,vv)] =Y E[d}(v,W)]

m

— (14 om(1) (f)r_l.

PleCW]= -

velU velU
> S E[dg(v, W)
velU
UEZU<1+om (5) dg(l}))
= (1+om(1) (£ ) " I)de

veU
Therefore, there exists a set W C V of size m such that the induced subgraph
H o= GIU U W] satisfies Y,y d2(v) > Yocp db0,W) > (1+ on(1)) ()"
> ver dg(v). 0
THEOREM 2.7 (Erdés [Erd64b)). For every degenerate family F of r-graphs on n
vertices, there exists a constant § >0 such that

ex(n,F)=0 (nrﬂs) .

We say an r-graph H is semibipartite if there exists a bipartition V3 U Vo =V (H)
such that every edge in H contains exactly one vertex from Vi, in which case we also
call it |V4] by |Va| semibipartite. For convenience, we write H = H[V1, V2] to emphasize
that H is semibipartite with respect to the bipartition V3 UV, =V (H). Given a family
F of r-graphs, we use ex(m,n, F) to denote the maximum number of edges in an m by
n semibipartite F-free r-graph. The function ex,(m,n, F) is defined analogously: for
every p > 1, ex,(m,n,F) is the maximum p-norm of an m by n semibipartite F-free
r-graph.

PROPOSITION 2.8. FEwvery r-graph G on n vertices contains a balanced r-partite
subgraph H such that

| p
I, > (5 o)) 191,

In particular, for r =2 we have

(2.2) exp(n,n, F) > (; + 0(1)> exp(2n, F).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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Proof of Proposition 2.8. Choose a balanced r-partition V3 U--- UV, = V(G)
uniformly at random. More specifically, we first fix integers my,...,m, satisfying
my.+1>my>--->m, and m; +---+m, =n. Then we inductively select uniformly
at random an m;-set V; from V(G)\ (Vb U Vi U---UV;_1), where Vj := 0. Let
G:=g[W,...,V;] and V :=V(G). Similarly to the proof of Proposition 2.6, it follows
from Fact 2.2 and the linearity of expectation that

E[IG],]| =Y Bl @)= Y Elde®)”

veV veV »
= Z < Z Plee G])
veEV \e€G: veEe
= % <<:' + 0(1)> ~dg(v)>p = (:' + o(l))p IG1l,-

Therefore, there exists a balanced r-partition V4 U--- UV, = V(G) such that the
r-partite subgraph H := G[V4,..., V;] satisfies [|G]|, > (2 + o(1))" ||G||- 0

Let K|, be the complete r-partite r-graph with parts of sizes s1,...,s;, re-
spectively. Extending classical theorems of K&véri, Sés, and Turdn [KST54] and Erdés
[Erd64b], the following upper bound for ex(m,n, K%, ) was proved in [HHL"23].

PROPOSITION 2.9 (see [HHL'23, Proposition 2.1]). Suppose that r > 3, s, >
--->51>1, and m,n>1 are integers. Then

1
(s Fs—r+1) g1 n
ex(m,n,K;,_“’sr)g r—rl mn S1Sp—1 Jr(slfl) 1)

PROPOSITION 2.10. Let r > 2 be an integer and F be a degenerate family of
r-graphs. Suppose that ex(n,F) = O(n**%) for some constant a. Then there exist
constants Cr, Ny such that

ex(m,n,]—')§C}-m1+a*(“1)n“1 for all n>m> Ny.

Proof of Proposition 2.10. Let C, Ny be constants such that ex(n,F) < Cn't®
for every n > Ny. Let Cr := 2212C. Suppose to the contrary that there exists an
F-free m by n semibipartite r-graph G = G[Vi,Va] with |G| > Crm!te—(r—Dpr—1
where n > m > Ny. Similar to the proof of Proposition 2.6, there exists a set U C V5,
of size m such that the induced subgraph H := G[V; U U] satisfies

H= 3 )= (14 0() (2) X dglo)

veEV] veVy
1 m r—1
> (=
-2 ( n ) 9!
1 r—1
5(5) ottt 2 o2m) e 2 ex (Vi UULLF),
a contradiction. 0

3. Regularization under the p-norm. In this section, we prove the following
extension of the classical A-Almost-Regularization Theorem by Erdés and Simonovits
(see, e.g., [FS13, Theorem 2.19]).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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LEMMA 3.1. Let r > 2 be an integer. Let « € (r —2,r — 1), p € [1, ﬁ), and
C >0 be real numbers. Then for every e € (0,1), there exist constants K and Ny such
that the following holds for every n > Ny. Suppose G is an r-graph on n vertices with
G|l > Cn'*P>. Then G contains a subgraph H on m vertices satisfying

@) 6], (1 - e)Cm1+ve,

(ii) m u where § = 1pr=1=0)
) 800 < e, on
(iv) |H| > Cm'+e, where C = w

TK P

%a), and C > 0 be

Tr—1

Proof of Lemma 3.1. Let r > 2, a€ (r—2,r—1), pe|l
1-p(r—1—a)

as assumed in Lemma 3.1. Since p € [1, ——), the constant ¢ = S
0<d<1/4. Fix e€(0,1). Let £; be the real number in (0,¢) such that

l—e1—((r—1e)/P=(1—-e)l/r.

satisfies

Let K be a constant satisfying

K1+p(¥ ) €1 _ 46 . €1 N KQ(S
Kp(r—=1) 92+pa 922+pa
Let N be the constant such that Proposition 2.6 holds with o,,(1) > —1/2 for all
m > Ni. Let Ng > Nj be a sufficiently large integer and G be an r-graph on n > Ny
vertices with [|G||, > Cn'tPe.

For convenience, for every r-graph KC, we define

1K,
[V (K)[ e

K9 >21Pr=1)  and

O(K):=

Note that ®(G) > C.
We will define a sequence of subgraphs Go =G O G D -+ D G, for some k£ > 0
such that
1\ ! 9\t
B(Gu1)> K2 2(0) > 0(G) ad () nsVGl<(5) n

for every i € [0,k —1].
Suppose we have defined G; for some i > 0. Let
K -G,
U;:=qveV(G): dp ( ) > }
{ [V (Gi)l

It follows from

K-[1Gill
1G:ll, = Z dg.(v) de ) = Uil - W
veV(G;) veU; 4
that
V(G
< .
\Ui| < %

If 37 cv, dg,(v) < er]|Gill, or [V(Gi)| < Ni, then we stop the process and set k = i.
Otherwise, we apply Proposmon 2.6 to G; with U and m in the proposition corre-
sponding to U; and |V(G;)|/K here. Let V;11 CV(G;) be the |V(g _set returned by
Proposition 2.6, and let G;11 := G;[U; U V;41]. By Proposition 2. 6 we have

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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||gi+1Hp 2 Z dgiﬂ (U)

veU;

> (1+o(1))(

V(G| K\ Svew, 45, () e1 ]Gl
Vo) 20> > s

It follows that

) . ) 1+pa
oGy NGl E11Gi, /<2|v<gz)|)

[V(Giyr) 1P = 2Kp(r—1) K
€1 K1+pa HgZ”p

26
ST D o VG > K2 ®(G;).

(3.1) -

Additionally, it follows from the inductive hypothesis that

; 1'L'+1
B2 VG| =10:UVin > Wi = 2> (L), ana

VGl V@)l _ (2™
B3 VG| =10 UVin| < [0l + e < M < (20,

as desired.
We claim that the process defined above stops after at most k, := logg(n/Ni)
steps. Indeed, suppose this is not true. Then at the k.-step, by (3.1), we would have

|Gk,
[V (G, )P

It is trivially true that

1961l _ Zvevigen % (V) _ V(G- [V(Gr) PV
VG~ VG = V(G e
= V(G )P < V(G ).

Combining this with (3.3) and (3.4), we obtain

(3.4) = ®(G.) > (K2)" - 8(Go) > CK¥H+.

9 K
CKQJ’“*§|V(Q;€*)|§(K) n.

It follows that

K 28\ ke 146
n > C K20k K —C K Kk > oKk gh = [ 2
2 2 Ny

which is a contradiction since C,d, N7 > 0 are fixed and n is sufficiently large. There-
fore, the process defined above stops after at most k. :=logy (n/Ny) steps.
Recalling that & is the final step of the process, and using (3.2), we have

V(Gr)| = (;)kn > <I1{>k n> Ni.

This means that the process stopped due to
(3.5) > dg, (W) <er|Gil,-

veUy

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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Let H denote the induced subgraph of G, on W := V(Gi) \ Uy and let m := |W|.
Recall that

K- |gk||p}
VGl 1

We will show that H satisfies the assertions in Lemma 3.1.
Let R := Gy \ H. Note that every edge in R contains at least one vertex from Uy,.

Therefore,
Y dr@) < (r—1)-RI<(r=1)- > dr(v)
veWw veUy

Since R C Gy, it follows from the definition of Uy and (3.5) that

p N K- |G, \ 7
ILACED SO ATED DEAOH el .y

Uk = {U eV(Gr): dgk (v) >

veW veWw veW
K- Gkl \ 7
7“—1 dR (p>
; V(G
(r=1)- Y dg,(v)-d5 ' (v)
veUy
=(r—1)- Y d} (v)<(r—1e [|Gxll,-
veUy

If, for the sake of contradiction, it holds that - .y df,(v) = (|G|, < (1 —¢) |Gkl
then it follows from the inequality above that

S b (v)= Y (du(v) +dr(v)”

veW veW

1/p 1/p\ P
(Z d%(v)) + (Z d%<v>>
veWw veW

<|Q;/1’ + ((r —1)e Hngp) 1/p>p
) <((1 ~e) ”gknp)l/p + <(7’ —1)ey ||Qka> ””)p

= (=" 4+ (= 1)) Gl = (1= 217 11G,

where the first inequality follows from Fact 2.3 and the last equality follows from the
definition of ;. Combining this with (3.5), we obtain

IGxll, = > dg, (v) + D dg, (v) <erlIGell, + (1 =) lIGkll, < IGll,

veUy veWw

IN

IA

a contradiction. Therefore, we have

(3.6) 161, = (X =&) Gk,
which implies that

191, o A=) lGll, _ 1ol

O(H) = mitre = [V (Gy) [l rre — ( )W 2 (

1-¢)C.
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Here, we used the fact that
B(Gr) > K - ®(Gy1) > -+ > K> - ®(Go) > B(Go) > C.

This completes the proof of Lemma 3.1(i).
Next, we prove Lemma 3.1(ii). Note that by W =V (Gg) \ |Ux| and |U| < &Gl
we have |W| > |V (Gr)|— w Recall the following results that we have established.

CrLAM 3.2. We have the following:

(i) V(Ge)l - VGl < 1w =m < |V (Gl
0 () n< Vg (),
(i) K20 < gt < Mriitdre— = [V (Gr) PO = |V ()[4

It follows from Claim 3.2(ii) and (iii) that

k 1—46
K20 < V(G| < ((;) n> .

Since K9 > 21+p(r—1) > op(r—1-a) — 91-45 " the inequality above implies that

s K2k50Kk(1—46) KZkéch(1—46)

_ jok(1-35)
= ok(1—45) = Kks =K C.

n

It follows that K* < ni=s 0T Therefore,

VGl VGl | 1 (1 )’“nz s s

> )
K 2 -2 2

proving Lemma 3.1(ii).
It follows from the definition of Uy, and |||, > (1 — ) ||Gk[l,, (by (3.6)) that

K- )Gkl \ 7 K-HI, N\NYP K- IHINT?
37 M<(p) <() <() .
3.7) ) < e TSI 0 om
This proves Lemma 3.1(iii).
Finally, it follows from

1M1, =" d () <> du(v) - (A =r-|H]- (AH)"

veW veW
and (3.7) that
" H 1/(1- =
P L PR — == (U5) T
r(A(H))? T(K~||HHP)T r K
(1—e)m

Combining this with |||, > (1—¢) [|Gkl|, > (1—&)Cm!*P (by (3.6) and Claim 3.2(iii)),
we obtain

p—1

1/(1=eym\ 7 wi/p  (1—e)CVpmlite
|H| > - (K) (1 —e)Cm!'tP?) P = — ,
rK »
which proves Lemma 3.1(iv). d
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4. Proof of Theorem 1.2. In this section, we prove Theorem 1.2. This will be

achieved through the following two propositions, first addressing the case p < T—ll—a'

PRrROPOSITION 4.1. Let r > 2 be an integer. Suppose that F is a degenerate
family of r-graphs satisfying ex(n, F) = O(n'**®) for some constant o. Then for every
pE (1, ﬁ), there exists a constant Cx such that for all sufficiently large n,

ex,(n, F) < Cx -nttPe,

In particular, if ex(n,F)=0O(n'*®), then together with (2.1),

1
,F)=0(n!tre ell,—).
exp(n, F) (n ) for every p o —

Proof of Proposition 4.1. Let C, Nog > 0 be constants such that ex(n, F) < Cn!Te
for every n > Ny. Let § := 1_(717%’1)” € (0, i) Fix e := 3 and let K = K(r,a,p,¢) and
Ny = Ny(r,a,p,e) be the constants returned by Lemma 3.1. Let Cr := 2PrP KP~1CP
and Ny := max{Ny, (2Np) 5 /CY°}.

Suppose to the contrary that there exists an F-free r-graph G on n > N vertices
with |G|, > Cr - n'*P*. Then, by Lemma 3.1, there exists a subgraph % C G on
m > (C’;_-/én)l%&s/Z > Ny vertices with |H| > (1 — S)C}/pml‘m/(rl(%;l) = Cm!te,
contradicting the F-freeness of H C G. ]

1
r—l—a’

Next, we consider the case p >

PROPOSITION 4.2. Let r > 2 be an integer. Suppose that F is a degenerate family
of r-graphs satisfying ex(n,F) = O(n'T®) for some constant o € (r — 2,7 —1). Then
for every p> —1—

r—l—a’

ey, 7) < (P~ 1o ()

Proof of Proposition 4.2. Let F € F be an r-partite r-graph satisfying rpar (F') =
Tpart (F). Let A3 U---UA, = V(F) be an r-partition of F with |4;|<--- <|A,| and
|A1| = Tpart (F). Let s; :=|A;] for ¢ € [r]. Note that s1 = [A1] = Tpart (F) = Tpart (F)-
Let the (r — 1)-partite (r — 1)-graph Fy on As U---U A, be defined as

By Theorem 2.7, there exist constants § >0 and C > 0 such that ex(n, F}) < Cn" =179

for every n € N. By reducing §, we may assume that § < min{ 81”_18”71,%}. Let

Dy 1= r—11—a' Let §; > 0 be a sufficiently small constant such that, in particular,
24+a-—r }
D — D«
Fix an arbitrary small constant € > 0. Let n be sufficiently large. Suppose to the
contrary that there exists an n-vertex F-free r-graph H with

Il P 1) () = mra ()

and 62:_51+51<Inin{57p_1}'

61<min{p—p*, —— s’ D

Let
Vi=V(H), U:={veV:dy(v)> nr_l_‘sl}, Vi:=V\U, and Hi:=H[V].
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CrAM 4.3. We have |U| < n’2.

Proof of Claim 4.3. Suppose to the contrary that this is not true. Let U’ CU be
a set of size n%. By Proposition 2.6, there exists a set V' C V of size n% such that
the induced subgraph H[U" U V"] satisfies

1 1 nd2\ "1
HU"OV)|= = 3 dugorivn(v) = - (L +0(1)) (n) 3 duw)
veU” veu
1 nT’(SQ—(;l
S —r-na-s) e 160 _
= 27’n n n o

Since 16y — 01 — da(1 + ) =da(r — 1 —a) — 61 = (r — 1 — a)d1, we have

783 —01 n(r—l—a)51

r  224ap

n

[H[U" V"] > : (2n52)1+a >ex(2n°2, F) > ex (JU" UV"|, F),

a contradiction. 0

CLAIM 4.4. We have

(4.1) S dn(v) < (81 1+ 235) (T" 1), and

« i (66 ()"

Proof of Claim 4.4. Let S be the collection of edges in H that contain exactly one
vertex from U. Note that S = S[U, V1] is a semibipartite r-graph. Since F' C K
and S is F-free, it follows from Proposition 2.9 and Claim 4.3 that

1
(52+"'+57’7T+1); r—]——21 n
< S1Sp— —
51 = r—1 [Uln 1 ERAC I r—1

1

et =P 1) e

clatban o r b DT ot ("
r—1 r—1

§;<TH1)+(31_1)<rn1>‘

Let Sy denote the set of edges in H that contain at least two vertices from U. It is
clear that
n n € n
S, <|U 2 < 282 < = .
2l = (T—Z)_n r—2) " 6r\r—1
Therefore,

Zdﬂwms+r-|sz|sg<,,fl)+<51—1><£1>”'6€r<r:)

velU

(4.3) :<81—1+23€> (Tﬁl)

This proves (4.1).

yees S
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Next, we prove (4.2). First, note that for every v € V;, we have
n r—2-+46.
d;l.[(’l})—dq.[l(’l))<|U< 2) <n 2,
r—

Therefore, by the assumption that dy < pp;l, we have

p
g n
S (du(v) = dag, (v)7 < V3] - mPr=2402) < =201 < € ( - 1) |

veV;

Consequently, it follows from Fact 2.3 that

1/p 1/p
<Z d%(@) = <Z (dw, (v) +du(v) — dm(v))p>

veVy veVy

1/p
< < ( (dw(v) — dy, (U))p>
veV; veV;

<327 + (i) (")

Suppose to the contrary that [|Hi ||, < ((§)'/7 - (§)'/*)? (,",)". Then it follows from
(4.3) and the inequality above that

11, =" dh () + > dby(v)

velU veV;
p—1 1/ 1/ 1/ P
n e\l/r e\1/p n eNl/P [ n
(). G) -0 (3)
<2 du(v) <r—1) +<<3 1 r—1)\1 r—1
velU
2e n \* e/ n\’ n \?"
< -1 < —(s1 —1
—(81 +3><r—1> +3<r—1) (51 +€)(7«—1)’
a contradiction. This proves (4.2). |
N 1 (P P«)d1 2+o¢ r

o <psx <p. Since a >r —2 and §; < , we have p > 1. It
follows from Fact 2.4 and (4.2) that there exists a constant 51 > 0 satisfying

Pall, Il e

(A(Hl))p_ﬁ - (ny._1—51)p—ﬁ - (n7=1- 61)

_Elnp(r 1—a)+(p—p)d1+pa

[Hall5 =
— elnlf(P*P*)51+(P*ﬁ)51+i’Oé

_ €1n1+’30‘+(p* —p)o1

Since (p. —p)d1 > 0 and n is sufficiently large, we have ||H]; > n' P which, by
Proposition 4.1, implies that [|[H1]|; > exz(n, ), a contradiction. This completes the
proof of Proposition 4.2. 0

5. Proof of Theorem 1.3. We present the proof of Theorem 1.3 in this section.
The following result will be useful for the proof.

PROPOSITION 5.1. Let r > 2 be an integer and p > 1 be a real number. Suppose
that G = G[V1,...,V.] is an r-partite r-graph with min{|V;|: i € [r]} > 2. Then there
exists a nonempty set U C Vi such that
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|g[U7V277‘/TH >

U5 Sper, B0 N\ U Sy, dh()
2 ((log(l%l---wﬂ) S <log(|V2~-~|Vrl)) ‘

Proof of Proposition 5.1. Let N := |Va|---|V,| and ¢ := [log N']. For each i € [t],
let

Up:={veVi:dg(v) e 2"7',2")}.

Since 37, v, dg(v) = ;e 2ver, dg(v), by the Pigeonhole Principle, there exists
ix € [t] such that

dp
> dé(v)ziz“evlt o),
veU;,

Let U :=U;» and m := |U|. It follows from the definition of U;, that

ZUEVl dg (1))

m- 2P = (U] 2P > Y dB(v) > ; :

veU;,

which implies that

2“*1>1
-2 m-t

(zvevl d’é(v))”’_

Therefore,

D=

1 (Zvevl d’é(v))”” -

|g[U,V2,~-.,VTH:;]dg(v)ZnLQi**l25 ; m
This proves Proposition 5.1. 0

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Recall that p, = r7117a' Let n be sufficiently large.
Suppose that G is an F-free r-graph on n vertices. By Proposition 2.8, there exists
a balanced r-partition V43 U--- UV, = V(G) such that the r-partite subgraph H :=

G[V1,...,V,] satisfies

! Px 1 !;D*
Il > (5 +ow) 191, 25 (%) 1l

Since [ K|, = > icp 2Zvev; 93 (v), by the Pigeonhole Principle, there exists V; such
that

2

I, 1 ey
P+ > P« > -
> iz ez o (2] g

veV;

Px "

By symmetry, we may assume that ¢ = 1.
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Applying Proposition 5.1 to H, we obtain a nonempty set U C V; of size m for
some m < |V;| such that

Ul ( > e, & (v) )/
4 \log (Va| - [V;])

N ml—p% (1 <T')P* ||g ). >1/P*

- 4 2r \ r7 r-logn

_m1+a—(r—1) (1 (r!)p* G ). )1/17*
4 2r \ r" r-logn '

Since ex(n,F) = O(n'*%), it follows from Proposition 2.10 that |H[U, Va,...,V,]| <
Crm'te==Dpr=1 for some constant Cx > 0. Therefore,

a—(r— * 1/px
el 8 S 0 S () P < Cpmito—(r=1y,r=1
4 2r \r" r-logn - ’

(HU V2, V]| 2

which implies that

'

P 7\ P
1Gl,, <C% 4P -2r. (;) rlogn - nP+ ("= = CP=o% +1, (:') nP+ (=D 1o p.

This proves Theorem 1.3. |

6. Proof of Theorem 1.4. In this section, we prove Theorem 1.4. For con-
venience, for every integer ¢ > 3, let C<gy := {C4,Cs,...,Car}. The following two
theorems will be useful for us.

THEOREM 6.1 (Lam and Verstraéte [LV05]). Let £ > 3 be an integer. For every
neN,

1 1 1
ex(n,C<gr) < —n'te 4 2 = <2 + 0(1)) n'te.

N =

THEOREM 6.2 (Naor and Verstraéte [NV05]). Let £ > 2 be an integer. Then

4((nm)zte +n+m), if € is odd,
ex(m,n,C<gp) < A
+

ENE

(nm)Tm?® +n+m), if £ is even.

In particular, for every £>2 and for everyn>m>1,

ex(m,n,C<qp) <4 ((nm)%'|ri +n+ m) ,

and if m < n%, then ex(m,n,C<qr) <4(n+mn+m) <12n.

Recall that an ordered sequence of vertices v1,...,ver1 € V(G) is a walk of length
£ in a graph G if v;v;41 € G for all i € [(]. We use Wyy1(G) to denote the number of
walks of length ¢ in G.

The following result will be useful for the proof of Theorem 1.4(i). The case where
k is even appears in [ES82, Theorem 4|, while the case where both k and ¢ are odd
follows from the more general result of Saglam [Sagl8, Theorem 1.3].
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THEOREM 6.3 (Erdés and Simonovits [ES82]; Saglam [Sagl8]). Suppose that

k>0 >1 are integers such that k is even or £ is odd. Then for every graph G on n
vertices, we have

n - n

(W@ (WeealG)

PROPOSITION 6.4. For every graph G we have

G113 2
WA= ey

Proof of Proposition 6.4. It follows from the Cauchy—Schwarz inequality that

2 1/2\ 2
(Z dé;”(v)) - (Z (da(dc0)"* (1 ) )

weG weG
< (Z dg(u)dg(v)> . (Z dcl(u)> .
uwveG uwveG
Consequently,
2
(Zuwecdd*®)

Wi(G) =Y da(w)de(v) >

weG ZquG da‘l(u)
2
B (ZUEV(G) dé/Q(”) 'dG(”)> B ||G||§/2

ZuEV(G) dE;l(U) ~da(u) a V(@)

as desired. O

First, we prove the upper bound for ex;/;—1)(n,{Cl4,...,Car}).

Proof of Theorem 1.4(i). Fix an integer ¢ > 3. Let p:= ﬁ. Let C':=52-2P <
765/3P and let € > 0 be sufficiently small. Notice from Proposition 2.8 that for

large n,
exp(n, C<ae) <exp(2n,C<ar) < (2+0(1))P - exp(n,n, C<ar) < 3P - ex,(n,n, C<ap).

So it suffices to prove that ex,(n,n,C<qr) < CnP for all large n. Suppose to the
contrary that this fails. Then there exists a C<gs-free bipartite graph G = G[V1, V5]
with [V1|=[Va| =n such that |G|, = CnP. By symmetry, we may assume that

G
(VD SY A0S (Z 2w+ Y dg<v>) 1O, G

veV; veVy veVy

Let
Uy := {v eVi:dg(v) > nl_E} and Uy := {v eViidg(v) € [nl/“'s,nl_e)} )

CraM 6.5. We have 37, iy, dgs(v) < 12nP.
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Proof of Claim 6.5. Since G is C<qp-free, it follows from Theorem 6.1 (see also
[AHL02]) that |G| < ex(2n, C<qr) < (21 + 0(1))n'T1/¢ < 2n'+1/¢ Therefore,

|G\ 2n1+1/z o/t
1-¢ ’

|U1|<

n
Since 2 7te< Hl for £ > 3, it follows from Theorem 6.2 that
|G[UL, V2] < 12n.
Combining this with Fact 2.4, we obtain
D d) < Y do(v) - nP T =|GlUL, V)| et < 12m7,
veU; vel;
which proves Claim 6.5. O

Cram 6.6. We have 3, oy, dg(v) <nP.
Proof of Claim 6.6. Let t:= [logn]. For every i € [t], let

Wi = {v €Uy: dg(v) € [2071 - pl/tFe 2 'nl/“‘s)}.

Suppose to the contrary that Y ., dg(v) >nP. Then, it follows from the Pigeonhole

Principle that there exists i € [t] with

d? p
> () > Zeenle® 77
veW;

Let B €[1/€+¢,1 — €] be the real number such that n® = 2:"1n!/+2 Tt follows from
the definition of W; that

S de(w)> Y &) Yew, dgv) _ nr-@-8
=3 |

B\p—1 — —1 -1 = —1
veW; veW; 2n )p 2r n(P ) 2077t
Consequently,
1,1 11
2 2¢ 2 2¢
CUAEIED SYECR O SEAT) M oRel)
veW; veW; veW;
1 1
1,1 p—(p—1)B\ 27 22
(wil-n2) (M)
2r—1¢
Since p = Tandﬂ> ; + €, we have

11 11 148_1 1 ¢
6'(2+2£)+(p_(p_1)5)'(2_2£):2>2+2£+2'

Therefore,

|GIW;, Va)| = (Wi - m)2 27 ————.
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Since € > 0 and n is sufficiently large, it follows from Theorem 6.2 that |G[W;, Va]| >
ex(|[W;l, [Va|,C<2e), a contradiction. |
Let V{":=V1 \ (U1 UU3). It follows from (6.1) and Claims 6.5 and 6.6 that
(6.2)
P P P v ( C P p_psC
Sodhw)=Y " dhw)— | Y dhw)+ > di(v > o —120F — o >
veVy’ veEV) vel, veU2

Let
Gy =GV V], U:= {v € Va: dg, (v) > nl/“f} , and Gy i=G[V{, 0.
Similar to Claims 6.5 and 6.6, we have

Z dp ) <12nP + nP =13nP.
vel

Combining this with Fact 2.4, we obtain

> #,00< 3 danle) (V)" = dt) (nlmey*

veVy’ veVy’ wel
(6.3) < d (u) < 13n”.
uel
Let
V' :=Vo\U and H:=G[V/ Vy].
It is clear from the definitions of V" and Vj’ that A(H) < nl/tte,
Cram 6.7. We have [|H], >3, ey dy;(v) > 4nP.

Proof of Claim 6.7. Suppose to the contrary that EveVl” db(v) < 4nP. Then it
follows from Fact 2.3 and (6.3) that

1/p 1/p\ P

Yo dew)= ) (o) +du@)’ < | | Y dg,(0) |+ D dy)

veVy’ veVY’ veVy’ veVy’
r C
< (1307 4 (an?) 7)< S,
contradicting (6.2). Therefore, 37, ¢y di(v) > 4nP. O

CLAIM 6.8. We have Wy 1(H) > 4"1n2.

Proof of Claim 6.8. It follows from Theorem 6.3, Proposition 6.4, and Corol-
lary 2.5 that

W1 (H) 1/¢ Wa(H) 1/3 ||HH:23/2 v
( o(H) ) ><v(H>> =\ )2

C(H T (IEL T
_< o(H) ) 2( o(H) '
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Combining this with Claim 6.7, we obtain

- -1
IH .\ = (4nP)!

We(H) >v(H) - — = S
v(H) (’U(H))e 2 nt—2

This proves Claim 6.8. 0

It follows from Claim 6.8 that the number of paths of length ¢ in H, denoted by
Py1(H), satisfies

Py (H) = % (We+1(H) - (E; 1) o - (A(H))e_1>

1 /+1 1 _ 2n
> (412 _9 1+($+e)(£-1) )
_2( n ( 9 )n > 9

Therefore, there exist two paths of length ¢ that share the same endpoints. Since
H is bipartite, this implies that G contains a copy of Cy; for some i € [2,{], a
contradiction. 0

Theorem 1.4(ii) is an immediate consequence of Theorem 1.4(i) and the following
theorem.

THEOREM 6.9 (Firedi, Naor, and Verstraéte [FNV06, Theorem 3.2]). Every
Ces-free bipartite graph G contains a {C4,Cg}-free subgraph H such that for every
veV(Q),
de(v)

5

Next, we present the proof of Theorem 1.4(iii). The proof is a minor adaption of
the Dependent Random Choice (see, e.g., [FS11]).

Proof of Theorem 1.4(iii). Let F' = F[W,W>] be a bipartite graph such that
drp(v) < s for every v € Wy, Let t := |Wa|. Let C := 2(% + |[V(F)]). Let
G = G[V1, V2] be an n by n bipartite graph with [|G||, > Cn®.

By symmetry, we may assume that v dg (v) > @ > CT" Choose uniformly
at random s vertices (with repetitions allowed) vy, ...,vs from V5. Let X := Ng(v1)N
--N Ng(vs) CVy. Tt is easy to see that

v)\° dg (v n®
E[X]=3" (dGTE )) _ 2vev; 95( )>C /2_¢C

ns - ns 2"

dH(’U) Z

veV;

We call an s-set in X bad if it has at most ¢ common neighbors. Let Y denote
the collection of bad s-sets in X. Notice that an s-set S is contained in X only if
{v1,..,v5} €N,es Na(u). Therefore,

ey < (") (fl)sg L

c t
EIX| - [Y[[2 5 -5 2 [V(F) 2 Wil

It follows that

By deleting one vertex from each bad set, we see that there exists a selection of s
vertices {vy,...,vs} C V4 along with a set X/ C Ng(vy) N -+ N Ng(vs) C Vi of size
at least |[W7| such that every s-subset of X" has at least ¢ common neighbors. It is
clear that F can be greedily embedded into G[X", V5] with W3 C X" and Wa C V5, a
contradiction. |
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7. Concluding remarks. Let F be an r-partite r-graph satisfying ex(n, F) =
O(n**9). Recall from Fact 1.1 and Theorem 1.2 that for every p > we have

r—l—-a’

(il = 1500) (")) 000, ) < ) = 100 ("))

Additionally, recall that this provides an asymptotically tight bound for ex,(n, F') in
the case 7 = 2, as Tind(F) = Tpart(F') for every bipartite graph F. Unfortunately,
the equality Ting(F) = Tpart(F') does not necessarily hold for r > 3, as shown by the
following example.

Let F denote the 3-graph with vertex set {a,b,¢,a1,as,as3,b1,ba,bs,c1,c2,¢c3} and
edge set

{{a b“C]} }U{{a“b C]} }U{{amijc} ( ) [ }2}

It is easy to Verlfy that Tpart(F) = 4 while Tind(F) = 3 (with {a,b,c} serving as a
witness).

PROBLEM 7.1. Let r > 3. Suppose that F is a degenerate family of r-graphs sat-
isfying ex(n, F) = O(n'*?) for some constant o> 0. Determine if lim,, o ex,(n, F)/

n?("=V ezists for p> —— and, if so, find its value.

On the other hand, drawing parallels to the Exponent Conjecture of Erdos and
Siminovits, we propose the following bold conjecture for hypergraphs, which, if true,
would show that Theorem 1.2 is tight in the exponent for the case p < - 1 as well.

CONJECTURE 7.2. Let v > 3. Suppose that F is a degenerate ﬁnzte famzly of
r-graphs satisfying ex(n, F) = Q(n'T) for some constant o>r —2. Then there exist
constants B >0, ¢ >0, and C >0 such that for all sufficiently large n,
ex(n, F)

<
€= %5

<C.

Remark. Several results such as those in [MYZ18, PZ21] provide some evidence
supporting this conjecture. On the other hand, examples in [RS78, FG21] show that
the requirement o > r — 2 cannot be removed in general.

Recall from Theorem 1.3 that we provided a general upper bound for ex,(n,F)
when p is the threshold. An interesting problem is to explore whether the logn factor
can be removed from this upper bound.

PROBLEM 7.3. Let r > 2 be an integer. Suppose that F is a degenerate family of
r-graphs satisfying ex(n, F) = O(n'™%) for some constant o> 0. Is it true that

1
eXp* (n,f) — O (np*(’r‘*l)) for Px = m Q

Given integers r > ¢ > 1 and a real number p > 0, let the (¢, p)-norm of an r-graph

H be defined as
1Mlly= D AT
Te(‘“f”)
Similarly, for a family F of r-graphs, define the (¢,p)-norm Turdn number of F as
ext p(n, F) = maX{H’HHW :v(H)=nand H is F —free}.

The (t,p)-norm Turdn number ex; ,(n,F) was systematically studied in [CIL*24] for
nondegenerate families 7. However, many degenerate cases remain unexplored.
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PROBLEM 7.4. Let r >t > 2 be integers and F be a finite family of r-partite
r-graphs such that ex(n,F) = nPT°M) Determine the exponent of ex; ,(n,F) for all
p>1.

Given two graphs @ and G, we use N(Q,G) to denote the number of copies of @
in G. The generalized Turdn number ex(n,Q,F) is the maximum number of copies of
Q@ in an n-vertex F-free graph. The generalized Turan problem was first considered
by Erdés in [Erd62] and was systematically studied by Alon-Shikhelman in [AS16].

Given integers p >r >t >0, the (r,t)-book with p-pages, denoted by B , p, is the
graph constructed as follows:

o Take psets V1,...,V,, each of size 7, such that there exists a ¢t-set C' satisfying
VinV;=Cforall 1<i<j<p.
e Place a copy of K. on each V;.
Observe that B 5, is simply a star graph with p edges.

In parallel, one could define the (¢,r,p)-norm of a graph as follows: Given a graph
G and a t-set S C V(G) that induces a copy of Ky, let dg ,(S) denote the number of
copies of K. in G that contain S. Let

||G||t7r,p = Z d%,r(s)’

where the summation is taken over all ¢t-subsets S C V(G) that induce a copy of K
in G. Similarly, let

exyrp(n, F) = max{||G||t’r’p :v(G@) =n and G is F-free }

One could consider extending results in this paper to the function ex;, ,(n,F'). This
will provide an upper bound for the generalized Turdn number ex(n, By, p, F), since
for every graph G,

dg.r (S L [€ P
N(Btmp’G):Z( ol )) <D (8)= =,

P p!

where the summation is taken over all ¢t-subsets S C V(G) that induce a copy of K
in G.
For a bipartite graph G[Vi, V5] with parts Vi and Vs, define

||G||p,left = Z d%(’l)) and HG”p,right = Z dlé(’l))

veVy veVs

Note that |G, o, = Gl ssge = 1G] and Gl = Gl g+ Gl e For every p>1.

An important variation of the Turdn problem is the Zarankiewicz problem. Given
bipartite graphs F and G with fixed bipartitions V(F) = W; U W, and V(G) =
V1 U Va, an ordered copy of F[W1,Ws] in G[V1,V5] is a copy of F' where W is con-
tained in V; and Wy is contained in V5. Given integers m,n > 1, the Zarankiewicz
number Z(m,n, F[Wy,Ws]) is the maximum number of edges in a bipartite graph
G = G[V1, V3] with |V4] =m and |V2| = n that does not contain an ordered copy of
F[Wy,Way).

Extending the Zarankiewicz number to the p-norm, for every p > 1, let Z,, 1o (m, 1,
F[Wy,Wa]) (resp., Zpright(m,n, F[Wi,Ws])) denote the maximum value of [|G, .
(resp., |G|, igne) Over all bipartite graphs G = G[Vi, V] with [Vi| = m and [Va| =
n that do not contain an ordered copy of F[Wi,W5]. When the order [Wy, Ws]
is clear from the context, for simplicity, we will use Z(m,n,F), Zpes(m,n,F),
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and Zp rignt(m,n, F') to represent Z(m,n, F[Wi,Ws]), Zp,ete(m,n, F[Wi,Ws]), and
Zp right (M, n, F[W1, W3]), respectively.

The following theorem can be derived through relatively straightforward modi-
fications to the proofs presented in this paper, so we omit the details and refer the
reader to its arXiv:2411.15579 version for a sketch of the proof.

THEOREM 7.5. Suppose that F = F[Wy,Ws] is a bipartite graph such that

Z(m,n, F) = O(m*n® +n+m) for some constants o, 3 € (0,1) and every n,m > 1.
Then there exists a constant Cr = Cx(p) >0 such that

e 1
Cr (ml_p(l_a)nﬁp-i-(m—i-np)logp51+1n>’ if pe|l,——— ),
2—a—f
Zp jese(m,n, F) < § Cr (m! =PU=9nP 4m 4 nP) logn, if p= 2-a—p’
—a—
1
(Tind (F) — 1) nP + on(nP) + om(mP), if p>—,
2—a—p
and
5 1
C}- (mapnlip(liﬁ) + (mp +TL) IngTl+1 m> ) Zf pE |:17 7) 3
2—a—(
Zp righs (m,n, F) < ¢ Cx (mPon! =PU=8) 4-mP 4 n)logm, if p= 2-a-p8
—a_
1
(Tina (F) = 1)m? + 00 (n7) + o (m?), if P>
2—a—p
=1 . 1-p@2—a-8
Here, p, := po—c and 6 := %

Remark. By summing Z, et (m,n, F) and Zp vigne(m,n, F), we obtain an up-
per bound for ex,(m,n, F) and the two-sided Z,(m,n, F[W1,W3]). Here, Z,(m,n,
F[Wy,Ws3]) represents the maximum p-norm of a bipartite graph G = G[V4, V3] with
|Vi| =m and |V2| =n that does not contain an ordered copy of F[W7, Ws].
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