
The codegree threshold of K−
4

Victor Falgas-Ravry 1,4

Institutionen för matematik och matematisk statistik, Ume̊a Universitet, Sweden

Oleg Pikhurko 2,5

Mathematics Institute and DIMAP, University of Warwick, UK

Emil Vaughan 6

Center for Discrete Mathematics, Queen Mary University of London, UK

Jan Volec 3,7

Department of Mathematics, McGill University, Canada

Abstract

The codegree threshold ex2(n, F ) of a non-empty 3-graph F is the minimum d =
d(n) such that every 3-graph on n vertices in which every pair of vertices is contained
in at least d+1 edges contains a copy of F as a subgraph. We study ex2(n, F ) when
F = K−

4 , the 3-graph on 4 vertices with 3 edges. Using flag algebra techniques, we
prove that

ex2(n,K
−
4 ) =

n

4
+O(1).

This settles in the affirmative a conjecture of Nagle [20]. In addition, we obtain
a stability result: for every near-extremal configuration G, there is a quasirandom
tournament T on the same vertex set such that G is close in the edit distance to the
3-graph C(T ) whose edges are the cyclically oriented triangles from T . For infinitely
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many values of n, we are further able to determine ex2(n,K
−
4 ) exactly and to show

that tournament-based constructions C(T ) are extremal for those values of n.
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1 Introduction

Interest in the extremal theory of hypergraphs (and of 3-graphs in particular),
dates back to Turán’s celebrated 1941 paper [25]. Despite significant efforts
from the research community, however, the problem of determining the Turán
density of a given 3-graph F is open in all but a small number of cases —
see Keevash’s survey of the field [14]. The difficulty of the problem has lead
researchers to investigate a number of other notions of extremal density.

The codegree of a pair {x, y} ⊆ V (G) is the number d(x, y) of edges of
a 3-graph G containing the pair {x, y}. The minimum codegree of G, which
we denote by δ2(G), is the minimum of d(x, y) over all pairs {x, y} ⊆ V (G).
The codegree threshold ex2(n, F ) of a nonempty 3-graph F is the maximum
of δ2(G) over all F -free 3-graphs on n vertices. It can be shown [19] that the
limit

π2(F ) := lim
n→∞

ex2(n, F )

n− 2
exists; this quantity is called the codegree density of F . A simple averaging
argument shows that

0 ≤ π2(F ) ≤ π(F ) ≤ 1,

and it is known that π2(F ) �= π(F ) in general.

In the late 1990s, Nagle [20] and then Czygrinow and Nagle [4] made con-
jectures on the values of the codegree densities π2(K

−
4 ) and π2(K4), respec-

tively, where K−
4 = ([4], {123, 124, 134}). In other words, K−

4 is the unique
(up to isomorphism) 3-graph on 4 vertices with 3 edges. From the perspective
of Turán-type problems, the 3-graph K−

4 is the smallest non-trivial 3-graph.

In this work, we focus on the value of π2(K
−
4 ) and settle the following

conjecture in the affirmative.
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Conjecture 1.1 (Nagle) π2(K
−
4 ) = 1/4.

The lower bound in Nagle’s conjecture comes from an old construction
originally due to Erdős and Hajnal [6]:

Construction 1.2 (Erdős-Hajnal construction) Given a tournament T
on the vertex set [n], define a 3-graph C(T ) on the same vertex set by setting
E(C(T )) to consist of all the triples of vertices from [n] inducing a cyclically
oriented triangle in T .

It is easily checked that no tournament on 4 vertices can contain more than
2 cyclically oriented triangles, whence this construction C(T ) gives a K−

4 -free
3-graph. Furthermore, if the tournament T is chosen uniformly at random
then standard Chernoff and union bounds yield that δ2(C(T )) = n/4 − o(n)
with high probability.

Mubayi [18] determined the codegree density of the Fano plane, and Keevash
and Zhao [15] later extended Mubayi’s work to other projective geometries.
The precise codegree threshold of the Fano plane was determined for large
enough n by Keevash [13] using hypergraph regularity, and DeBiasio and
Jiang [5] later found a second, regularity-free proof of the same result. Mubayi
and Zhao [19] established a number of theoretical properties of the codegree
density, while Falgas-Ravry [8] gave evidence that codegree density problems
for complete 3-graphs are not always stable. Finally, Falgas-Ravry, Marchant,
Pikhurko and Vaughan [9] determined the codegree threshold of the 3-graph
F3,2 = {abc, abd, abe, cde} for all n sufficiently large.

Our main result adds a new example to this scant list of known non-
trivial codegree densities by showing π2(K

−
4 ) = 1/4, As the smallest non-

trivial 3-graph from the perspective of Turán-type problems, K−
4 has received

extensive attention from researchers in the area. Its Turán density is not
known, but is conjectured by Mubayi [17] to be 2/7 = 0.2857 . . ., with the
lower bound coming from a recursive construction of Frankl and Füredi [11].
Matthias [16] and Mubayi [17] proved upper bounds on π(K−

4 ), before the
advent of Razborov’s flag algebra framework [21], and in particular his semi-
definite method, led to computer-aided improvements by Razborov [22] and
Baber and Talbot [1], with a current best upper bound of 0.2868 . . . [10].

In addition, ‘smooth’ variants of the Turán density problem for K−
4 have

been studied. The δ-linear density of a 3-graphG is the minimum edge-density
attained by an induced subgraph of G on at least δv(G) vertices. Motived by
the analogous positive results for graphs (see, for example, [24]), Erdős and
Sós [7] asked whether having a δ-linear density bounded away from 0 for suffi-
ciently small δ is enough to ensure the existence of a copy of K−

4 in sufficiently
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large 3-graphs. Füredi observed however that the tournament construction of
Erdős and Hajnal described above gives a negative answer to this question: a
linear-density of at least 1/4 is required for the existence of a K−

4 -subgraph.
In recent work, Glebov, Král’ and Volec [12] showed this 1/4 lower bound is
tight, using flag algebraic techniques amongst other ingredients in their proof.
From the proof, it also follows that the Erdős-Hajnal construction is asymp-
totically the unique K−

4 -free 1/4-linear dense 3-graph. Even more recently,
Reiher, Rödl and Schacht [23] reproved the result of [12] and established the
edge-density at which weakly quasirandom 3-graphs must contain a copy of
K−

4 , for various notions of ‘weakly quasirandom’. The extremal problem for
K−

4 under both a codegree and a smoothness assumption had been studied
earlier by Kohayakawa, Rödl and Szemerédi (see [20,23]).

2 Our results

Our main result is the full solution of Conjecture 1.1.

Theorem 2.1 (Codegree density) π2(K
−
4 ) = 1/4.

We obtain this result using flag algebra techniques: applying the semi-
definite method of Razborov [22], we establish an asymptotic identity between
7-vertex subgraph densities of K−

4 -free 3-graphs, from which Nagle’s conjec-
ture easily follows. Further, by analysing this identity, we deduce that in all
near-extremal 3-graphs G, between almost any two pairs of vertices uv and
xy we can find a tight-path with three edges connecting them. This allows
coupling such a G with a tournament T on the same vertex-set in a way that
almost all edges of G correspond to cyclically oriented triangles in T . The
codegree assumption on G and standard results on quasirandom tournaments
(see [2,3]) yield that T must be quasirandom.

Theorem 2.2 (Stability) Let G be a K−
4 -free 3-graph on [n] with δ2(G) ≥

n/4 − o(n). Then there exists a quasirandom tournament T on [n] such that
the edit distance between G and the 3-graph C(T ) is o(n3).

Using the stability result, we show that if n is sufficiently large, then the
maximum value of ex(n,K−

4 ) is always attained by a tournament-type con-
struction. This allows us to fully determine the exact value of ex(n,K−

4 ) for
infinitely many values of n, and relate it to the existence of certain combi-
natorial designs: A skew Hadamard matrix is a square matrix A with ±1
entries such that (i) the rows of A are pairwise orthogonal, and (ii) At = −A.
The existence of such a matrix relates to the codegree threshold of K−

4 in the
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following way.

Theorem 2.3 (Codegree threshold) For all n sufficiently large,

ex2(n,K
−
4 ) ≤

⌊
n+ 1

4

⌋
.

Further, if there exists a skew Hadamard matrix of order 4k + 4, then for
n = 4k + 3 and n = 4k + 2 sufficiently large, then we have equality in the
equation above and every extremal construction for n = 4k + 3 is an Erdős-
Hajnal tournament-type construction.

Seberry’s conjecture states that skew Hadamard matrices actually exist for
every n ≡ 0 mod 4. It is known to hold for all n < 276, and all n of the form
2t
∏

i∈I(qi + 1), where t ∈ Z≥0, I is a non-empty set of indices and for each
i ∈ I, qi is a prime power congruent to 3 mod 4.

Corollary 2.4 If Seberry’s conjecture is true, then for all n sufficiently large

ex2(n,K
−
4 ) =

⎧⎨
⎩
�n+1

4
	 if n ≡ 2, 3 mod 4,

�n+1
4
	 or �n−3

4
	 if n ≡ 0, 1 mod 4.

Finally, we prove that Seberry’s conjecture is actually equivalent to the
tightness of Theorem 2.3 in the case n ≡ 3 mod 4.

Proposition 2.5 For n ≡ 3 mod 4, the value of ex2(n,K
−
4 ) = �n+1

4
	 if and

only if there exists a skew Hadamard matrix of order n+ 1.
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