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Let H be a 3-uniform hypergraph on an n-element vertex set V . The neighbourhood of

a, b ∈ V is N(ab) := {x : abx ∈ E(H)}. Such a 3-graph has independent neighbourhoods

if no N(ab) contains an edge of H. This is equivalent to H not containing a copy of

F3,2 := {abx, aby, abz, xyz}.
In this paper we prove an analogue of the Andrásfai–Erdős–Sós theorem for triangle-

free graphs with minimum degree exceeding 2n/5. It is shown that any F3,2-free 3-graph

with minimum degree exceeding ( 4
9 − 1

125 )
(
n
2

)
is bipartite, (for n > n0), i.e., the vertices of

H can be split into two parts so that every triple meets both parts.

This is, in fact, a Turán-type result. It solves a problem of Erdős and T. Sós, and answers

a question of Mubayi and Rödl that

ex(n,F3,2) = max
α

(n − α)

(
α

2

)
.
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Here the right-hand side is 4
9

(
n
3

)
+ O(n2). Moreover e(H) = ex(n,F3,2) is possible only if

V (H) can be partitioned into two sets A and B so that each triple of H intersects A in

exactly two vertices and B in one.

1. Independent neighbourhoods

Consider a 3-uniform hypergraph H, and let a and b be two distinct vertices. The

neighbourhood, N(ab), of the pair ab consists of the vertices z for which {a, b, z} ∈ E(H).

Its size, µ(ab) := |N(ab)|, is called the codegree of ab. We say that the neighbourhoods

of H are independent if N(ab) contains no triple from E(H) for any pair ab. The link

graph Ga of a in H is defined as an ordinary graph on V (H) consisting of the pairs bc

for which {a, b, c} ∈ E(H). The degree of a, degH(a) = |E(Ga)|. We use dmin(H) for the

minimum degree and maxcodeg(H) or µ� for the max µ(ab).

When it is possible, we shall use simplified notation, discarding parentheses and commas,

e.g., we shall often abbreviate a triple {a, b, c} to abc. As usual, G[A] denotes the subgraph

(subhypergraph) of G induced by the vertices of A. For a graph G, G[A,B] denotes the

bipartite subgraph defined by the edges joining A to B.

Construction 1.1. ((2, 1)-colourings and H2,1(A, B)) A hypergraph H has a (2, 1)-col-

ouring if there exists a partition V = A ∪ B such that each triple in E(H) meets A in exactly

two vertices, and meets B in one vertex. Then the neighbourhoods of H are independent.

Denote by H2,1(A,B) the hypergraph consisting of all (2, 1)-coloured triples.

Let Hn denote the class of n-vertex (2, 1)-colourable hypergraphs with maximum number

of edges. Then ||A| − 2
3
n| < 1, e(H) = 4

9

(
n
3

)
+ O(n2) and every degree is 4

9

(
n
2

)
+ O(n). For

n = 3k + 2 the choices |A| = 2k + 1 and 2k + 2 give the same edge-number, Hn has 2

members. Hn consists of a single hypergraph for n = 3k, 3k + 1.

Construction 1.2. (A hypergraph without (2, 1)-colourings) Let V = A ∪ B ∪ D ∪ {x},
|V | = n, |A| + |B| + |D| = n − 1, |A| = � 2

3
n�, |B| > 0 and |D| � 2. Define E(H) by taking

the edges of H2,1(A,B ∪ D) and having the link graph of x as follows: E(Gx) := {ab : a ∈

x

A

B

D

Figure 1. A hypergraph without a (2, 1)-colouring
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Figure 2. The excluded hypergraph F3,2

A, b ∈ B} ∪ {b1b2 : b1, b2 ∈ D}. Then the neighbourhoods of H are independent but H has

no (2, 1)-colouring, although (for |D| = O(1)) each vertex has degree at least 4
9

(
n
2

)
− O(n).

The vertex x can be replaced by a set X to get a hypergraph containing all triples of

types AAB, AAD, ABX and DDX.

The notion of ‘independent neighbourhoods’ can be considered as one of the hypergraph

extensions of triangle-free graphs. Andrásfai, Erdős and T. Sós [1] showed that if an n-

vertex graph is triangle-free and its minimum degree exceeds 2
5
n, then it is bipartite.

The main result of this paper is the following analogue of this important theorem. A

hypergraph is bipartite if there exists a partition A ∪ B of the vertices for which every

hyperedge meets both parts.

Theorem 1.3. Let γ � 1/125 be fixed and n > n0. Let H be an n-vertex 3-uniform hyper-

graph. Suppose that the neighbourhoods of H are independent and

dmin(H) >

(
4

9
− γ

)(
n

2

)
. (1.1)

Then H is bipartite.

We use n0 = 25000 throughout this paper, but the statements (probably) hold for much

smaller values of n, too. Construction 1.2 shows that the above min-degree condition

does not imply that H must have a (2,1)-colouring. The next example shows that

γ � 5/72 = 0.069 . . . cannot be chosen in Theorem 1.3.

Construction 1.4. (A non-bipartite triple system) Let V be an n-element set, V = A ∪ B,

with |A| = (3/4)n + O(1), |B| = n/4 + O(1), and let E0 = {z1, z2, z3} ⊂ B. Split the pairs of

A into 3 almost equal parts: ∪1�i�3Ei = {ab : a, b ∈ A}, |Ei| ∼ 1
3

(|A|
2

)
. Let E(H) consist of

E0, the hyperedges of H2,1(A,B \ E0), and all triples of the form {abzi : a, b ∈ A, zi ∈ E0,

and ab ∈ Ej , 1 � j �= i � 3}. Then H is not bipartite, its neighbourhoods are independent,

and dmin(H) = 3
8

(
n
2

)
+ O(n).
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B

n2–
3A= 

Figure 3. The extremal hypergraph

Conjecture 1.5. Theorem 1.3 holds for every γ < 5/72.

2. Turán’s problem

Let F3,2 be the hypergraph on the vertices 1, 2, 3, 4, 5 having 4 triples {1, 2, 3}, {1, 4, 5},
{2, 4, 5} and {3, 4, 5}. In an ordinary graph the neighbourhoods are independent if and

only if it is triangle-free. Similarly, in a 3-uniform hypergraph the neighbourhoods of

pairs are independent if and only if it is F3,2-free.

More generally, given a 3-uniform hypergraph F, let ex(n,F) denote the maximum

possible size of a 3-uniform hypergraph of order n that does not contain any subhyper-

graph isomorphic to F. An averaging argument shows that the ratio ex(n,F)/
(
n
3

)
is a

non-increasing sequence [15], therefore π(F) := limn→∞ex(n,F)/
(
n
3

)
always exists.

Erdős and T. Sós, in connection with Ramsey–Turán problems for hypergraphs,

investigated ex(n,F3,2). (In [7] F3,2 is denoted by G(3)(5, 4), and in [8, Theorem 2] a

more general class of hypergraphs is considered.) Mubayi and Rödl [20] showed that

4/9 � π(F3,2) � 1/2 and conjectured that

ex(n,F3,2) =
4

9

(
n

3

)
+ o(n3). (2.1)

They also conjectured that H2,1(A,B) is the extremal hypergraph. Equation (2.1) was

verified by the present authors.

Theorem 2.1. (Turán density [14]) π({abc, ade, bde, cde}) = 4/9.

Here we will give a new proof. The new method also leads to structure theorems for

F3,2-free hypergraphs: to the min-degree stability theorem (Theorem 1.3) stated in the

previous section, and to the following further refinements and exact solutions.

Theorem 2.2. (The finer structure) Let H be an n-vertex 3-uniform hypergraph not contain-

ing F3,2 and suppose that it satisfies the min-degree condition (1.1) with γ � 1/125. Suppose

that n is sufficiently large, e.g., n > max{n0, 1/γ} (where n0 := 25000). Let A be a maximum

independent set of vertices; denote its complement by B. Then we have the following.
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(i) B is also independent; (A,B) is a 2-colouring.

(ii) ||A| − 2
3
n| < √

γn; ||B| − 1
3
n| < √

γn.

(iii) The structure of H is very close to the extremal one; all but at most
√
γn3 hyperedges

have type AAB, the rest being of type ABB.

(iv) Consider any two-colouring (A1, B1) of H with |A1| � |B1|, the existence of which was

stated in Theorem 1.3. If |A| � 0.65n then A1 ⊂ A and |A \ A1| � √
γn.

Theorem 2.3. (Extremal) If H is an n-vertex 3-uniform hypergraph not containing F3,2 and

n is sufficiently large, n > n0, then e(H) � maxα(n − α)
(
α
2

)
. In case of equality H ∈ Hn.

We show that if e(H) is sufficiently large, then the structure of H is close to that of

H2,1(A,B).

Theorem 2.4. (Global stability) Suppose that H is an n-vertex 3-uniform hypergraph not

containing F3,2 and e(H) > ( 4
9

− c)
(
n
3

)
, where c < 10−4. Then one can delete O(c1/3)n3 triples

from H so that the remaining hypergraph has a (2, 1)-colouring (A,B) with ||A| − 2
3
n| <

O(c1/3)n and ||B| − 1
3
n| < O(c1/3)n.

Taking |A| = (2
3

− 1
2
c)n, |B| = (1

3
− 1

2
c)n, |D| = |X| = 1

2
cn in Construction 1.2, one can

obtain a hypergraph satisfying the constraint of Theorem 2.4; however, one needs to

remove at least Ω(c3)n3 triples from it to make it (2, 1)-colourable.

Theorem 2.5. (Codegree stability) For every ε > 0 there exists a c > 0 such that the fol-

lowing holds. If H is an n-vertex 3-uniform hypergraph not containing an F3,2 and satisfying

∣∣∣∣maxcodeg(H) − 2

3
n

∣∣∣∣ > εn,

then

e(H) �
(

4

9
− c

)(
n

3

)
.

Theorem 1.3 is not the first Turán-type stability result concerning hypergraphs. Based

on earlier works of Füredi and Kündgen [12], de Caen and Füredi proved [5] that

π(L7) = 3
4
, where L7 is the hypergraph formed by the 7 lines of a Fano plane. This

result was sharpened in [13] to a min-degree result of the same type as Theorem 1.3. A

slightly weaker form of this was also proved independently by Keevash and Sudakov [17].

Further, Keevash and Mubayi obtained in [16] a min-degree version of a Turán-type result

of Bollobás [2]. Keevash and Sudakov [18] also obtained a stability result, improving an

extremal result of Frankl [9] on the hypergraph-triangle problem. In general, stability

may not hold (see the constructions of W. G. Brown [4], and Kostochka [19] for K
(3)
4 ).

As far as we know, at present these are the only hypergraph results of this type.
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S

A

a

T

b

Figure 4. The partition. A and S are independent. The line (a, b) indicates that

we shall sum multiplicities µ(a, b)

3. Proofs

3.1. The partition

Let H be an F3,2-free triple system on the vertex set V , |V | = n, satisfying (1.1), the

assumption of Theorem 1.3. Let α denote the maximum size of an independent (i.e.,

hyperedge-free) subset of V . Let A be a maximal independent set with |A| = α and denote

its complement by B, B = V (H) \ A. Take as many independent (i.e., pairwise disjoint)

triples in B as possible, denote their number by ν. That is, M := {E1, E2, . . . , Eν} ⊆ E(H),

Ei ∩ Ej = ∅, Ei ∩ A = ∅. Their vertices form T , the remaining part is S . So V is partitioned

into A ∪ S ∪ T , where A and S are independent, and |T | = 3ν.

Since the neighbourhoods are independent, we have α � µ�. Clearly,

n × dmin(H) �
∑
x∈V

degH(x) = 3e(H) =
∑
a,b∈V

µ(ab) �
(
n

2

)
µ�.

Then (1.1) implies that

α � µ� � 2dmin

n − 1
>

(
4

9
− γ

)
n >

2

5
n.

Define the rectangular domain

D1 := {(x, y) : 2/5 � x � 1, 0 � y � 1/5}.

Then α � 2
5
n gives ν � 1

3
(n − α) � 1

5
n. Hence, for all possible values of the pairs (α, ν),

1

n
(α, ν) ∈ D1. (3.1)

3.2. Sketch of the proof of Theorem 1.3

We shall classify the triples according to their positions relative to A, S and T . The

number of hyperedges of type XY Z is denoted by ∆XY Z . Since A and S are independent

sets,

e(H) = ∆AAS + ∆AAT + ∆ASS + ∆AST + ∆ATT + ∆SST + ∆STT + ∆TTT .
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Figure 5.

In Section 3.3 we collect some inequalities for degree-3 polynomials in two variables we

will use later. In Sections 3.4–3.9 we are going to give several upper bounds for different

combinations of ∆s which hold for every F3,2-free hypergraph. In Section 3.10 we show

that the min-degree condition (1.1), used for the vertices of A ∪ B, implies bipartiteness.

This will complete the proof of Theorem 1.3. Meanwhile, in Section 3.6 we make a short

digression to prove π(F3,2) = 4/9.

3.3. Three inequalities on polynomials

Define the polynomial

f(x, y) =
3

2

(
(1 − x)x2 − 4

27

)
+ y

(
2

3
− 2x2 + (1 − x − y)(1 − x − 3y)

)
.

Lemma 3.1. f(x, y) � 0 for every point (x, y) in the rectangle D1.

Proof (standard optimization). The determinant of the Hessian matrix of f(x, y)

is negative for every (x, y) ∈ D1 (see Section A.1). This implies that f does not have

local minima or maxima inside D1: the extrema must be on the boundary ∂D1. Then

the maximum can be found by checking the behaviour of f(x, y) on the four boundary

segments of ∂D1. On each line f(x, y) reduces to a third-degree polynomial of one variable,

whose extrema can be identified by the roots of its derivative, a second-degree polynomial.

The details of the calculations are postponed to the Appendix (Section A.1).

The very same optimization method establishes the next two lemmas, too. Details

are postponed to the Appendix. Define the domain D2 ⊂ D1 (a trapezium) by the lines

y = 0, y = 1/5, x = 2/5, and y = 5x − 3 (the vertices are (2/5, 0), (2/5, 1/5), (3/5, 0) and

(64/100, 2/5)). Define the polynomial

F(x, y) := f(x, y) +
1

2
γ(1 − 3y).

Lemma 3.2. F(x, y) < −1/4000 for every (x, y) ∈ D2.
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Let D3 be the open half-plane {(x, y) : y < 5x − 3}. Note that D2 ∩ D3 = ∅. Define

g(x, y) := −7x2 − xy − 3

2
y2 + 7x + y − 31

18
+ 5γ. (3.2)

Lemma 3.3. g(x, y) < −1/2500 for every (x, y) ∈ D3.

3.4. Estimating e(H)

(1) Let X ∪ Y ∪ Z = V (H) be a partition of the vertices. Add up the codegrees of the

pairs (x, y) with x ∈ X, y ∈ Y . For every x, y we have µ(xy) � µ� � α, so∑
x∈X,y∈Y

µ(xy) � |X||Y |µ� � |X||Y |α. (3.3)

In the left-hand side of this sum we count the hyperedges of type XXY and XY Y exactly

twice, the types XY Z occur only once. Therefore

2∆XXY + 2∆XY Y + ∆XY Z � |X||Y |α.

Apply this to (X,Y , Z) = (A, S, T ):

2∆AAS + 2∆ASS + ∆AST � (n − α − 3ν)α2. (3.4)

For X = A, Y = B (and Z = ∅) we obtain

∆AAB + ∆ABB � 1

2
(n − α)α2. (3.5)

The main goal in the rest of the proof (Sections 3.4–3.10) is to show that B is

independent, because (3.5) and ∆BBB = 0 imply the upper bound e(H) � (2/27)n3. Next

we show (in Sections 3.11–3.12) that µ� is strictly less than |A|. Then µ� < α and (3.3) will

imply the exact upper bound for ex(n,F3,2).

(2) For each pair a, b ∈ V and edge E ∈ E(H) we have |N(ab) ∩ E| � 2, otherwise we

would have an F3,2 ⊆ H. This implies that |{z ∈ T : abz ∈ E(H)}| � 2ν. Hence

∆AAT =
∑

{a,b}⊂A

|{z ∈ T : abz ∈ E(H)}| � 2ν

(
α

2

)
� να2. (3.6)

(3) We claim that

∆SST � 1

2
ν(n − α − 3ν)2 + 2ν. (3.7)

Consider again the maximum independent family M = {E1, . . . , Eν}. Define the multigraph

Gi with vertex set S by E(Gi) := {E \ Ei : E ∈ E(H), |E ∩ Ei| = 1, |E ∩ S | = 2}, where the

multiplicity of ab is the number of Es with E \ Ei = {a, b}. Clearly, ∆SST =
∑

1�i�ν e(G
i).

We claim that

e(Gi) � 1

2
|S |2 + 2,

which implies (3.7). Indeed, every edge of Gi has multiplicity at most 2. If all the edges

are of multiplicity 0 or 1, then e(Gi) �
(|S |

2

)
and we are done. If, on the other hand, there
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exists a pair s1s2 with multiplicity 2, say x1s1s2, x2s1s2 ∈ E(H), x1x2x3 = Ei, then every

other edge of Gi must meet s1s2. If not, say xs3s4 ∈ E(H) with x ∈ Ei, then either x �= x1

and we can replace Ei in M by the triples x1s1s2 and xs3s4, obtaining ν + 1 triples in

S ∪ T , which contradicts the maximality of M or x = x1 and we can replace Ei in M by

the triples x2s1s2 and x1s3s4. Hence |E(Gi)| � deg(s1) + deg(s2) − 2 � 2 × 2(|S | − 1) − 2 �
|S |2/2 + 2.

(4) We show that

∆STT � 2ν2(n − α − 3ν) + ν(2n − 4). (3.8)

Indeed, pick two hyperedges of the maximum matching Ei, Ej ∈ M. Consider the 6-

vertex, bipartite link graph Fz := Gz[E
i, Ej] for every z ∈ S . Let Fi,j be the multigraph

formed by their union, the multiplicity of the edge ab (where a ∈ Ei, b ∈ Ej) is |{z : z ∈ S ,

abz ∈ E(H)}| � |S |. Let Fi,j
3 be the multigraph defined by the edges of multiplicities at

least 3. Counting the edges with multiplicities, we have

e(Fi,j) = e(Fi,j
3 ) + (the number of edges of multiplicities � 2) � e(Fi,j

3 ) + 18.

The graph Fi,j
3 contains no 3 disjoint edges, otherwise they could be extended by vertices

from S to 3 disjoint triples. Then we could replace Ei, Ej in M by these 3 triples, obtaining

a larger matching: this would contradict the maximality of ν. The König–Hall theorem

(applied to this 6-vertex graph) implies that the edges of the bipartite graph Fi,j
3 can be

covered by two vertices, say, a and b; every edge of Fi,j
3 is adjacent to either a or b. In

every Fz every degree is at most 2 (because F3,2 �⊂ H). Hence Fz has at most 2 × 2 edges

in F3 (namely, those adjacent to either a or b). Thus e(F3) =
∑

z∈S e(F3 ∩ Fz) � 4|S |.

∆STT =
∑
i�=j

|{abz ∈ E(H) : a ∈ Ei, b ∈ Ej, z ∈ S}|

+
∑
i

|{abz ∈ E(H) : a, b ∈ Ei, z ∈ S}|

�
(
ν

2

)
(4|S | + 18) + 3ν|S | � 2ν2(n − α − 3ν) + ν(2n − 4).

In the last step we used α � n/3 (see (3.1)) and wrote the upper bound in a form convenient

to use later.

3.5. Estimating the degrees in A ∪ S

Add up the degrees in A and S:∑
x∈A

degH(x) = 2∆AAB + ∆ABB,

∑
a∈S

degH(a) = 2∆ASS + 2∆SST + ∆AAS + ∆AST + ∆STT .

Adding them up and using ∆AAB = ∆AAS + ∆AAT , we obtain

|A ∪ S | × dmin(H) � (∆AAB + ∆ABB) + (2∆AAS + 2∆ASS + ∆AST )

+ ∆AAT + ∆STT + 2∆SST .
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Here the right-hand side can be estimated by (3.5), (3.4), (3.6), (3.8), and (3.7):

(n − 3ν) × dmin(H) � 1

2
(n − α)α2 + (n − α − 3ν)α2

+ να2 + 2ν2(n − α − 3ν) + 2νn + ν(n − α − 3ν)2.

Rearranging, we get

(n − 3ν) ×
(
dmin(H) − 2

9
n2

)
� 3

2

(
(n − α)α2 − 4

27
n3

)

+ ν

(
2

3
n2 − 2α2 + (n − α − ν)(n − α − 3ν)

)
+ 2νn

= n3f

(
α

n
,
ν

n

)
+ 2νn. (3.9)

Using that 12ν � 7n (see (3.1)) and rearranging again,

(n − 3ν) ×
(
dmin(H) −

(
4

9
− γ

)(
n

2

))
� 3

2

(
(n − α)α2 − 4

27
n3

)

+ ν

(
2

3
n2 − 2α2 + (n − α − ν)(n − α − 3ν)

)
+

1

2
γn2(n − 3ν) + n2

= n3F

(
α

n
,
ν

n

)
+ n2. (3.10)

3.6. Detour: The asymptotic density

Here we prove Theorem 2.1. We have to prove only an upper bound.

Lemma 3.4. Let H be an arbitrary F3,2-free hypergraph. Then

dmin(H) � 2

9
n2 + n.

Proof. If the min-degree condition (1.1) does not hold then there is nothing to prove.

Otherwise 1
n
(α, ν) ∈ D1 by (3.1). Then Lemma 3.1 gives that f(α/n, ν/n) � 0. Since (n −

3ν) � 2
5
n, from (3.9) we get that

2

5
n ×

(
dmin(H) − 2

9
n2

)
� 2νn � 2

5
n2.

Proof of Theorem 2.1. Since the above lemma gives that

ex(n,F3,2) � ex(n − 1,F3,2) +
2

9
n2 + n,

it follows that ex(n,F3,2) �
∑

i�n(
2
9
i2 + i) = 2

27
n3 + O(n2).
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Recall the following lemma from [10]. If F is a k-uniform hypergraph such that every

pair of its vertices is contained in some edge, then for every n

π(F)

(
n

k

)
� ex(n,F) � π(F)

nk

k!
.

This can be applied to F3,2. So π(F3,2) = 4
9

gives the following.

Corollary 3.5. ex(n,F3,2) � 2
27
n3 holds for every n.

3.7. Estimating the degrees in T

Corollary 3.5 gives

∆TTT � ex(3ν,F3,2) � 2ν3. (3.11)

Consider the link graphs Gz[B] restricted to B. A linear combination of (3.7), (3.8) and

(3.11) with a little calculation give that∑
z∈T

e(Gz[B]) = ∆SST + 2∆STT + 3∆TTT

� 1

2
ν(n − α − 3ν)2 + 4ν2(n − α − 3ν) + 4νn + 6ν3.

Since T is the union of ν edges, for ν > 0 we can divide the above inequality by ν. There

exists an edge E� ∈ M meeting at most that many triples of type BBB. We obtain

∑
z∈E�

e(Gz[B]) � 1

2
(n − α − ν)2 + 2ν(n − α − ν) + 4n. (3.12)

3.8. Common links in A

Consider an arbitrary z ∈ B. Since A is maximal, there exists an abz ∈ E(H), a, b ∈ A.

Since H is F3,2-free, no pair uv with u ∈ A, v ∈ B belongs to all the three bipartite graphs

Ga[A,B], Gb[A,B] and Gz[A,B]. We obtain that

e(Ga[A,B]) + e(Gb[A,B]) + e(Gz[A,B]) � 2|A||B| = 2α(n − α). (3.13)

Note that the link graph Ga has no edges in A and its maximum degree is at most µ�.

Therefore

e(Ga[B]) + e(Ga) =
∑
y∈B

degGa
(y) � |B|µ�. (3.14)

Similarly for b,

e(Gb[B]) + e(Gb) � |B|µ�. (3.15)

Adding up (3.13), (3.14) and (3.15) and using |B|µ� = (n − α)µ� � (n − α)α, we get

e(Ga[A,B]) + e(Gb[A,B]) + e(Gz[A,B]) + e(Ga[B]) + e(Ga) + e(Gb[B]) + e(Gb)

� 2α(n − α) + 2|B|µ� � 4α(n − α). (3.16)

On the left-hand side we can use

deg(a) = e(Ga) = e(Ga[B]) + e(Ga[A,B]),
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Figure 6. The special configuration H9

since Ga[A] has no edge. Similarly, deg(b) = e(Gb[B]) + e(Gb[A,B]). So the left-hand side

of (3.16) is e(Gz[A,B]) + 2 deg(a) + 2 deg(b). This gives

e(Gz[A,B]) � 4α(n − α) − 4dmin(H) for every z ∈ B. (3.17)

Lemma 3.6. Suppose that H satisfies the min-degree condition (1.1) and E� ⊂ B satisfies

(3.12). Suppose further that 1
n
(α, ν) ∈ D3, n > n0. Then, for every pair z1, z2 ∈ E�, there are

at least 4α common edges of Gz1
[A] and Gz2

[A].

Proof. Indeed, assuming the contrary, we would also have that e(Gz1
[A]) + e(Gz2

[A]) <(
α
2

)
+ 4α. Using this, (3.17) and (3.12) we get

2dmin � degH(z1) + degH(z2) = e(Gz1
[A]) + e(Gz2

[A])

+ e(Gz1
[A,B]) + e(Gz2

[A,B]) + e(Gz1
[B]) + e(Gz2

[B])

�
(
α

2

)
+ 4α + 8α(n − α) − 8dmin +

1

2
(n − α − ν)2 + 2ν(n − α − ν) + 4n.

Rearranging, we get

0 � 5γn2 − 31

18
n2 + 7α(n − α) + ν(n − α) − 3

2
ν2 + 10n = n2g

(
α

n
,
ν

n

)
+ 10n.

By Lemma 3.3, g � −1/2500 on D3. This is a contradiction for n > 25000.

3.9. Small substructures

Suppose that H is an arbitrary F3,2-free hypergraph, A is a maximum independent set,

α := |A|, B := V \ A. Define a well-positioned H9 ⊆ H as follows. There are 6 vertices

x1, . . . , x6 ∈ A and 3 vertices {z1, z2, z3} ⊆ B and the following 7 edges belong to E(H):

(z1, z2, z3), (zi, x2i−1x2i) and (zi+1, x2i−1x2i) for i = 1, 2, 3 (where z4 = z1).

Lemma 3.7. Suppose that α > 3
5
n, E� ⊂ B belongs to a well-positioned H9 and it satisfies

(3.12). Then dmin(H) < 0.434
(
n
2

)
holds for n > n0.
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Proof. We claim that

3

2

∑
k=1,2,3

e(Gzk [A,B]) +
∑

1�j�6

e(Gxj [A,B]) � 6α(n − α). (3.18)

To see this, let us define the weight w(ab) for a ∈ A, b ∈ B as w(ab) := 3
2
mE(ab) + mX(ab)

where mE(ab) is the number of triples of the form abzk and mX(ab) denotes the number

of triples of the form abxj (1 � k � 3, 1 � j � 6). The left-hand side of (3.18) is equal to∑
a∈A,b∈B w(ab). We will show that w(ab) � 6. This is certainly true if mE(ab) = 0 since,

obviously, mX(ab) � 6. For the case mE(ab) = 2, i.e., if N(ab) meets E� in two vertices,

observe that F3,2 �⊂ H implies that N(ab) contains at most one from each pair x2i−1, x2i,

hence mX(ab) � 3. Finally, it is easy to check that mE(ab) = 1 implies mX � 4, completing

the proof of (3.18).

Consider the identity

3

2

∑
k=1,2,3

degH(zk) + 2
∑

1�j�6

degH(xj)

=
3

2

∑
k=1,2,3

e(Gzk [A]) +
3

2

∑
k=1,2,3

e(Gzk [A,B]) +
∑

1�j�6

e(Gxj [A,B])

+
∑

1�j�6

(e(Gxj ) + e(Gxj [B])) +
3

2

∑
k=1,2,3

e(Gzk [B]).

Estimating the right-hand side, for the first sum we can use that no pair of vertices

belongs to all the three E(Gzi)s. In the second and third sum we use (3.18), in the fourth

sum each term is at most α(n − α) by (3.14), and for the last sum we use (3.12). We obtain

33

2
dmin � 3

2
× 2

(
α

2

)
+ 12α(n − α) +

3

2

(
1

2
(n − α − ν)2 + 2ν(n − α − ν) + 4n

)
.

Using that 3
2

(
1
2
(x − ν)2 + 2ν(x − ν)

)
� x2 holds for all x, ν, we get

33

2
dmin � 3

2
α2 + 12α(n − α) + (n − α)2 + 6n = n2 + 10αn − 19

2
α2 + 6n.

Here 10αn − (19/2)α2 is monotone decreasing for α > 10
19
n. Substituting α = 3

5
n we get the

upper bound dmin(H) � (179/825)n2 + (12/33)n, implying our claim.

3.10. H is bipartite

Here we prove Theorem 1.3. The above lemmas hold, except Lemma 3.7, for every F3,2-free

hypergraph satisfying α � 2
5
n. From now on we will use that H satisfies the min-degree

condition (1.1). Consider the partition V = A ∪ B = A ∪ S ∪ T defined in Section 3.1. We

will prove that B is independent. (3.1) asserts 1
n
(α, ν) ∈ D1. We will show that ν = 0.

Our estimates could not handle all cases of (α, ν) simultaneously, so we divide the

domain D1 into two parts by the line y = 5x − 3 and use different estimates for each

of them. We chose this line to (somewhat) maximize the value of γ achievable with the

method presented, and, simultaneously, to keep the required calculations minimal. Taking

y = 5x − 3.0053 one can push γ up to 0.0084.
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Consider first the case when 1
n
(α, ν) ∈ D2. Then Lemma 3.2 gives that F(α/n, ν/n) �

−1/4000. Since (n − 3ν) � 2
5
n, we get from (3.10) that

2

5
n ×

(
dmin(H) −

(
4

9
− γ

)(
n

2

))
� − 1

4000
n3 + n2.

Here the left-hand side is nonnegative, but the right-hand side is negative for n > 4000.

This contradiction implies that 1
n
(α, ν) ∈ D3 ∩ D1, in particular α > 3

5
n.

Suppose, on the contrary, that ν > 0. Then there exists an edge E� = (z1, z2, z3), E
� ⊂ B

satisfying (3.12). Lemma 3.6 implies that E� can be extended into a well-positioned H9.

Therefore we can apply Lemma 3.7. This leads to the contradiction dmin(H) < 0.434
(
n
2

)
.

Thus only ν = 0 is possible and H is bipartite.

3.11. The finer structure of H
In this part we prove Theorem 2.2(i)–(iii). Let A be a maximum independent set. The

proof of Theorem 1.3 implies that H is bipartite, and B is independent (for n > n0). Then

all triples have types AAB or ABB. So the min-degree condition (1.1) and (3.5) give

1

3
n

(
4

9
− γ

)(
n

2

)
� e(H) � 1

2
(n − α)α2.

Multiplying by 6 and rearranging, we obtain

(
2

3
n − α

)2

(n + 3α) �
(
γ +

(
4

9
− γ

)
1

n

)
n3,

implying Theorem 2.2(ii) for n > max{n0, 1/γ}:∣∣∣∣α − 2

3
n

∣∣∣∣ < √
γ · n. (3.19)

Proof of Theorem 2.2(iii). Use that H is bipartite, Corollary 3.5, (1.1) and (3.19):

∆BBA = 2(∆BBA + ∆BAA) − (∆BBA + 2∆BAA)

= 2e(H) −
∑
x∈A

degH(x) � 2 × 2

27
n3 − α

(
4

9
− γ

)(
n

2

)

=
2

9

(
2

3
n − α

)
n2 + γα

(
n

2

)
+

2

9
nα <

√
γn3.

3.12. The case |A| � 0.65n

In this section we suppose that H is an F3,2-free hypergraph satisfying the conditions of

Theorem 2.2 and also suppose that α � 0.65n.

Claim 3.8. If C is an independent set of vertices with |C ∩ A| � 1
4
n then C ⊆ A.

Proof. Assuming the contrary, we may fix a z ∈ C ∩ B. Consider Gz . It has no edges in

B (by Theorem 1.3), or in C ∩ A, and only very few edges joining A and B (by (3.17)).



On Triple Systems with Independent Neighbourhoods 809

We get

dmin � e(Gz[A,B]) + e(Gz[A]) � 4α(n − α) − 4dmin +

(
α

2

)
−

(
|A ∩ C|

2

)
.

This is a contradiction for dmin >
(

4
9

− γ
)(

n
2

)
, α � 0.65n and |A ∩ C| � 0.25n.

Claim 3.9. µ� < α.

Proof. Consider a pair x, y ∈ V with µ(xy) = µ�, and let C := N(xy). If |C| < 0.65n � |A|,
then there is nothing to prove. Otherwise |C| > |B| + 1

4
n, so it has at least n/4 common

vertices with A. Since C is independent, too, Claim 3.8 implies that C ⊆ A. Thus µ� = α

is only possible if C = A and x, y ∈ B.

Consider E(Gx[A]) and E(Gy[A]). If they have a common triangle, say abc, then the

hyperedges xab, xac, xay and bcy form an F3,2, a contradiction. So we can apply the

Turán–Mantel theorem for E(Gx[A]) ∩ E(Gy[A]). We get

e(Gx[A]) + e(Gy[A]) �
(

|A|
2

)
+ |E(Gx[A]) ∩ E(Gy[A])| �

(
|A|
2

)
+

⌊
1

4
α2

⌋
.

Since B is independent (by Theorem 2.2(i)) we get e(Gx) = e(Gx[A]) + e(Gx[A,B]). Use

this for x and y and apply (3.17):

2dmin � e(Gx[A]) + e(Gy[A]) + e(Gx[A,B]) + e(Gy[A,B]) � 3

4
α2 + 8α(n − α) − 8dmin.

For α � 0.65n this gives dmin � 0.43
(
n
2

)
. This contradiction shows that α = µ� is not

possible.

Proof of Theorem 2.2(iv). Consider an arbitrary 2-colouring (A1, B1) of V (H) with A1

and B1 being independent. Then one of the colour classes meets A in at least 1
4
n vertices,

say |A1 ∩ A| � n/4. Claim 3.8 states that A1 ⊆ A. We show that

|A \ A1| � √
γn.

Indeed, every triple meeting A \ A1 must meet both A1 and B. Thus for x ∈ A \ A1

we have dmin � degH(x) � |B||A1|. This is equivalent to |B|(|A| − |A1|) � |B||A| − dmin =

α(n − α) − dmin. Rearranging, we get

|B|(|A| − |A1|) �
(

2

3
n − α

)(
−1

3
n + α

)
+

(
4

9

(
n

2

)
− dmin

)
+

2

9
n.

Then (3.19) implies |A| − |A1| � √
γn.

3.13. The extremal hypergraph

Here we prove Theorem 2.3. Suppose that H is an n-vertex F3,2-free triple system of

maximum cardinality,

e(H) � max
a

1

2
(n − a)a(a − 1) := e(n).
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The degrees of any two vertices of H differ by at most n − 2. Otherwise one can delete the

vertex of smaller degree and duplicate the other, thus increasing the size of H. Thus we

may suppose that (for n > n0) dmin(H) > ( 4
9

− 10−4)
(
n
2

)
. Apply Theorems 1.3 and 2.2(i).

We obtain that H has a 2-colouring (A,B) where |A| is the maximal independent set,

|A| = α. Then Theorem 2.2(ii) implies that α > 0.65n. Then Claim 3.9 gives µ� � α − 1.

We obtain the desired upper bound:

2e(H) =
∑
a∈A
b∈B

µ(ab) � α(n − α)µ� � 2(n − α)

(
α

2

)
� 2e(n).

Moreover, equality can hold only if µ(ab) = α − 1 for every crossing pair a ∈ A, b ∈ B.

Then |N(ab)| is large, so by Claim 3.8 it is contained in A. Thus all hyperedges must be

of type AAB.

3.14. Reduction to minimum degree

Here we prove Theorems 2.4 and 2.5. Both deal with hypergraphs satisfying

e(H) >

(
4

9
− c

)(
n

3

)
. (3.20)

Lemma 3.10. Let γ = c2/3. Then for n > n0(c) one can find a subset V1 ⊆ V , |V1| = n1 >

(1 − c1/3)n, such that, for H1 := H[V1],

degH1
(x) >

(
4

9
− γ

)(
n1

2

)
(3.21)

holds for every x ∈ V1.

Proof. Delete a vertex from V if its degree is at most ( 4
9

− γ)
(|V |

2

)
. Repeat this if we can

find another vertex of small degree. This way the average degree goes up slightly, but it

cannot go too high. A routine counting shows that the process stops within c1/3n steps.

We omit the details.

To prove Theorem 2.4 consider the hypergraph H. Using Lemma 3.10, deleting at

most c1/3n vertices (and O(c1/3n3) edges) we get the hypergraph H1 satisfying (3.21).

Apply Theorem 1.3 to H1 to obtain a bipartition (A,B). Apply Theorem 2.2(iii) to

H1 to obtain a (2, 1)-colourable hypergraph after deleting another O(
√
γn3) = O(c1/3n3)

edges.

To prove Theorem 2.5 consider a triple system H satisfying (3.20). Apply Lemma 3.10

to get H1. Then Theorem 2.2(ii), more exactly (3.19), implies that α(H1) is about 2
3
|V1|.

Since |V \ V1| is small this gives an upper bound for the maximum codegree,

maxcodeg(H1) � maxcodeg(H) � α(H) � α(H1) + |V \ V1| � 2

3
n + O(

√
γ)n.
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Finally, since B1 is independent,

e(H1) =
1

2

∑
a∈A1 , b∈B1

µ(ab) � 1

2
α(H1)(|V1| − α(H1))µ

�(H1).

Then (3.20), and |V1| ∼ n, α(H1) ∼ 2
3
n give the lower bound for maxcodeg(H1).
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Appendix: Proof of the lemmas on polynomials

A.1. Proof of Lemma 3.1

First, we show that the Hessian of f is indefinite on the open halfplane D4 := {(x, y) :

x > 1/3}, so the extrema of f on D1 ⊂ D4 must be on the four boundary line-segments

of ∂D1. Let fxx, fxy, fyy denote the partial derivatives, and let J(x, y) be the determinant

of the Hessian. Then fxx = −9x − 2y + 3, fyy = 8x + 18y − 8, fxy = −2x + 8y − 2 and

J(x, y) = fxxfyy − f2
xy = 88x − 76x2 − 146xy − 28 + 102y − 100y2.

We have that J(x, y) �= 0 for every x > 1/3, because solving J(x, y) = 0 for y, the

discriminant −2271x2 + 1354x − 199 is negative for x > 1/3. Since there is at least one

point where J is negative, e.g., J(1, 0) = −16 < 0, continuity implies that J is negative for

every point of D4.

Let us check the behaviour of f(x, y) on the boundary ∂D1. On each segment it reduces

to a third-degree polynomial of one variable, whose extrema can be identified by the roots

of its derivative, a second-degree polynomial.

(1) First check the lower horizontal boundary, I1 := {(x, 0) : 2/5 � x � 1}. Consider

f(x, 0) = 3
2

(
(1 − x)x2 − 4

27

)
= − 3

2
( 2
3

− x)2( 1
3

+ x). So f � 0 on I1.

(2) Next check the left vertical boundary line x = 2/5. Let ϕ2(y) := f(2/5, y) = (225y3 −
180y2 + 53y)/75 − 88/1125 and I2 := {(2/5, y) : 0 � y � 1/5}. The derivative ϕ′

2 has no

real roots. So ϕ2 is strictly increasing and takes its maximum on [0, 1/5] at y = 1/5. Then

ϕ2(1/5) = −2/225 implies f < 0 on I2.

(3) The third part to be checked is the boundary segment on x = 1. Let ϕ3(y) := f(1, y) =

(27y3 − 12y − 2)/9 and I3 := {(1, y) : 0 � y � 1/5}. We have ϕ′
3(y) = (27y2 − 4)/3; its

roots are ± 2
9

√
3 ∼ ±0.3849. So ϕ′

3 is negative on [0, 1/5] and ϕ3 is decreasing and takes

its maximum at y = 0. Then ϕ3(0) = −2/9 implies f < 0 on I3.

(4) Finally, check the segment on y = 1/5. Let ϕ4(x) := f(x, 1/5) = (−75x3 + 65x2 −
12x)/50 + 28/1125 and I4 := {(x, 1/5) : 2/5 � x � 1}. The derivative of ϕ4 is (−225x2 +

130x − 12)/50 and it has one root, x2 := (13 +
√

61)/45 ∼ 0.462 in I4. Hence ϕ′
4 is positive

on [2/5, x2) and negative on (x2, 1], and ϕ4 has its maximum at x2. We have ϕ4(x2) =

(61
√

61 − 665)/30375 ∼ −0.0062 so f < 0 on I4.
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A.2. Proof of Lemma 3.2

It is enough to prove the next two lemmas for γ = 1/125.

Since F(x, y) and f(x, y) differ by a linear term, their Hessians coincide. So J is negative

on D2 ⊂ D1, too. So the extrema of F must be on some of the four boundary segments of

∂D2.

(5) Consider the lower horizontal boundary, I5 := {(x, 0) : 2/5 � x � 3/5}. Define ϕ5(x) :=

F(x, 0) = 3
2

(
(1 − x)x2 − 4

27

)
+ 1

2
γ. Then ϕ′

5 = 3
2
(2x − 3x2) and it is positive on I5. So ϕ5

is increasing and takes its maximum at x = 3
5
. Then ϕ5(3/5) = 1

2
γ − 7/1125 = −1/450,

implying F < −1/4000 on I5.

(6) Check F on the left vertical boundary line x = 2/5. Let ϕ6(y) := F(2/5, y) = (6750y3 −
5400y2 + 1563y − 167)/2250 and I6 := {(2/5, y) : 0 � y � 1/5} = I2. Then ϕ′

6 has no real

roots; it is positive on [0, 1/5]. So ϕ6 takes its maximum at y = 1/5. We have ϕ6(1/5) =

−41/5625 ∼ −0.007289, so F < −1/4000 on I6.

(7) Consider the boundary segment on the tilted line y = 5x − 3. Let ϕ7(x) := F(x, 5x −
3) = (210825x3 − 405225x2 + 258873x − 54982)/450 and I7 := {(x, 5x − 3) : 3/5 �
x � 0.64}. The derivative of ϕ7 is (210825x2 − 270150x + 86291)/150, and it has one

root x1 = (9005 −
√

235358)/14055 ∼ 0.6061 in I7. Then ϕ′
7 is positive on [3/5, x1) and

negative on (x1, 0.64]. So ϕ7 takes its maximum at x1. We have ϕ7(x1) ∼ −2.58 × 10−4, so

F < −1/4000 on I7.

(8) Finally, check the upper boundary on y = 1/5. Let ϕ8(x) := F(x, 1/5) = ϕ4(x) + 1/625

and I8 := {(x, 1/5) : 2/5 � x � 0.64} ⊂ I4. Since ϕ4 < −0.0062, on I4 we get ϕ4(x) +

0.0016 = ϕ8(x) < −0.0046. So F < −1/4000 on I8.

A.3. Proof of Lemma 3.3

Consider the closed half-plane D3 := {(x, y) : y � 5x − 3}. We claim that

g(x, y) = −7x2 − xy − 3

2
y2 + 7x + y − 31

18
+ 5γ,

defined in (3.2), takes its maximum on D3 at the point (x0, y0) := (20/33, 1/33) on the

boundary line and g(x0, y0) = −4/99 + 5γ = −1/2475 < −1/2500. Indeed, g(x, y) = 0 is

an ellipse lying outside D3, its centre being (20/41, 7/41). Further, g has an absolute

maximum at this centre; it is a concave function so its maximum on D3 should be on the

boundary. Finally, g(x, 5x − 3) = −99x2/2 + 60x − 4091/225 and its maximum can easily

be calculated.
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[10] Frankl, P. and Füredi, Z. (1988) Extremal problems and the Lagrange function for hypergraphs.

Bull. Inst. Math. Acad. Sinica 16 305–313.
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[20] Mubayi, D. and Rödl, V. (2002) On the Turán number of triple systems. J. Combin. Theory

Ser. A 100 135–152.
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