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Abstract. Given a family of 3-graphs F , we define its codegree threshold coex(n,F) to be the
largest number d = d(n) such that there exists an n-vertex 3-graph in which every pair of vertices
is contained in at least d 3-edges but which contains no member of F as a subgraph. Let F3,2 be
the 3-graph on {a, b, c, d, e} with 3-edges abc, abd, abe, and cde. In this paper, we give two proofs
that coex(n, {F3,2}) =

(
1
3
+ o(1)

)
n, the first by a direct combinatorial argument and the second via

a flag algebra computation. Information extracted from the latter proof is then used to obtain a
stability result, from which in turn we derive the exact codegree threshold for all sufficiently large
n: coex(n, {F3,2}) = �n/3� − 1 if n is congruent to 1 modulo 3, and �n/3� otherwise. In addition we
determine the set of codegree-extremal configurations for all sufficiently large n.
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1. Introduction.

1.1. Turán-type problems. We begin with some standard definitions. Let
r, n ∈ N. We write [n] for the discrete interval {1, 2, . . . , n}. Also, given a set S, we
denote by S(r) the collection of all r-subsets from S.

An r-graph is a pair of sets G = (V,E), where V = V (G) is a set of vertices
and E = E(G) is a collection of r-sets from V , which constitute the r-edges of G.
An r-graph G is nonempty if E(G) �= ∅. A subgraph of G is an r-graph H with
V (H) ⊆ V (G) and E(H) ⊆ E(G). Given a family of r-graphs F , we say that G is
F-free if no member of F is isomorphic to a subgraph of G.

One of the central problems in extremal combinatorics is determining the maxi-
mum number ex(n,F) of r-edges that an r-graph on n vertices may contain while re-
maining F -free, where F is a family of nonempty r-graphs. The function n �→ ex(n,F)
is known as the Turán number of F .

Problem 1. Let F be a family of nonempty r-graphs. Determine the Turán
number of F .

Often, computing the Turán number exactly may be difficult, and so, lower-
ing our sights, we are interested in the asymptotic behavior of the Turán function:
what is the asymptotically maximal proportion of all possible edges that an F -free
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THE CODEGREE THRESHOLD OF F3,2 1505

r-graph may contain? An easy averaging argument shows that the nonnegative se-
quence ex(n,F)/

(
n
r

)
is nonincreasing and hence converges to a limit as n tends to

infinity. This limit is known as the Turán density of F and is denoted by π(F).
Problem 2. Let F be a family of nonempty r-graphs. Determine the Turán

density of F .
These two problems have been studied very successfully in the case r = 2, cor-

responding to ordinary (2-)graphs. Turán determined the Turán number of complete
graphs [37], while Erdős and Stone [9] fully resolved Problem 2 in a seminal result
relating the Turán density of a family of graphs to its chromatic number.

Despite recent progress, this stands in some contrast to the situation when r ≥
3. Indeed few Turán densities are known even for 3-graphs, and the problem of
determining them is known to be hard in general. Let us introduce here a few of the
3-graphs relevant to our discussion. As a convention, we will write xyz for the 3-edge
{x, y, z} and π(F1, F2, . . . , Ft) for the Turán density π({F1, F2, . . . , Ft}).

Let K4 denote the complete 3-graph on four vertices, and let K−
4 denote the

3-graph obtained from K4 by deleting one of its edges. Let F3,2 be the 3-graph
([5], {123, 124, 125, 345}). Finally, let F7 be the Fano plane, namely the (unique up
to isomorphism) 3-graph on seven vertices in which every pair of vertices is contained
in exactly one 3-edge.

Almost no Turán densities or Turán numbers for 3-graphs were known until de
Caen and Füredi [6] established that π(F7) = 3/4. (A notable exception is a result
of Bollobás [4].) The Turán number of the Fano plane was independently determined
shortly afterwards by Keevash and Sudakov [23] and Füredi and Simonovits [16].
Around the same time, Füredi, Pikhurko, and Simonovits determined first the Turán
density [14] and then the Turán number [15] of F3,2.

The next major development as far as computing Turán densities is concerned was
the advent of Razborov’s semidefinite method [35]. With the assistance of computers,
this method has been used in recent years to significantly increase the number of
known Turán densities for 3-graphs [2, 13].

1.2. The codegree problem. Given a 3-graph G and a vertex x ∈ V (G), the
degree d(x) of x in G is the number of 3-edges of G containing x. The minimum degree
ofG is δ(G) = minx∈V (G) d(x). It is not hard to see that the Turán density problem for
3-graphs is equivalent to determining asymptotically what minimum degree condition
forces a 3-graph on n vertices to contain a copy of a member of a given family F as
a subgraph.

A natural variant is to consider what minimum codegree condition is required
to force an F -subgraph. Here, the codegree d(x, y) of two distinct vertices x, y in a
3-graph G is the number of 3-edges of G which contain the pair {x, y}. (We may
sometimes write this as dG(x, y) to emphasize that we are taking the codegree in G
and not some other 3-graph.) The minimum codegree δ2(G) of G is, as the name
suggests, the minimum of d(x, y) over all pairs of vertices from V (G).

We may then define for a family of nonempty 3-graphs F the codegree threshold
coex(n,F) to be the maximum of δ2(G) over all F -free 3-graphs G on n vertices. This
is the codegree analogue of the Turán number.

Problem 3. Let F be a family of nonempty 3-graphs. Determine the codegree
threshold of F .

Again it may be that, in general, computing the codegree threshold proves dif-
ficult and that we would first be interested in determining the asymptotic behavior
of coex(n,F). Following the analogy with the Turán-type problems, it is natural to
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1506 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

consider the sequence coex(n,F)/(n − 2) or some close relative. Here, however, we
do not in general have monotonicity: Lo and Markström [25] showed that neither of
coex(n,K4)/n and coex(n,K4)/(n − 2) is nonincreasing. The limit of coex(n,F)/n
does exist, however, as first shown by Mubayi and Zhao [31]. Thus we may define the
codegree density of F to be

γ(F) := lim
n→∞

coex(n,F)

n− 2
.

(Obviously, choosing n or n− 2 in the denominator does not affect the limit.)
This gives us a codegree analogue of the Turán density for 3-graphs.
Problem 4. Let F be a family of nonempty 3-graphs. Determine the codegree

density γ(F).
What is the relationship between π(F) and γ(F)? By counting 3-edges in two

ways it is easy to show that γ(F) ≤ π(F).
The first result on codegree density is due to Mubayi [30], who showed that

γ(F7) = 1/2. This gave an example where γ(F) is strictly less than π(F) (since de
Caen and Füredi had shown that π(F7) = 3/4). The codegree threshold for the Fano
plane was determined for all sufficiently large n by Keevash [21], who used hypergraph
regularity and quasirandomness to get a stability result from which he was able to
proceed to the exact result via more standard combinatorial arguments. His method
gave slightly more than just the codegree threshold, as it also identified exactly which
3-graphs could attain it, namely complete bipartite 3-graphs. DeBiasio and Jiang [7]
later gave a simpler proof that coex(n,F) = 
n/2� for n sufficiently large which
avoided the use of regularity.

Except for the Fano plane, almost no codegree results are known for 3-graphs.
Keevash and Zhao [24] studied the codegree density of projective geometries, following
on earlier work of Keevash [20] on their Turán densities. Nagle [32] conjectured that
γ(K−

4 ) = 1/4, while Czygrinow and Nagle [5] conjectured that γ(K4) = 1/2, with
lower-bound constructions coming in both cases from random tournaments. Falgas–
Ravry [10] gave nonisomorphic lower bound constructions for γ(Kt) for general t.
Recently, a subset of the authors proved γ(K−

4 ) = 1/4 using flag algebras [12].

1.3. 3-graphs with independent neighborhoods. Given a 3-graph G and a
pair of distinct vertices x, y ∈ V (G), their joint neighborhood in G is

Γ(x, y) = {z ∈ V (G) : {x, y, z} ∈ E(G)}.

In an F3,2-free 3-graph, the joint neighborhoods form independent (edge-free) subsets
of the vertex set. Such 3-graphs are thus said to have independent neighborhoods.

As mentioned in section 1.1, the Turán density and Turán number of F3,2 were de-
termined by Füredi, Pikhurko, and Simonovits [14, 15], who showed that the extremal
configurations were “one-way bipartite” 3-graphs.

Construction 1. Given a vertex set V and a bipartition V = A�B, we define
a one-way bipartite 3-graph DA,B on V by taking as the 3-edges all triples {a1, a2, b}
with a1, a2 ∈ A and b ∈ B (see Figure 1).

It is easy to see that DA,B has independent neighborhoods and that the number
of 3-edges in DA,B is maximized when |A| = 2|B|+O(1).

Theorem (see Füredi, Pikhurko, and Simonovits [15]). There exists n0 ∈ N

such that if G is a 3-graph on n ≥ n0 vertices with independent neighborhoods and
|E(G)| = ex(n, F3,2), then there exists a partition V (G) = A�B of its vertex set such
that G = DA,B.
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THE CODEGREE THRESHOLD OF F3,2 1507

A B

Fig. 1. Construction 1.

C

A B

Fig. 2. Construction 2.

Bohman et al. [3] conjectured that a natural modification of Construction 1 was
optimal for the codegree problem for F3,2.

Construction 2. Given a vertex set V and a tripartition V = A � B � C, we
define a 3-graph TA,B,C on V by taking the union of DA,B, DB,C, and DC,A (see
Figure 2).

Again we have that TA,B,C has independent neighborhoods, and

δ2(TA,B,C) = min (|A|, |B|, |C|) − 1,

which is maximized when the three parts A,B,C are balanced, that is, have sizes as
equal as possible. Thus coex(n, F3,2) ≥ 
n/3�− 1. Bohman et al. [3] conjectured that
this provides a tight lower bound for the codegree density.

Conjecture 1 (see Bohman et al. [3]).

γ(F3,2) =
1

3
.

1.4. Results and structure of the paper. In this paper we show that

coex(n, {F3,2}) =
{


n/3� − 1 if n is congruent to 1 modulo 3,

n/3� otherwise

for all n sufficiently large and determine the set of extremal configurations (which are
close to but distinct from balanced TA,B,C configurations in general). This settles
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1508 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

Conjecture 1 in the affirmative and fully resolves Problems 3 and 4 for the family
F = {F3,2} and n sufficiently large.

We first give two proofs that the codegree density of F3,2 is 1/3.
Theorem 1 (Codegree density).

γ(F3,2) =
1

3
.

In section 2, we give a purely combinatorial proof of Theorem 1 due to Marchant,
which appeared in his Ph.D. thesis [26]. In section 3, we adapt the semidefinite
method of Razborov to the codegree setting to give a second proof of Theorem 1.
While this second proof, a computer-assisted flag algebra calculation, is not nearly as
elegant, it gives us some information about the structure of near-extremal 3-graphs.
This information can be used together with a hypergraph removal lemma to prove a
stability result. To state this formally, we need to make one more definition.

Definition 1. Let G and H be 3-graphs on vertex sets of size n. The edit
distance between G and H is the minimum number of changes needed to make G into
an isomorphic copy of H, where a change consists in replacing an edge by a nonedge,
or vice versa.

Theorem 2 (Stability). For all ε > 0 there exist δ > 0 and n0 ∈ N such that if
G is an F3,2-free 3-graph on n ≥ n0 vertices with

δ2(G) ≥
(
1

3
− δ

)
n,

then G lies at edit distance at most ε
(
n
3

)
from a balanced TA,B,C construction.

We use Theorem 2 in section 4 to prove our result on the codegree threshold.
Theorem 3 (Codegree threshold). For all n sufficiently large,

coex(n, {F3,2}) =
{


n/3� − 1 if n is congruent to 1 modulo 3,

n/3� otherwise.

In addition we determine the set of extremal configurations. Since this set de-
pends on the congruence class of n modulo 3 and in one case has a slightly technical
description, we postpone the corresponding theorems to section 4 (Theorems 37, 39,
46, and 51).

We end the paper with a discussion of “mixed problems”: given c: 0 ≤ c ≤
1/3, what is the asymptotically maximal 3-edge density ρc in F3,2-free 3-graphs with
codegree density at least c? We make a conjecture regarding the value of ρc.

2. Codegree density via extensions. In this section, we prove that γ(F3,2) =
1/3. Our strategy is similar in spirit to the one espoused by de Caen and Füredi [6]
in their work on the Turán density of the Fano plane: we show that if δ2(G) is large,
then G contains either a copy of F3,2 or a copy of some “nice subgraph” H . In the
latter case we repeat the procedure using the extra assumption that H is a subgraph
of G: we find again either a copy of F3,2 or a copy of an even “nicer” subgraph, H ′,
and so on.

Our approach is based on Lemma 4, proved in the next subsection, which estab-
lishes the existence of “nice” extensions of a subgraph in a 3-graph with high codegree.
In section 2.2, we define conditional codegree density—loosely speaking, the codegree
density subject to the constraint of containing a particular subgraph H . This concept
then allows us to apply Lemma 4 in a very streamlined fashion in the final subsection
to prove Theorem 1.
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THE CODEGREE THRESHOLD OF F3,2 1509

2.1. Extensions. We prove here a useful lemma, which tells us that if we have
a small subgraph H inside a 3-graph G which has a high minimum codegree δ2(G),
then we can extend H to a slightly larger “nice” subgraph H ′ of G.

We begin with some definitions.
Definition 2. Let H be a 3-graph. A (simple) extension of H is a 3-graph H ′

with V (H ′) = V (H) ∪ {z} for some z /∈ V (H) and E(H ′) ⊇ E(H). We denote by
L(H ′;H) the link graph of the new vertex z,

L(H ′;H) = {xy ∈ V (H)(2) : xyz ∈ E(H ′)}.

Definition 3. A sequence of 3-graphs (Gn)n∈N tends to infinity if |V (Gn)| → ∞
as n → ∞. Also, given a 3-graph H, we say that a sequence (Gn)n∈N contains H if
all but finitely many of the 3-graphs Gn contain H as a subgraph.

Given a set S, write Δ(S) for the (|S| − 1)-dimensional simplex{
α ∈ [0, 1]

S
:
∑
s∈S

αs = 1

}
.

If H is a 3-graph and α ∈ Δ(V (H)
(2)

), then α is a weighting on the pairs of vertices
of H . We can now state and prove our key lemma.

Lemma 4. Let H be a 3-graph. Suppose (Gn)n∈N is a sequence of 3-graphs tending
to infinity with

c = lim inf
n→∞

δ2(Gn)

|V (Gn)|

and that (Gn)n∈N contains H. Then, for any α ∈ Δ(V (H)(2)), there are a simple
extension H ′ of H with ∑

xy∈L(H′;H)

αxy ≥ c

and a subsequence (Gnk
)k∈N of (Gn)n∈N such that (Gnk

)k∈N contains H ′.
Proof. Let (Gn) = (Gn)n∈N be a 3-graph sequence tending to infinity with

c = lim inf
n→∞

δ2(Gn)

|V (Gn)|
.

Suppose H is a 3-graph contained in (Gn), and let α ∈ Δ(V (H)
(2)

).
We claim that for every ε > 0 there exists an extension H ′ of H such that H ′

is contained as a subgraph in infinitely many of the 3-graphs Gn and the weaker
condition ∑

xy∈L(H′;H)

αxy ≥ c− 2ε

holds. This is sufficient to prove the lemma, as there are up to isomorphism only
finitely many possible simple extensions of H , and so one of them must satisfy the
weaker condition for all ε > 0.

Fix 0 < ε < 1 and choose N ∈ N sufficiently large such that for n ≥ N all of the
following hold:
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1510 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

(i) δ2(Gn)/|V (Gn)| ≥ c− ε,
(ii) |V (Gn)| ≥ |V (H)|/ε, and
(iii) H is a subgraph of Gn.

Consider a 3-graph Gn from our sequence with n ≥ N . Fix a copy of H within Gn

(we know by (iii) above that such a copy exists), and consider the weighted sum

s =
∑

xy∈V (H)(2)

αxy|Γ(x, y)| .

We have s ≥ (c− ε)|V (Gn)| by (i) above. Also,

s =
∑

z∈V (Gn)

∑
xy∈V (H)(2): xyz∈E(Gn)

αxy

≤

⎛
⎝ ∑

z∈V (Gn)\V (H)

∑
xy∈V (H)(2): xyz∈E(Gn)

αxy

⎞
⎠+ |V (H)| .

Hence by averaging there exists a vertex z /∈ V (H) such that

∑
xy∈V (H)(2): xyz∈E(Gn)

αxy ≥ |V (Gn)|
|V (Gn) \ V (H)| (c− ε)− |V (H)|

|V (Gn) \ V (H)|

≥ |V (Gn)|
|V (Gn) \ V (H)| (c− 2ε) (by (ii) above)

> c− 2ε .

Therefore the simple extension H ′ of H with vertex set V (H) ∪ {z} and 3-edges

E(H) ∪ {xyz : xy ∈ V (H)(2), xyz ∈ E(Gn)} satisfies our weaker condition and is a
subgraph of Gn. Since there are up to isomorphism only finitely many extensions of
H , one of them must satisfy the weaker condition and be contained in infinitely many
of the 3-graphs in our sequence (Gn)n∈N. This concludes the proof of our claim and
with it the proof of the lemma.

We shall sometimes write wα(L(H
′;H)), or simply w(L), for

∑
xy∈L(H′;H) αxy.

This quantity w(L) is exactly the total weight of the pairs picked up by the new vertex
in the extension with respect to the weighting α.

2.2. Conditional codegree density. Our arguments in the proof of Theorem 1
are of the form “if G contains H and δ2(G) is large, then G must contain a copy of a
member of F .” It is thus natural to make the following definition.

Definition 4. Let H be a 3-graph, and let F be a family of nonempty 3-graphs.
The conditional codegree threshold of F given H, denoted by coex(n,F|H), is the
maximum of δ2(G) over all n-vertex, F-free 3-graphs G which contain a copy of H as
a subgraph.

Our aim in this subsection is to show that we can define a conditional codegree
density from this, in other words that the sequence coex(n,F|H)/n tends to a limit
as n → ∞. This will be very similar to the proof that the usual codegree density is
well defined [31].

Lemma 5. Let H be a 3-graph, and let ε > 0. Then there exists an integer
N = N(ε,H) such that for all n, n′ ∈ N with N ≤ n′ ≤ n every 3-graph G on n
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THE CODEGREE THRESHOLD OF F3,2 1511

vertices containing a copy of H has a subgraph G′ on n′ vertices also containing a
copy of H and satisfying

δ2(G
′)

n′ >
δ2(G)

n
− ε

(this is just saying that G′ has “codegree density” almost as large as G).
Proof. Let H be a 3-graph on h vertices, and let ε > 0. Suppose G is a 3-graph

on n vertices containing a copy of H . We form an n′-vertex subgraph of G by fixing
a copy of H in G and extending it by adding n′ − h vertices selected uniformly at
random from the rest of G. Let G′ denote the resulting (random) induced subgraph
of G. Clearly, G′ contains a copy of H and has the right order. Now let us show
that, provided n and n′ are sufficiently large, G′ also has a good chance of having a
reasonably high minimal codegree.

Let P1, P2, . . . , P(n
′

2 )
be a random enumeration of the pairs of vertices from V (G′).

Note that, conditional on Pi = xy, the set V (G′) \ (Pi ∪ V (H)) is distributed as a
uniformly chosen random subset of V (G) \ (Pi ∪ V (H)) of size n′ − |V (H) ∪ Pi| ≥
n′ − h− 2.

For each i : 1 ≤ i ≤
(
n′
2

)
and t ∈ N, we have

P(dG′(Pi) ≤ t) ≤
∑

xy∈V (G)(2)

P(Pi = xy)P
(∣∣(V (G′) ∩ Γ(x, y)

) \ (Pi ∪ V (H))
∣∣ ≤ t

∣∣∣Pi = xy
)

≤ P(X ≤ t),

where X is the hypergeometric random variable

X ∼ Hypergeometric (n′ − 2− h, δ2(G)− h, n− h) .

(Recall that the Hypergeometric(s, t,N) distribution with parameters s, t ≤ N is ob-
tained as follows: fix a t-subset A of an N -set. Then pick an s-set B from the same
N -set uniformly at random; the Hypergeometric(s, t,N) distribution is the distribu-
tion of the number of elements of A included in B.)

Now, provided n, n′ are both sufficiently large,

E(X) ≥ n′

n
δ2(G)−

ε

2
n′ .

We can now use a standard Chernoff-type bound for the hypergeometric distri-
bution (see, for example, Lemma 2 in [18]) to show that the probability that Pi is a
low codegree pair in G′ is small.

P

(
dG′(Pi) ≤

n′

n
δ2(G)− εn′

)
≤ P

(
X ≤ E(X)− εn′

2

)

≤ exp

(
−(εn′/2)2

E(X)/2

)

≤ exp

(
−ε2n′

2

)
.

Summing over all
(
n′

2

)
pairs Pi from V (G′) and using the union bound, we deduce

that

P

(
δ2(G

′) ≤ n′

n
δ2(G)− εn′

)
≤
(
n′

2

)
exp

(
−ε2n′

2

)
.
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1512 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

For n′ sufficiently large, this is strictly less than 1. Thus with strictly positive proba-
bility G′ satisfies δ2(G′)/n′ > δ2(G)/n−ε as required, and in particular a good choice
of G′ exists.

With Lemma 5 in hand, we can now prove the main result of this section.
Proposition 6. For all 3-graphs H and all families of nonempty 3-graphs F not

containing H, the sequence coex(n,F|H)/n tends to a limit as n→ ∞.
Proof. Let H be a 3-graph, and let F be a family of nonempty 3-graphs which

does not contain H . Set

an =
coex(n,F|H)

n
.

We shall show that (an)n∈N is a Cauchy sequence and hence is convergent in [0, 1].
Pick ε > 0, and let N = N(ε,H) be the integer whose existence is guaranteed by

Lemma 5. Let n, n′ ∈ N be integers with n ≥ n′ ≥ N . Suppose G is an n-vertex F -free
3-graph containing a copy ofH with δ2(G) = coex(n,F|H). By Lemma 5, G has an n′-
vertex subgraph G′ which contains a copy of H and satisfies δ2(G

′)/n′ ≥ δ2(G)/n−ε.
Since G is F -free, so is G′, and we thus must have

an − an′ ≤ an − δ2(G
′)

n′ ≤ an − δ2(G)

n
+ ε = ε.

We claim that there also exists an integer M = M(ε,H) ≥ N such that for all
integers n ≥ M we have aM − an ≤ ε. Indeed, either M1 = N is a good choice of
M or there exists an integer M2 > N with aM2 < aN − ε. Then either M2 is a good
choice of M or there exists an integer M3 > M2 with aM3 < aM2 − ε, in which case
we iterate the argument. As the sequence aM1 , aM2 , . . . consists of real numbers from
[0, 1], is strictly decreasing, and has gaps between successive terms of at least ε, it
can have length at most 1+ �1/ε�. Thus, after a bounded number of iterations of our
argument, we find a good choice of M .

Then for any n ≥ M we have |an − aM | ≤ ε. It follows that (an)n∈N is Cauchy
as claimed and hence converges to a limit in [0, 1].

We may thus define the conditional codegree density of F given H .
Definition 5. Let F be a family of nonempty 3-graphs, and let H be a 3-graph

not belonging to F . The conditional codegree density γ(F|H) of F given H is the
limit

γ(F|H) = lim
n→∞

coex(n,F|H)

n
.

The following simple observation encapsulates the usefulness of conditional code-
gree densities in bounding codegree densities.

Lemma 7. Let F be a family of nonempty 3-graphs, and let H be a 3-graph not
contained in F . Then

γ(F) = max{γ(F|H), γ(F ∪ {H})} .

Proof. Let c = max{γ(F|H), γ(F ∪{H})}. Clearly, we have that γ(F) ≥ γ(F|H)
and γ(F) ≥ γ(F ∪ {H}), so γ(F) ≥ c.

Let (Gn)n∈N be a sequence of 3-graphs tending to infinity with lim infn→∞
δ2(Gn)
|V (Gn)|

> c, and let n be sufficiently large. Then, since γ(F ∪ {H}) ≤ c, Gn must contain a
member of F or H . As γ(F|H) ≤ c, if Gn contains H , then it must also contain a
member of F . In particular, Gn contains a member of F . It follows that γ(F) ≤ c,
as claimed.
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THE CODEGREE THRESHOLD OF F3,2 1513

2.3. Proof of Theorem 1. For an integer t, the blow-up F (t) of a 3-graph F is
the 3-graph formed by replacing each vertex v of F by a set Sv of t new vertices and
placing for each 3-edge {x, y, z} ∈ E(F ) all t3 triples meeting each of Sx, Sy, and Sz

in one vertex. If F is a family of 3-graphs, then its blow-up F(t) is defined to be the
family {F (t) : F ∈ F}.

Just like the ordinary Turán density, the codegree density γ exhibits blow-up
invariance: the codegree density of a finite family is the same as the codegree density
of its blow-up. This fact was reproved by several researchers; see, e.g., [24, 25, 31].

Lemma 8 (see [24, 25, 31]). Let F be a finite family of 3-graphs, and let t ∈ N.
Then

γ(F(t)) = γ(F).

Having stated this lemma, let us now define some 3-graphs we shall need in our
proof of Theorem 1. Recall from the introduction that K4 is the complete 3-graph on
four vertices, and K−

4 is the 3-graph obtained from K4 by deleting one of its 3-edges.
Further, let Sk denote the star on k + 1 vertices, that is, the 3-graph with vertex set
{x, y1, . . . , yk} and 3-edges {xyiyj : 1 ≤ i < j ≤ k}. Note that S3 is (isomorphic to)
K−

4 .
Finally, let S′

k denote the 3-graph on k + 2 vertices obtained by duplicating the
central vertex x of the star Sk. Thus S

′
k has vertex set {x1, x2, y1, . . . , yk} and 3-edges

{x1yiyj : 1 ≤ i < j ≤ k} ∪ {x2yiyj : 1 ≤ i < j ≤ k}.
Our strategy in the proof of Theorem 1 is to show that if a 3-graph G has codegree

δ2(G) >
(
1
3 + ε

)
|V (G)| and |V (G)| is large, then G contains a copy of F3,2 or it is

forced to contain copies of larger and larger stars. We make this gradual ascension
towards Theorem 1 in a series of lemmas on conditional codegree density, each of
which relies on applying the key lemma (Lemma 4) with a suitable weighting α. We
shall repeatedly look for and find copies of F3,2 inside larger 3-graphs, and it will be
convenient to write “ab|cde” to mean that abc, abd, abe, and cde are all 3-edges (and
thus that {abcde} spans a copy of F3,2).

Lemma 9. γ(F3,2, S
′
3) ≤ 1

3 .

Proof. Clearly, γ(F3,2, S
′
3) ≤ γ(S′

3), and since S′
3 is a subgraph of K−

4 (2), it
is enough by Lemma 8 to show that γ(K−

4 ) ≤ 1/3. And indeed coex(n,K−
4 ) ≤ n/3

since if we take any edge xyz in a K−
4 -free 3-graph, the neighborhoods Γ(x, y), Γ(x, z),

Γ(y, z) must be disjoint. Thus γ(K−
4 ) ≤ 1/3 as claimed.

Lemma 10. Let k ≥ 3. Then γ(F3,2|S′
k) ≤ k/(3k − 1).

Proof. Suppose (Gn)n∈N is a 3-graph sequence tending to infinity and containing
S′
k with

lim inf
n→∞

δ2(Gn)

|V (Gn)|
>

k

3k − 1
.

Denote the vertices of S′
k by V (S′

k) = {x1, x2, y1, . . . yk} as before, and partition the
collection of pairs V (S′

k)
(2) into the three sets P1 = {x1x2}, P2 = {xiyj : 1 ≤ i ≤

2, 1 ≤ j ≤ k}, and P3 = {yiyj : 1 ≤ i < j ≤ k}.
We shall apply Lemma 4 using the following weight vector α ∈ Δ(V (S′

k)
(2)):

αuv =

⎧⎪⎨
⎪⎩

k−1
3k−1 if uv ∈ P1 ,

1
6k−2 if uv ∈ P2 ,

2
(k−1)(3k−1) if uv ∈ P3 .
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1514 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

Lemma 4 guarantees that there is an extension H of S′
k for which

wα(L(H ;S′
k)) =

∑
uv∈L(H;S′

k
)

αuv ≥ lim inf
n→∞

δ2(Gn)

|V (Gn)|
>

k

3k − 1

and an infinite subsequence (Gnk
)k∈N such that (Gnk

)k∈N contains H .
We now show that H must contain F3,2 to conclude the proof of the lemma. This

is essentially case-checking. Write L for the set L(H ;S′
k), w for wα, and z for the

vertex added to S′
k to form H .

Case 1. Suppose that L contains the single pair x1x2 from P1. If L contains any
pair yiyj from P3, then yiyj |x1x2z, so that we have a copy of F3,2, as claimed. On
the other hand, if P3 contains no edge of L, then consider |L ∩ P2|. If this is at least
three, then at least one of the vertices x1, x2, without loss of generality x1, must be
incident to at least two edges of L ∩ P2. Let two such edges be x1yi and x1yj . Then
zx1|x2yiyj , so that again we have a copy of F3,2, as claimed. Finally, note that if
L ∩ P3 = ∅ and |L ∩ P2| ≤ 2, then

w(L) ≤ (k − 1)|L ∩ P1|
3k − 1

+
|L ∩ P2|
2(3k − 1)

≤ k

3k − 1
,

contradicting the fact that w(L) > k/(3k − 1). Thus we are done in this case.
Case 2. Suppose that L does not contain x1x2 but contains at least one edge

from P2. Without loss of generality, let x1yi be one such edge.
If yi is incident to two edges yiyj1 and yiyj2 of L ∩ P3, then zyi|x1yj1yj2 and we

have a copy of F3,2, as required. On the other hand, if L ∩ P3 contains at least one
edge yj1yj2 not incident to yi, then x1yi|zyj1yj2 , again spanning a copy of F3,2.

Now if L contains exactly one edge yiyj from P3, then all edges in L ∩ P2 are
incident with one of yi, yj . In particular, |L ∩ P2| ≤ 4 and

w(L) =
|L ∩ P2|
2(3k − 1)

+
2|L ∩ P3|

(k − 1)(3k − 1)

≤ 2

3k − 1
+

2

(k − 1)(3k − 1)

=
k

(3k − 1)

2

(k − 1)
≤ k

3k − 1
(since k ≥ 3),

a contradiction. On the other hand, if L contained no edge from P3, then

w(L) =
|L ∩ P2|
2(3k − 1)

≤ k

3k − 1
,

again a contradiction of our assumption that w(L) > k/(3k − 1).
Case 3. Finally, suppose that L contains no edge from P1 or P2. Then L ⊆ P3,

and

w(L) ≤ 2|P3|
(k − 1)(3k − 1)

=
k

3k − 1
,

contradicting our assumption that w(L) > k/(3k − 1).
It follows that H must contain a copy of F3,2, as claimed.
Lemma 11. Let k ≥ 3. Then γ(F3,2, Sk+1,K4|S′

k) ≤ 1/3.
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THE CODEGREE THRESHOLD OF F3,2 1515

Proof. This is very similar to the proof of Lemma 10. Suppose (Gn)n∈N is a
3-graph sequence tending to infinity which contains S′

k and satisfies

lim inf
n→∞

δ2(Gn)

|V (Gn)|
>

1

3
.

Denote the vertices of S′
k by V (S′

k) = {x1, x2, y1, . . . , yk} as before, and partition

V (S′
k)

(2)
into the three sets P1 = {x1x2}, P2 = {xiyj : 1 ≤ i ≤ 2, 1 ≤ j ≤ k}, and

P3 = {yiyj : 1 ≤ i < j ≤ k}.
We apply Lemma 4 with a slightly different weighting. Let α be defined by

αuv =

⎧⎪⎨
⎪⎩

k−2
3(k−1) if uv ∈ P1 ,

1
6(k−1) if uv ∈ P2 ,

2
3k(k−1) if uv ∈ P3 .

Lemma 4 guarantees the existence of an extension H of S′
k with

wα(L(H ;S′
k)) =

∑
uv∈L(H;S′

k)

αuv ≥ lim inf
n→∞

δ2(Gn)

|V (Gn)|
>

1

3

and of an infinite subsequence (Gnk
)k∈N such that (Gnk

)k∈N contains H .
We now show that any such extension H must contain either F3,2, Sk+1, or K4.

As in the previous lemma, this is just a matter of case-checking. Write L as before
for the set L(H ;S′

k), w for wα, and z for the vertex added to S′
k to form H .

Case 1. Suppose x1x2 ∈ L. By the analysis in Case 1 of Lemma 10, we know
that if L contains any edge from P3 or at least three edges from P2, then H contains
a copy of F3,2 and we are done. On the other hand, if neither of these happens, then

w(L) =
(k − 2)|L ∩ P1|

3(k − 1)
+

|L ∩ P2|
6(k − 1)

≤ k − 2

3(k − 1)
+

1

3(k − 1)
=

1

3
,

contradicting our assumption that w(L) > 1/3.
Case 2. Suppose x1x2 /∈ L, but L∩P2 �= ∅. By the analysis in Case 2 of Lemma 10,

we know that if L contains an edge from P2 incident to two edges from P3 or an edge
from P2 and a disjoint edge from P3, then H contains a copy of F3,2 and we are done.

Also if L contains an edge yj1yj2 of P3 and two edges xiyj1 , xiyj2 from P2, then
zxiyj1yj2 forms a copy of K4 and we are done. In addition if, for some i ∈ {1, 2}, L
contains all k edges of the form xiyj , then xi, z, y1, . . . .yk forms a copy of Sk+1 and
we are done.

Now let us suppose none of these things happens. If L contains an edge from P3,
then |L ∩ P2| ≤ 2 and |L ∩ P3| ≤ 1 (else we have a copy of K4 or F3,2), and thus

w(L) ≤ 2

6(k − 1)
+

2

3k(k − 1)

< 1/3 (since k ≥ 3),

a contradiction. On the other hand, if L contains no edge from P3, then |L ∩ P2| ≤
2(k − 1) (else we have a copy of Sk+1) and

w(L) ≤ 2(k − 1)

6(k − 1)
= 1/3 ,
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1516 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

again a contradiction.
Case 3. Finally, suppose L contains no edge from P1 or P2. Then L ⊆ P3 and

w(L) ≤
2
(
k
2

)
3k(k − 1)

= 1/3 ,

contradicting yet again our assumption that w(H) > 1/3.
It follows that H must contain a copy of one of F3,2, K4, or Sk+1, as claimed.
Lemma 12. γ(F3,2|K4(2)) ≤ 1/3.
Proof. We shall in fact prove the slightly stronger statement that γ(F3,2|K ′′

4 ) ≤
1/3, where K ′′

4 is the 3-graph on six vertices {a, b, c1, c2, d1, d2} with edges {abci : i ∈
[2]} ∪ {abdi : i ∈ [2]} ∪ {acidj : i, j ∈ [2]}∪ {bcidj : i, j ∈ [2]}. In other words, K ′′

4 is
the 3-graph formed by duplicating two distinct vertices of K4 (and hence a subgraph
of K4(2)).

Suppose that (Gn)n∈N is a 3-graph sequence tending to infinity which contains
K ′′

4 and satisfies

lim inf
n→∞

δ2(Gn)

|V (Gn)|
>

1

3
.

We apply Lemma 4 once more, with the following weighting α:

αuv =

{
1
6 if uv ∈ {ac1, ad1, bc1, bd1, c1c2, d1d2} ,
0 otherwise .

Lemma 4 guarantees the existence of an extension H of K ′′
4 with

wα(L(H ;K ′′
4 )) =

∑
uv∈L(H;K′′

4 )

αuv ≥ lim inf
n→∞

δ2(Gn)

|V (Gn)|
>

1

3

and of an infinite subsequence (Gnk
)k∈N such that (Gnk

)k∈N contains H .
We now show that any such extension H contains a copy of F3,2 as a subgraph.

Write again L for the set L(H ;K ′′
4 ), w for wα, and z for the vertex added to K ′′

4 to
form H .

Since w(L) > 1/3, at least three of the edges in {ac1, ad1, bc1, bd1, c1c2, d1d2}must
be contained in the link graph L. If the three edges in that set which are incident to
c1 are in L, then zc1|c2ab and we have a copy of F3,2. Also if c1c2 ∈ L and L contains
either ad1 or bd1, then we have either ad1|c1c2z or bd1|c1c2z, and thus we have a copy
of F3,2. Similarly if d1d2 ∈ L and either ac1 or bc1 is in L, then we have ac1|d1d2z or
bc1|d1d2z.

It follows in particular that if L contains c1c2, then we have a copy of F3,2. In
exactly the same way we are done if d1d2 ∈ L. So finally suppose that neither of c1c2
and d1d2 is contained in L. Then at least three of the four edges ac1, ad1, bc1, bd1
must be in. In particular we must contain a pair of nonincident edges from that set.
Assume without loss of generality that ad1 and bc1 are both in. Then ad1|bc1z, so
that we again have a copy of F3,2, as claimed.

With Lemmas 9, 10, 11, and 12 in hand, we can finally prove our codegree density
result.

Proof of Theorem 1. We first show by induction on k that γ(F3,2, S
′
k) ≤ 1/3 for

all k ≥ 3.
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THE CODEGREE THRESHOLD OF F3,2 1517

For the base case, we know from Lemma 9 that γ(F3,2, S
′
3) ≤ 1/3. For the

inductive step, suppose we knew that γ(F3,2, S
′
K) ≤ 1/3 for some K ≥ 3. We know

from Lemma 11 that γ(F3,2,K4, SK+1|S′
K) ≤ 1/3. It then follows by Lemma 7 that

γ(F3,2,K4, SK+1) = max
(
γ (F3,2,K4, SK+1, S

′
K) , γ (F3,2,K4, SK+1|S′

K)
)

≤ max

(
γ (F3,2, S

′
K) ,

1

3

)
≤ 1

3
.

Using blow-up invariance (Lemma 8), we deduce that γ(F3,2,K4(2), S
′
K+1) ≤ 1/3.

Combining this with the result of Lemma 12 that γ(F3,2|K4(2)) ≤ 1/3, we have by
one more application of Lemma 7 that γ(F3,2, S

′
K+1) ≤ 1/3.

It follows that γ(F3,2, S
′
k) ≤ 1/3 for all k ≥ 3, as claimed. Our codegree density

result is straightforward from this: for any k ≥ 3 we have by Lemma 7 that

γ(F3,2) = max (γ(F3,2|S′
k), γ(F3,2, S

′
k)) .

We also know from Lemma 10 that γ(F3,2|S′
k) ≤ k/(3k−1). Since as shown inductively

above we have γ(F3,2, S
′
k) ≤ 1/3 for all k ≥ 3, it follows that

γ(F3,2) ≤ inf
k≥3

(
max

(
k

3k − 1
,
1

3

))
=

1

3
,

as desired.

3. Codegree density and stability via flag algebras. In this section, we
use the flag algebra method of Razborov [34, 35] to give a second proof of Theorem 1
and to obtain the stability result claimed in Theorem 2. Several good expositions of
flag algebras from an extremal combinatorics perspective have already appeared in
the literature [1, 19, 13, 22]. We shall therefore be rather brief, directing the reader
to the aforementioned papers for details. Our proof is generated by a computer
using Vaughan’s Flagmatic package (version 2.0) [39]. A proof certificate is stored
under the name F32Codegree.js in the ancillary folder of the arXiv version of this
paper [11], which also contains the flagmatic code F32Codegree.sage that generated
the certificate. In section 3.1 we describe the structure of the file F32Codegree.js

and show how the information contained therein implies the desired bound γ(F3,2) ≤
1
3 . Since the file is large (over 2MB) and contains integers with dozens of digits,
verification of the proof requires a computer as well. In order to verify all stated
properties of the proof certificate, the reader can write her own script or use the
script inspect certificate.py included in Flagmatic to do some of the verifications
for her.

3.1. Structure of the proof certificate. First of all, we refer the reader to
the Flagmatic User’s Guide [38], which, among many other things, describes how
combinatorial structures (including types and flags that are defined below) are stored
in proof certificates.

The certificate consists of various parts. Here we describe only those that are
directly needed for verifying the validity of our proof.

Part "admissible graphs" lists all F3,2-free 3-graphs on N = 6 vertices up to
isomorphism. There are exactly 426 of them; let us denote them by G1, . . . , G426.

Part "types" lists types with 2	 < N vertices, i.e. (vertex-labeled) F3,2-free 3-
graphs with vertex sets ∅, [2], and [4]. For our application, we need only one rep-
resentative from each class of isomorphic 3-graphs; thus the number of listed types
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1518 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

of orders 0, 2, and 4 is, respectively, 1, 1, and 5. Let us denote them by τ1, . . . , τ7,
using the same ordering as in Flagmatic: first by the number of vertices and then
lexicographically by the list of 3-edges. For example, τ2 is the type with two (labeled)
vertices and no 3-edges, while τ7 is a vertex-labeled K3

4 .
For a type τ on [k], a τ-flag is a (k + 1)-tuple (F, x1, . . . , xk) where F is an

F3,2-free 3-graph and x1, . . . , xk ∈ V (F ) are distinct vertices of F such that the map
i �→ xi is an isomorphism between τ and the induced subgraph F [{x1, . . . , xk}]. We
can view a flag as a 3-graph with k labeled roots that induce a copy of τ (while
the remaining vertices are treated as unlabeled). This leads to the natural definition
of an isomorphism f between two τ -flags (F, x1, . . . , xk) and (H, y1, . . . , yk), namely
an isomorphism f between the unlabeled 3-graphs F and H such that the roots are
preserved, that is, f(xi) = yi for every i ∈ [k].

Part "flags" contains for each t ∈ [7] the list of all τt-flags F
τt
1 , . . . , F τt

gt with
(N + |V (τt)|)/2 vertices up to flag isomorphism. For example, if t = 1, then τt
is the type with no vertices, and we have to list all unlabeled 3-graphs of order 3;
clearly, there are exactly two of them (edge and nonedge). If t = 2, then τt is the
(unique) 2-vertex type, and we have to list all 4-vertex 3-graphs G with two roots; for
e(G) = 0, 1, 2, 3, 4, there are, respectively, 1, 3, 4, 3, 1 nonisomorphic ways of placing
the roots. Thus g2 = 12.

For each i ∈ [7], the certificate (indirectly) contains a symmetric (gi × gi)-matrix
Qτi . More precisely, Qτi = RQ′RT , whereQ′ is a diagonal matrix all of whose diagonal
entries are positive rational numbers (listed in part "qdash matrices") and R is a
rational matrix (listed in part "r matrices"). This representation automatically
implies that the matrix Qτi is positive semidefinite.

Part "axiom flags" lists all τ2-flags with five vertices. Recall that τ2 is the
(unique) type with two labeled vertices. There are 154 such flags. Let us denote them
by M1, . . . ,M154. Part "density coefficients" lists nonnegative rational numbers
c1, . . . , c154, one for each flag Mi.

Let τ be a type on [k]. For two τ -flags (F, x1, . . . , xk) and (H,x1, . . . , xk), let

P ((F, x1, . . . , xk), (H, y1, . . . , yk))

be the number of |V (F )|-sets X such that {y1, . . . , yk} ⊆ X ⊆ V (H) and the induced
τ -flag (H [X ], y1, . . . , yk) is isomorphic to the τ -flag (F, x1, . . . , xk). For example,
P ((K3

3 , x1, x2), (G, y, z)) is the codegree of (y, z) in G, where (K
3
3 , x1, x2) is the single

3-edge with two roots.
Let G be an arbitrary F3,2-free 3-graph of (large) order n.
First, we compute two parameters σ1 and σ2 of G using the information above.

We let

(1) σ1 =
∑
x1,x2

(
P
(
(K3

3 , x1, x2), (G, x1, x2)
)
− n

3

) 154∑
i=1

ciP
(
Mi, (G, x1, x2)

)
,

where the sum is over all n(n−1) choices of distinct ordered pairs (x1, x2) from V (G).
Note that if the minimum codegree of G is at least n/3, then σ1 ≥ 0.

The definition of σ2 is slightly more complicated. Initially, set σ2 = 0. Then for
each k ∈ {0, 2, 4} let us do the following. Enumerate all n(n−1) . . . (n−k+1) sequences
(x1, . . . , xk) of distinct vertices in V (G). If the induced type (G[{x1, . . . , xk}], x1, . . . ,
xk) is isomorphic to some τi, then we add pQτipT to σ2, where

(2) p =
(
P (F τi

1 , (G, x1, . . . , xk)), . . . , P (F
τi
gi , (G, x1, . . . , xk))

)
.
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THE CODEGREE THRESHOLD OF F3,2 1519

Since each Qτi is positive semidefinite, we have that pQτipT ≥ 0. Thus σ2 is nonneg-
ative.

Let us take some type τ on [k] and two τ -flags F1 and F2 with, respectively, 	1
and 	2 vertices. Let 	 = 	1 + 	2 − k. Consider the sum

(3)
∑

x1,...,xk

P (F1, (G, x1, . . . , xk))P (F2, (G, x1, . . . , xk))

over all choices of k-tuples (x1, . . . , xk) that induce a copy of τ in G. Each term
P (Fi, (G, x1, . . . , xk)) in (3) can be expanded as the sum over 	i-sets Xi with {x1, . . . ,
xk} ⊆ Xi ⊆ V (G) of the indicator function that Xi induces a τ -flag isomorphic to Fi.
Ignoring the choices when X1 and X2 intersect outside of {x1, . . . , xk}, the remaining
terms can be generated by choosing an 	-set X = X1∪X2 first, then choosing distinct
x1, . . . , xk ∈ X to form X1 ∩ X2, and finally splitting the remaining vertices of X
between X1 and X2 so that |Xi| = 	i. Clearly, the terms that we ignore contribute
at most O(n�−1) in total. Also, the contribution of each 	-set X depends only on
the isomorphism class of G[X ]. Thus the sum in (3) can be written as an explicit
linear combination of the subgraph counts P (H,G), where H runs over unlabeled
3-graphs with 	 vertices, modulo an additive error term O(n�−1). An explicit formula
for computing this linear combination can be found in, e.g., [34, Lemma 2.3].

Thus if we expand each quadratic form pQτipT and take the sum over all suitable
x1, . . . , xk ∈ V (G), where k = |V (τi)|, then we obtain a (fixed) linear combination
of P (G1, G), . . . , P (G426, G) with an additive error term of O(n5). The analogous
claim holds for each term in the right-hand side of (1). Thus both σ1 and σ2 can be
represented in this form, that is,

(4) σ1 + σ2 =

426∑
i=1

αiP (Gi, G) +O(n5),

where each αi is a rational number that does not depend on n and that can be
computed given the information above (namely the matrices Qτj and the coefficients
cj). An explicit formula for αi is rather messy, so we do not state it.

The crucial properties that our certificate possesses is that each αi is nonpositive
and that c2 > 0 for the τ2-flag "5:123(2)" (listed as M2 in Part "axiom flags"),
which in Flagmatic notation denotes the 5-vertex 3-graph with one 3-edge and two
vertices of that 3-edge labeled. These properties (involving rational numbers) can be
verified by the scripts that come with Flagmatic and use exact arithmetic. Explicitly,
the αi are stored in an array by Flagmatic, called problem. bounds. Asking sage to
list all strictly positive elements in that array returns the empty set. As for the value
of c2, this can be read out by using the varproblem script. We refer the reader to
the file F32Codegree.sage that contains such a verification at the end.

Assuming the above properties, we are ready to prove that γ(F3,2) ≤ 1
3 . Suppose

on the contrary that γ(F3,2) > 1/3 + c for some c > 0.
Let ε be an arbitrary real with 0 < ε < 1

20 , and let n be sufficiently large. Pick
an F3,2-free 3-graph G of order n and minimum codegree at least ( 13 + c)n. Given
G, compute σ1 and σ2 as above. We already know that σ2 ≥ 0. Also, as remarked
earlier, the codegree assumption implies that each summand in (1) is nonnegative, so
that σ1 ≥ 0.

Lemma 13. Let j ∈ [154] be such that cj > 0. Write M0
j for the unlabeled version

of Mj. Then P (M0
j , G) < ε

(
n
5

)
.
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1520 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

Proof. Let us derive a contradiction from assuming that P (M0
j , G) ≥ ε

(
n
5

)
. For

each 5-set X ⊆ V (G) that induces M0
j , choose x1, x2 ∈ X such that the induced τ2-

flag (G[X ], x1, x2) is isomorphic to Mj. The number of pairs (x1, x2) that appear for
at least ε2

(
n−2
3

)
different choices of X is at least ε2

(
n
2

)
: indeed, otherwise the number

of sets X as above is at most

ε2
(
n

2

)
×
(
n

3

)
+

(
n

2

)
× ε2

(
n− 2

3

)
< ε

(
n

5

)

for n sufficiently large (since ε < 1
20 ), a contradiction. Each of these ε2

(
n
2

)
pairs

(x1, x2) contributes at least cn×cjε2
(
n−2
3

)
to (1). Thus σ1 = Ω(n6), which contradicts

(4). (Recall that σ2 ≥ 0, while each αj ≤ 0.)
Since ε > 0 was arbitrary, it follows that our hypothetical counterexample G

satisfies P (M0
j , G) = o(n5) for each j ∈ [154] with cj > 0. In particular, P (H,G) =

o(n5), where H is the 5-vertex 3-graph with exactly one edge.
We now use the random sparsification trick, as in [17, section 4.3]. Namely, fix p

with 0 < p < min
(
c
4 ,

1
2

)
and let G′ be obtained from G by deleting each edge with

probability p. Then it is not hard to show (cf. Lemma 5) that with high probability
δ2(G

′) ≥ (1/3 + c − 2p)n > (1/3 + c/2)n. We know that G′ is F3,2-free (since G
is). Also, as |E(G)| = Ω(n3), G has Ω(n5) 5-sets that span at least one edge. Each

such set produces a copy of H in G′ with probability at least p(
5
3), which is small but

strictly positive. In particular, with high probability P (H,G′) = Ω(n5): a typical
outcome G′ leads to a contradiction. Thus γ(F3,2) ≤ 1

3 , as claimed.

3.2. Generating the certificate. Although we have formally verified that
γ(F3,2) ≤ 1

3 , let us briefly describe the steps that led to the certificate. As we already
noted, the ancillary folder of [11] also contains the flagmatic code F32Codegree.sage
that generated it as well as the transcript of the whole session (file F32Codegree.txt).

The method of using positive semidefinite matrices Qτi to obtain inequalities
between subgraph densities is fairly standard by now and has been used for a number
of other problems. The new ingredient is the (rather obvious) idea of using (1) for
deriving consequences of the codegree assumption δ2(G) ≥ 1

3n, namely that σ1 ≥ 0
for any choice of nonnegative coefficients ci. The verification that each αi can be
made nonpositive can be done via semidefinite programming. More specifically, one
can create an unknown block-diagonal matrix X � 0 whose blocks are Qτ1 , . . . , Qτ7 ,
followed by c1, . . . , c154 as diagonal entries. Also, we added the extra restriction
c1 + · · · + c154 = 1, to avoid the trivial solution when all unknowns are zero. This
is done automatically by the function make codegree problem. The full support of
general “axioms” (such as the codegree assumption) is not implemented in version 2.0
of Flagmatic. Hopefully, this will be done in future releases.

The choice N = 6 came from experimenting with the above approach (as N = 5
was not enough). Our experiments also suggested that the types τ1 (empty vertex
set) and τ5 (two 3-edges on four vertices) are not really needed, that is, we can let
Qτ1 and Qτ5 be the zero matrices (thus making the rounding step easier, as we will
have fewer parameters). This was done by the command set inactive types.

A crucial observation for the rounding procedure is that any flag algebra proof as
above has to satisfy some relations. Namely, if we run our flag algebra argument on
an almost extremal example G = TV1,V2,V3 with |Vi| = n/3, then all the inequalities
we obtain are tight up to an O(n5) additive error. This has a number of consequences.

Call a 3-graph Gi of order 6 sharp if αi = 0. The following lemma tells us a
number of graphs must necessarily be sharp.
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THE CODEGREE THRESHOLD OF F3,2 1521

Lemma 14. If a 6-vertex 3-graph Gi is isomorphic to an induced subgraph of
some TA,B,C construction, then Gi is sharp.

Proof. Let G be a balanced TA,B,C construction on n vertices. Since Gi is an
induced 6-vertex subgraph of a TA,B,C construction, it readily follows that P (Gi, G) =
Ω(n6). Now the minimum codegree in G is at least n/3−2, whence σ1(G) ≥ −O(n5).
By definition, σ2(G) ≥ 0. Thus we have σ1(G)+σ2(G) ≥ −O(n5). Since αj ≤ 0 for all
j ∈ [426], equality (4) then implies that −O(n5) ≤ αiP (Gi, G). As P (Gi, G) = Ω(n6),
we must have αi = 0, as claimed.

Lemma 15. Let τi be a type on k ∈ {0, 2, 4} vertices x1, . . . , xk which appears as
an induced subgraph in a TA,B,C construction.

Form p as in (2), with G a balanced TA,B,C construction on n vertices, and write
‖p‖ for its 	2-norm. Then the limit of p/‖p‖ as n→ ∞ is a zero eigenvector of Qτi .

Proof. Let G be a balanced TV1,V2,V3 construction on n vertices. The codegrees
of pairs from V (G) vary between 
n/3�− 1 and �n/3�, so that |σ1(G)| = O(n5). Now
for all Gi which are 6-vertex subgraphs of G we have by Lemma 14 that αi = 0, while
for all other 6-vertex 3-graphs Gi we have P (Gi, G) = 0. Equality (4) thus tells us
that O(n5) + σ2(G) = O(n5), whence we deduce that σ2(G) = O(n5).

Now for each k ∈ {0, 2, 4} there are 3k sequences ε = (ε1, ε2, . . . , εk) with εi ∈
{1, 2, 3}. Call a sequence of vertices (x1, . . . xk) an ε-sequence if xi ∈ Vεi for every i.
For every ε ∈ {1, 2, 3}k, there exists a unique type τi (which, obviously, embeds into
TA,B,C constructions) such that for every ε-sequence (x1, . . . xk), (G[{x1, . . . xk}], x1,
. . . , xk) is isomorphic to τi. What is more, for every such ε-sequence the vector p
formed as in (2) is identical (depends on ε but not on the choice of the xi).

Fix ε ∈ {1, 2, 3}k. By the nonnegativity of the summands contributing to σ2(G),
we deduce that the sum of pQτipT over all ε-sequences is at most O(n5). Now this

latter sum consists of Ω(nk) identical terms, and ‖p‖ = Ω(n3− k
2 ). It follows that

0 ≤ p

‖p‖Q
τi

pT

‖p‖ = pQτipT ×O(nk−6)

≤ O

(
σ2(G)

nk

)
×O(nk−6)

= O(n−1) = o(1).

It is straightforward to see that for each ε ∈ {1, 2, 3}k the (unique) vector p/‖p‖
which can be formed from ε-sequences converges to a limit as n→ ∞. It follows from
the inequality above and the positive semidefiniteness of Qτi that this limit is a zero
eigenvector of Qτi , as claimed.

In addition to the above, some further “forced” identities can be derived.
Lemma 16. Let T ′ be obtained from a TV1,V2,V3 construction with |Vi| ≥ 6 for

each i by adding an extra “tripartite” 3-edge {u1, u2, u3} with ui ∈ Vi. If a 6-vertex
3-graph Gi is isomorphic to an induced subgraph of T ′, then Gi is sharp.

Proof. We may assume that Gi contains the tripartite 3-edge {u1, u2, u3}, for
otherwise it is isomorphic to an induced subgraph of TV1,V2,V3 and we are done by
Lemma 14.

Now let G be obtained from TV1,V2,V3 with |V1| = |V2| = |V3| = n/3 by adding
the complete 3-partite 3-graph with parts U1 ∪ U2 ∪ U3, where Ui ⊆ Vi has size εn
for some small ε > 0. This 3-graph is not F3,2-free, but nothing prevents us from
computing σ1 and σ2 (which are still nonnegative) using the same formulae as before.
When we expand σ1 + σ2 as in (4), the coefficients α1, . . . , α426 will be the same, but
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1522 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

we will have an extra sum
∑

H βHP (H,G) where H runs over 6-vertex 3-graphs, each
containing a copy of F3,2. While we have no control over the sign of each βH , we
know that they are constants independent of n. Also, we have P (H,G) ≤ (3ε)4n6.
(Indeed, each H-subgraph of G has to use at least four vertices from U = U1∪U2∪U3

because each copy of F3,2 ⊆ G uses at least two added edges.)

Since ε can be arbitrarily small, the terms of order O(ε3n6) in the new version
of (4) should have correct signs to avoid a contradiction. (There are no new terms of
order εn6 or ε2n6, as we need to hit at least three vertices of U to detect an added
3-edge.) For our Gi, we have that P (Gi, G) = Ω(ε3n6). Indeed, take an arbitrary
embedding f : V (Gi) → V (G) and modify it to obtain an embedding f ′ such that
for every x ∈ V (Gi), f

′(x), f(x) are always in the same part Vi and f
′(x) ∈ Ui if and

only if f(x) ∈ Ui. The resulting map f ′ : V (Gi) → V (G) gives us another embedding
of Gi into G. Clearly, there are at least (1− o(1))(εn)3(n/3)3 possible ways to choose
f ′. Thus necessarily αi = 0 (otherwise we would violate the nonnegativity of σ1+σ2),
and Gi is sharp, as claimed.

We call the additional 3-edge {u1, u2, u3} in Lemma 16 a phantom edge. Such
edges can appear in an extremal configuration but with density o(1). Although sparse,
they also force further sharp graphs, as shown in Lemma 16. Similarly it can be shown
that they force some further zero eigenvectors in addition to those given by Lemma 15.

This phenomenon was first observed in [33, section 3.4]. A new idea here is that
the “test” 3-graph G in the proof of Lemma 16 is not admissible.

The option phantom edge (new in Flagmatic 2.0) tells the computer to use these
extra identities at the rounding step.

There happened to be some further zero eigenvectors beyond those given by the
observations above. Here we just guessed their values by inspecting the floating point
solution and passed the information on to Flagmatic via its add_zero_eigenvectors
function.

3.3. Stability. In this section we prove Theorem 2. Let G be an arbitrary F3,2-
free 3-graph on [n] with minimum codegree (1/3+o(1))n. We shall use the information
from our flag algebraic proof of Theorem 1 to establish that G lies within edit distance
o(n3) of a balanced TA,B,C construction. First, let us show that almost all 6-vertex
subgraphs of G are sharp 3-graphs.

Lemma 17. If a 6-vertex 3-graph Gi is not sharp, then P (Gi, G) = o(n6).

Proof. Since δ2(G) = n/3 + o(n), we have σ1(G) ≥ −o(n6). We know that
σ2(G) ≥ 0 and that αj ≤ 0 for all j ∈ [426]. Equality (4) thus implies that −o(n6) ≤
αiP (Gi, G). Since Gi is not sharp, we have αi < 0, from which we deduce that
P (Gi, G) = o(n6), as claimed.

By applying a version of an Induced Removal Lemma (see [36] for a very strong
version as well as a historical account), we can therefore change o(n3) edges of G and
destroy all induced copies of nonsharp 3-graphs, without creating a copy of F3,2. Let
G′ denote the 3-graph thus obtained; by definition, all of the 6-vertex subgraphs of
G′ are sharp 3-graphs.

Now the transcript of our flag algebraic proof of Theorem 1 shows that the number
of sharp 3-graphs and the number of 6-vertex 3-graphs that embed into TA,B,C plus a
tripartite 3-edge are both 13. By Lemma 16, these two families of 6-vertex 3-graphs
must therefore coincide. In fact, it is routine to check by hand that there are nine
6-vertex 3-graphs that can appear in TA,B,C as induced subgraphs and that by adding
one tripartite 3-edge to TA,B,C we increase this number by four.
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THE CODEGREE THRESHOLD OF F3,2 1523

We deduce from this the following.
Lemma 18. Every 6-vertex set X ⊆ V (G′) admits a partition X = A ∪ B ∪ C

such that G′[X ] is TA,B,C with at most one tripartite 3-edge added.
By removing o(n3) edges from G, we may have destroyed our minimum codegree

condition, but it will still hold on average: at most o(n2) pairs can have codegree less
than (1/3 + o(1))n in G′.

Let us now consider the type τ6 which is a labeling of K−
4 .

Lemma 19. P (K−
4 , G

′) = Ω(n4).
Proof. The 3-graph G′ contains at least

(
1
3 + o(1)

) (
n
3

)
3-edges, while it is known

that π(K−
4 ) < 1

3 , as shown by Matthias [27] and Mubayi [29] (the current best known

upper bound is π(K−
4 ) ≤ 0.2871, proved by Baber and Talbot [1] using flag algebras).

Our claim is thus immediate from the Removal Lemma or from supersaturation (see
Erdős and Simonovits [8]).

For every quadruple of vertices abcd that induces K−
4 in G′ (with abc, abd, acd ∈

E(G′)), form the vector p = pabcd as in (2). The transcript shows that there are 24
τ6-flags with five vertices; thus pabcd ∈ R

24. Also, the transcript shows that the rank
of Q = Qτ6 is 23; thus the nullspace of Q is 1-dimensional. From Lemma 15 we know
that the (unique up to a scaling) forced zero eigenvector z of Q consists of 21 entries 0
and three equal entries that correspond to the three τ6-flags with the unlabeled vertex
having the following links in abcd: (1) ab, ac, ad; (2) bc, bd, cd; (3) empty. Indeed, the
only way we see τ6 in TV1,V2,V3 is when a ∈ Vi and b, c, d ∈ Vi−1 for some i ∈ Z3;
by choosing the unlabeled vertex x in, respectively, Vi−1, Vi, Vi+1, we get these link
graphs (each appearing about n/3 times when each |Vj | = n/3). Scale z so that it
has unit 	2-norm ‖z‖ = 1.

Take a spectral decomposition Q =
∑23

i=1 λif
T
i fi, where the fi are eigenvectors

of Q such that {f1, . . . , f23, z} forms an orthonormal basis of R24. Since Q � 0 has
rank 23, we have that each λi > 0. Let λ = min(λ1, . . . , λ23) > 0, a positive constant

independent of n. Since (p,p) = (p, z)2 +
∑23

i=1(p, fi)
2, we have

(5) pQpT =
23∑
i=1

λi(p, fi)
2 ≥ λ((p,p)− (p, z)2).

Note that, for all abcd inducing τ6, we have ‖pabcd‖2 = Ω(n2). We know that∑
abcd pabcdQpT

abcd = O(n5). Thus, by Lemma 19, the right-hand side of (5) is
O(n) = o(‖pabcd‖2) for all but o(n4) quadruples abcd inducing τ6. Fix one such
“typical” quadruple abcd, and consider p = pabcd. By the cosine formula, the approx-
imate equality

(p, z)2 = (p,p) +O(n) = ‖p‖2‖z‖2(1 + o(1))

implies that p and z are almost collinear. It follows that p ∈ R
24 has 21 coordinates

with values o(n) and three coordinates taking values (1/3 + o(1))n corresponding to
the τ6-flags (1)–(3) defined above. So, if we define

V1 = {x ∈ V (G′) | G′
x[abcd] = {ab, ac, ad}},

V2 = {x ∈ V (G′) | G′
x[abcd] = {bc, bd, cd}},

V3 = {x ∈ V (G′) | G′
x[abcd] = ∅},

then for each i ∈ [3] we have |Vi| = (1/3 + o(1))n. Let W = [n] \
⋃3

i=1 Vi. Since

|W | = o(n), it is sufficient to show that the induced subgraph G′[
⋃3

i=1 Vi] lies within
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1524 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

edit distance o(n3) of the 3-graph TV1,V2,V3 to conclude our proof of Theorem 2. We
shall do this via a succession of easy lemmas. We again use “x1x2|y1y2y3” as a
notational shorthand for the statement that the 3-edges x1x2y1, x1x2y2, x1x2y3, and
y1y2y3 are all present in our graph (and thus that {x1x2y1y2y3} spans a copy of F3,2,
contradicting our assumption that G′ is F3,2-free).

Lemma 20. G′[V1] and G′[V2] are empty 3-graphs.

Proof. Indeed, if xyz ∈ G′[V1], then ab|xyz, while if xyz ∈ G′[V2], then bc|xyz,
both of which are contradictions.

Lemma 21. G′ has no 3-edges of the form V1V2V2, that is, 3-edges with two
vertices in V2 and one in V1.

Proof. Take any z ∈ V1 and distinct x, y ∈ V2. Consider G′[abcdxz]. By
Lemma 18, we have that G′[abcdxz] = TA,B,C plus at most one tripartite edge for
some partition abcdxz = A ∪ B ∪ C. Since G′[abcd] ∼= K−

4 , it follows that bcd are in
one part, say A, and a lies in the next part, B. Since xbc, xbd, xcd ∈ E(G′), we must
have x ∈ B. Likewise, z ∈ A. Thus necessarily xzb, xzc, xzd ∈ E(G′).

Likewise, yzb, yzc, yzd ∈ E(G′). So if xyz ∈ E(G′) also, then zy|bdx, a contra-
diction.

Lemma 22. All but o(n3) 3-edges of the form V2V2V3 are in G′.
Proof. By our observation that most (all but o(n2)) pairs in G′ have codegree

at least (1 + o(1))n/3, by the fact that |W | = o(n), and by Lemma 20, the 3-graph

G′[
⋃3

i=1 Vi] must have at least (1 − o(1))
(
n/3
2

)
× n/3 3-edges that intersect the inde-

pendent set V2 in at least two vertices. By Lemma 21, all these 3-edges are of the
form V2V2V3, giving the required result.

Lemma 23. V3 spans o(n3) 3-edges in G′.
Proof. By Lemma 22, for all but o(n2) x, y ∈ V2 we have that |V3\Γ(x, y)| = o(n).

But Γ(x, y) is an independent set, as G′ is F3,2-free. The lemma follows.

Let i ∈ {1, 2, 3}. We write Vi+1 for the part coming after Vi in the cyclic order
on {1, 2, 3}, so that V3+1 = V1, V1−1 = V3, etc.

Lemma 24. If all but o(n3) 3-edges ViViVi+1 are in G′, then all but o(n3) 3-edges
ViVi+1Vi+1 are not in G′.

Proof. By the assumption of the lemma, for all but o(n5) 5-tuples of vertices
z, z′, z′′ ∈ Vi and x, y ∈ Vi+1 we have xzz′, xzz′′, yz′z′′ ∈ E(G′). To prevent xz|yz′z′′,
we must have xyz �∈ E(G′).

By Lemmas 22 and 24, we conclude that all but at most o(n3) 3-edges of the
form V2V3V3 are not in E(G′). This together with Lemma 23 implies that almost all
3-edges of the form V3V3V1 are in G′ in the same way as we showed that almost all
V2V2V3 3-edges are in G′ in Lemma 22. Now, by Lemma 24 again, we have that only
o(n3) 3-edges of the form V1V1V3 belong to E(G′).

Finally, to finish the proof of stability, it remains that at most o(n3) 3-edges are of
the form V1V2V3. For all but o(n

5) 5-tuples x, x′ ∈ V1, y ∈ V2, and z, z
′ ∈ V3, we have

xx′y, x′zz′ ∈ E(G′). Thus at least one of xyz, xyz′ is missing from G′ (to prevent
xy|x′zz′). However, if we had Ω(n3) 3-edges of the form V1V2V3, then we would have
Ω(n4) choices of x, y, z, z′ with both xyz, xyz′ being in E(G′), a contradiction.

It follows that G′ (and hence G) lies within edit distance o(n3) of a balanced
TV1,V2,V3 configuration. This concludes the proof of Theorem 2.

4. The codegree threshold. In this section, we determine the codegree thresh-
old of F3,2 for all sufficiently large n. This is a simple (but long) chain of arguments
from stability, with a slight twist at the end when we deal with the fact that the
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THE CODEGREE THRESHOLD OF F3,2 1525

extremal constructions are not unique and depend on the congruence class of n mod-
ulo 3.

We know from Theorem 2 that almost extremal 3-graphs are close to balanced
TA,B,C constructions. We use this fact as our starting point and analyze an extremal
example G via a series of lemmas to show that in fact G is not only close to a certain
fixed, balanced TA,B,C construction but that it consists exactly of a subgraph of this
TA,B,C construction together with a small number of “tripartite” 3-edges. As an
immediate corollary, we have that for all n sufficiently large coex(n, F3,2) ≤ 
n/3�.

At that point we separate into cases corresponding to the congruence class of n
modulo 3 and determine both the codegree threshold and the extremal constructions
for all n sufficiently large.

4.1. The structure of almost extremal configurations. In our argument,
we shall frequently need to locate potential F3,2-subgraphs inside larger 3-graphs,
and it will be convenient just as in sections 2 and 3 to write ab|cde to mean that
abc, abd, abe, and cde are all 3-edges (and thus that {abcde} spans a copy of F3,2).

Let G be a 3-graph on n vertices with independent neighborhoods and minimal
codegree δ2(G) ≥ n/3 + o(n). Pick a partition of its vertex set V (G) = V1 ∪ V2 ∪ V3
such that |E(G) \ E(TV1,V2,V3)| is minimized.

Write T for TV1,V2,V3 . Set B = E(G) \ E(T ) to be the set of bad 3-edges, i.e.,
3-edges which are in G and not in T , and set M = E(T ) \ E(G) to be the set of
missing 3-edges, i.e., 3-edges which are in T but not in G.

By Theorem 2, we know that G lies at edit distance o(n3) of a balanced TA,B,C

construction. As an easy consequence of this fact, we have the following.
Lemma 25.

(i) |B| = o(n3),
(ii) |M | = o(n3), and
(iii) |Vi| = n/3 + o(n) for i = 1, 2, 3.

Proof. Since the edit distance between G and a balanced TA,B,C construction
is o(n3), we have that |B| = o(n3) (since otherwise T would not be minimizing
|E(G) \ E(T )|).

Let αi = |Vi|/n for i = 1, 2, 3. The number of 3-edges in G with at least two
vertices in Vi is at most the number of 3-edges in T with this property plus the total
number of bad 3-edges |B|. In particular the average codegree in G of pairs of vertices
in Vi is at most (

αi
2αi+1n

3/2 + o(n3)
)
/
(
αi

2n2/2
)
= αi+1n+ o(n).

Since δ2(G) ≥ n/3 + o(n), we must in particular have αi = 1/3 + o(1) for i = 1, 2, 3.
We have thus established parts (i) and (iii) of our lemma.

Finally, for part (ii) observe that the total number of 3-edges in G satisfies

e(G) =
∑

x,y∈V (G)

d(x, y)

3
≥
(
n

2

)
δ2(G)

3
=
n3

18
+ o(n3).

It then follows from (iii) and (i) that |M | = |E(T )| − |E(G)|+ |B| is o(n3).
Now let us analyze the link graphs of vertices in G. Given x ∈ V (G), let Gx be

the 2-graph on V (G) with 2-edges {uv : xuv ∈ E(G)} and let e(Gx) = |E(Gx)| be
the number of edges it contains. Also let Gx[Vi] denote the subgraph of Gx induced
by the vertices in Vi,

Gx[Vi] = (Vi, {uv ∈ E(Gx) : u, v ∈ Vi}),
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1526 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

and let Gx[Vi, Vj ] denote the bipartite subgraph of Gx on Vi ∪ Vj with edges {uv ∈
E(Gx) : u ∈ Vi, v ∈ Vj}.

We shall also write Vi+1 for the part coming after Vi in the cyclic order on {1, 2, 3},
so that V3+1 = V1.

We first prove six lemmas which show that the link graphs of all vertices of G
look like they ought to (up to some small error) if G were a TA,B,C construction.

Lemma 26. For every x ∈ V (G), there is at most one i ∈ {1, 2, 3} for which
e(Gx[Vi]) = Ω(n2).

Proof. Pick x ∈ V (G), and suppose that both V1 and V2 contain Ω(n2) edges
of Gx. Then there are Ω(n4) choices of pairs yz ∈ E(Gx[V1]) and vw ∈ E(Gx[V2]).
For each such choice, at least one of the triples yzv and yzw is missing from G and
lies in M (for otherwise we would have yz|vwx, violating the assumption that G is
F3,2-free).

Now each such forbidden triple is counted in at most n quadruples {v, w, y, z},
implying that |M | = Ω(n3) and contradicting part (ii) of Lemma 25.

Lemma 27. For every x ∈ V (G), there are at most o(n3) triples w, y, z such that
wz, yz ∈ E(Gx) and w, y come from two different parts Vi, i ∈ {1, 2, 3}.

Proof. Pick x ∈ V (G), and suppose for contradiction that Ω(n3) such triples
could be found. Then in particular we can find Ω(n4) quadruples v, w, y, z such that
vz, wz, and yz all lie in E(Gx) and y ∈ Vi, v, w ∈ Vi−1 for some i ∈ {1, 2, 3}.

For each such quadruple, the triple vwy is missing from G and lies in M (for
otherwise we would have xz|vwy). As before, each such triple is counted in at
most n quadruples, giving |M | = Ω(n3) missing edges and contradicting part (ii)
of Lemma 25.

Lemma 28. For every x ∈ V (G), exactly one of V1, V2, V3 contains Ω(n2) 2-edges
of Gx.

Proof. Pick x ∈ V (G). By Lemma 26, we know that at most one of e(Gx[V1]),
e(Gx[V2]), and e(Gx[V3]) may be of order Ω(n2). Assume for contradiction that all
three are of order o(n2). Then for every i all but o(n) vertices in Vi have o(n) neighbors
in Gx[Vi].

Lemma 27 implies that for all but o(n) vertices z ∈ Vi at least one of Γ(x, z)∩Vi+1,
Γ(x, z)∩Vi−1 has size o(n). Thus we can partition all but o(n) vertices of Vi into two
parts V ′

i and V ′′
i satisfying the following:

• for every z ∈ V ′
i , there are at most o(n) y ∈ Vi ∪ Vi+1 such that yz ∈ E(Gx);

• for every z ∈ V ′′
i , there are at most o(n) y ∈ Vi−1 ∪Vi such that yz ∈ E(Gx).

Since for every z ∈ V (G) the codegree of x and z in G is at least n/3+ o(n), since by
Lemma 25 we have |Vi| = n/3 + o(n) for i = 1, 2, 3, and since e(Gx[Vi]) = o(n2) by
assumption, it follows that for every i the following hold:

• Gx[Vi−1, V
′
i ] is almost complete bipartite (contains all but o(n2) of the pos-

sible 2-edges);
• Gx[V

′′
i , Vi+1] is almost complete bipartite (contains all but o(n2) of the pos-

sible 2-edges).

Now if V ′
1 contained Ω(n) vertices, then almost all vertices in V3 would send Ω(n)

edges to V ′
1 ⊆ V1. If follows in particular that |V ′

3 | = o(n). Similarly, if V ′′
1 contained

Ω(n) vertices, then it would follow that |V ′′
2 | = o(n).

Thus if both V ′
1 and V ′′

1 contained Ω(n) vertices, then there would be only o(n2)
edges of Gx between V2 and V3. Since we are also assuming that V3 contains only
o(n2) edges of Gx, it follows that the average degree in Gx of vertices in V3 is at
most |V ′

1 |+ o(n). But now since |V1| = n/3 + o(n), and since V ′
1 and V ′′

1 are disjoint
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THE CODEGREE THRESHOLD OF F3,2 1527

subsets of V1 both containing Ω(n) vertices, it follows that this average degree is at
most (1 − c)n/3 + o(n) for some strictly positive constant c > 0. For n sufficiently
large, this contradicts the fact that the minimal codegree in G is at least n/3 + o(n)
(since the degree of a vertex in Gx is its codegree with x in G).

On the other hand, if we had, for example, |V ′
1 | = |V1| + o(n), then all but o(n)

vertices from V3 would send Ω(n) edges to V1 in Gx, so that |V3| = |V ′′
3 |+ o(n). But

now by definition of V ′
1 and V ′′

3 , there are only o(n2) edges of Gx from V1 ∪ V3 to
V2. Since we are assuming that e(Gx[V2]) = o(n2), this implies in particular that all
but o(n) vertices in V2 have degree o(n) in Gx, which again contradicts the fact that
δ2(G) ≥ n/3 + o(n).

Lemma 29. For every x ∈ V (G) and every i ∈ {1, 2, 3}, we have e(Gx[Vi]) =
o(n2) or e(Gx[Vi, Vi+1]) = o(n2).

Proof. Pick x ∈ V (G), and suppose the claim of the lemma does not hold for some
i. Then we have Ω(n4) possible choices of a quadruple {v, w, y, z} with vw ∈ E(Gx[Vi])
and yz ∈ E(Gx[Vi, Vi+1]). For each such choice, at least one of the triples vyz, wyz
is missing from G and lies in M (for otherwise we would have yz|vwx).

Each such forbidden triple is counted in at most n quadruples, so, just as in
Lemmas 26 and 27, this implies that |M | = Ω(n3), contradicting Lemma 25, part
(ii).

With these lemmas in hand, we can now show that G has no vertex of high bad or
missing degree, where the bad degree dB(x) is just the number of bad 3-edges incident
with x while the missing degree dM (x) is the number of 3-edges fromM incident with
x.

Lemma 30. For every x ∈ V (G), dB(x) = o(n2).

Proof. Pick x ∈ V (G). By Lemma 28, we may assume without loss of generality
that e(Gx[V1]) and e(Gx[V2]) are both o(n2), while e(Gx[V3]) = Ω(n2), just as one
would expect it to be if G were a subgraph of TV1,V2,V3 and x were chosen from V1.

By Lemma 29, we then know that e(Gx[V3, V1]) = o(n2). Thus for y ∈ V1 there are
on average only o(n) edges of Gx joining y to vertices in V1∪V3. On the other hand, we
know from the codegree condition on G that for every y ∈ V1 the joint neighborhood
of x and y has size at least n/3+o(n). Since |V2| = n/3+o(n) (Lemma 25, part (iii)),
it follows that for all but o(n) vertices y ∈ V1, y is adjacent in Gx to all but at most
o(n) vertices z ∈ V2. In particular, Gx[V1, V2] is almost complete: at most o(n2) of
the possible edges between V1 and V2 are missing.

This and Lemma 27 imply that e(Gx[V2, V3]) = o(n2). Thus all but o(n2) edges
of Gx are internal to V3 or lie between V1 and V2. If x ∈ V1, then dB(x) = o(n2),
whereas if x ∈ V2∪V3, we would have dB(x) = Ω(n2). Since our partition V1∪V2∪V3
was chosen to minimize the number of bad 3-edges, it must be that x was assigned to
V1. The claim of the lemma thus holds for x.

Lemma 31. For every x ∈ V (G), dM (x) = o(n2).

Proof. Pick x ∈ V (G), and write dT (x) for the number of 3-edges of T = TV1,V2,V3

containing x. Since by Lemma 25 we have |Vi| = n/3 + o(n) for i = 1, 2, 3, it readily
follows that dT (x) = n2/6 + o(n2).

Now the codegree condition δ2(G) ≥ n/3+o(n) tells us that every y ∈ V (G)\{x}
is incident with at least n/3 + o(n) edges in Gx. It follows in particular that

e(Gx) =
1

2

∑
y

d(x, y) ≥ n2

6
+ o(n2).
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1528 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

Thus

dM (x) = dB(x) + dT (x) − e(Gx) ≤ dB(x) + o(n2),

which by Lemma 30 is o(n2), as desired.
We can now show that in fact all bad edges are tripartite, i.e., meet each of V1,

V2, and V3 in one vertex.
Lemma 32. For every i ∈ {1, 2, 3}, Vi is an independent set in G.
Proof. Suppose for contradiction that we had a 3-edge of G entirely contained

within Vi for some i. Without loss of generality, we may assume that we have
{x, y, z} ∈ E(G) with all of x, y, z lying in V1. Then for every pair u, v from V3
we have that at least one of the triples uvx, uvy, uvz is missing from G, for otherwise
uv|xyz. There are n2/18 + o(n) such pairs uv (since |V3| = n/3 + o(n)). It follows
that at least one of {x, y, z} has missing degree at least n2/54+o(n). This contradicts
Lemma 31.

Lemma 33. For every i ∈ {1, 2, 3}, there are no 3-edges with two vertices in Vi
and one in Vi−1.

Proof. Suppose we had such a bad 3 edge—without loss of generality xyz ∈ E(G)
with x, y ∈ V3 and z ∈ V2. Since δ2(G) ≥ n/3 + o(n), the joint neighborhood Γ(x, y)
contains at least n/3+o(n) vertices. We know from Lemma 32 that Γ(x, y) ⊆ V1∪V2.

Suppose |Γ(x, y) ∩ V1| = Ω(n). Then there are Ω(n2) a, a′ ∈ V1 such that axy
and a′xy are both in E(G). But for such pairs, the 3-edge aa′z is missing from G,
since otherwise we would have xy|aa′z. It follows that dM (z) = Ω(n2), contradicting
Lemma 31.

We must therefore have |Γ(x, y)∩ V1| = o(n), and thus by the codegree condition
|Γ(x, y)∩ V2| = n/3+ o(n). Now consider triples w,w′, w′′ from V2. For all but o(n

3)
triples, xyw is in E(G). Also, since dM (x) = o(n2) by Lemma 31, for all but o(n3)
of such triples, both of xww′ and xww′′ are in E(G). But then w′w′′y is missing
from G, as otherwise we would have xw|yw′w′′. This implies that dM (y) = Ω(n2),
contradicting Lemma 31.

It follows that we cannot have bad 3-edges taking one vertex in Vi−1 and two
vertices in Vi.

Corollary 34.

δ2(G) ≤ 
n/3�.

Proof. Suppose without loss of generality that V1 is the smallest of the three parts
V1, V2, and V3. Then |V1| ≤ 
n/3�. Now consider a pair of vertices x, y ∈ V3. By
Lemmas 32 and 33, there is no bad edge of G containing both x and y. In particular
the codegree of x and y in G is at most the codegree of x and y in T , which is exactly
|V1|.

4.2. Divisibility and tripartite matchings. By Corollary 34, we know that
for n large enough coex(n, F3,2) ≤ 
n/3�. Construction 2 from the introduction
shows that for all n we have coex(n, F3,2) ≥ 
n/3� − 1. Continuing on the work in
the previous section (and reusing the previous section’s notation), we now determine
for n large enough which of the two possible values is the actual codegree threshold.
In addition, we seek to describe the set of extremal examples. As this set depends on
some divisibility conditions—specifically, on the congruence class of n modulo 3—we
separate out into three cases.

Before we do so, however, let us introduce some useful terminology. Let V1�V2�V3
be a tripartition of a vertex set V . A tripartite 3-edge is a triple x1x2x3 with xi ∈ Vi
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THE CODEGREE THRESHOLD OF F3,2 1529

for i = 1, 2, 3. Let F be a set of tripartite 3-edges. A pair of vertices is overused (by
F ) if it is contained in at least two 3-edges of F . Next, F is a tripartite pair matching,
or just a tripartite matching, if every two elements of F intersect in at most one vertex
(that is, there are no overused pairs).

Proposition 35. Let V be a set of vertices with tripartition V = V1 � V2 � V3.
Then for any tripartite pair matching F the 3-graph G on V obtained by adding the
3-edges in F to TV1,V2,V3 is F3,2-free.

Proof. This is a simple check. We know that TV1,V2,V3 is F3,2-free. By symmetry
of the construction, it is sufficient to check that for every a, a′, a′′′ ∈ V1, b, b

′ ∈ V2, and
c ∈ V3 neither of the 5-sets {a, a′, b, b′, c} and {a, a′, a′′, b, c} induces a copy of F3,2 in
G. Without loss of generality, the 3-edges contained in these two 5-sets are subsets of
{aa′b, aa′b′, bb′c, abc, a′b′c} and {aa′b, aa′′b, a′a′′b, abc}, respectively, neither of which
contains a copy of F3,2.

4.2.1. The case n congruent to 0 modulo 3. When n is congruent to 0 mod-
ulo 3 and sufficiently large, the upper bound in Corollary 34 is sharp, and moreover
there is a simple description of all extremal configurations.

Before we give this construction, let us recall a basic fact from graph theory.
A proper edge coloring of a 2-graph G with m colors is a map φ which assigns to
each edge {a, b} ∈ E(G) a color φ(a, b) ∈ [m] such that edges which meet at a
vertex are assigned different colors. It is trivial to check that if G is the complete
bipartite 2-graph Km,m = ([2m], {ij : i ∈ [m], j ∈ [2m] \ [m]}), then there exists a
proper edge coloring of G with m colors. (Consider, e.g., φ(i, j) = i + j (mod m).)
Such edge colorings are in bijective correspondence with Latin squares. We do not
have an explicit description of all such structures; in fact, even the counting problem
is difficult (see, e.g., [28]).

Construction 3 (Family T (3m)). Let n = 3m. Take disjoint sets A,B,C,
each of size m. Assume, for convenience, that C = [m]. Let φ be an edge coloring of
the complete bipartite 2-graph with parts A and B with m colors. Take the 3-graph
TA,B,C and all triples abc where a ∈ A, b ∈ B, and φ(ab) = c.

It follows from the definition of proper colorings that F is a tripartite pair match-
ing on A�B �C. Thus every H ∈ T (n) is F3,2-free by Proposition 35. Furthermore,
all vertex pairs in H have codegreem. It follows from Corollary 34 that H is extremal
for the codegree problem for all n sufficiently large.

Corollary 36. For all n divisible by 3 and sufficiently large, coex(n, F3,2) =
n/3.

What is more, every extremal configuration belongs to T (n).
Theorem 37. Let n = 3m be large. Let G be an F3,2-free 3-graph such that

v(G) = n and δ2(G) = m. Then G ∈ T (n).
Proof. Let V1, V2, and V3 be as in section 4.1. Consider any pair of vertices

from V1. By Lemmas 32 and 33, their joint neighborhood is a subset of V2, so that
by the codegree condition we must have |V2| ≥ m. Similarly, we have |V3| and |V1|
both at least m, so that in fact we must have |Vi| = m for i = 1, 2, 3. Furthermore,
observe that all 3-edges taking two vertices x, x′ in Vi and one in Vi+1 must be in
E(G) (otherwise the pair x, x′ would have codegree at most m− 1). So there are no
missing edges in G.

Write F for the set of tripartite 3-edges of G associated with the partition V1 �
V2 � V3. We claim that F contains no overused pair. Indeed, suppose this was not
the case. Without loss of generality, we would then have vertices a ∈ V1, b ∈ V2, and
c, c′ in V3 such that abc and abc′ are both in F and hence in G. Now let a′ be any
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1530 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

vertex in V1 \ {a}. By the observation in the previous paragraph, both of cc′a′ and
aa′b are in E(G). But then we would have ab|cc′a′, a contradiction.

Now let b ∈ V2 and c ∈ V3. We know that |Γ(b, c)| ≥ m and that Γ(b, c) ⊆
V1 ∪ V2 \ {b} (Lemma 33). Thus there exists at least one vertex a = ψc(b) ∈ V1 with
abc ∈ E(G), and this vertex is unique (else (b, c) would be an overused pair). What
is more, if b′ is an element of V2 distinct from b, then we cannot have both of ab′c
and abc being 3-edges of G, for otherwise F would have an overused pair {a, c}. Since
there are m distinct elements in each of V1 and V2, it follows that for any c ∈ V3, ψc is
a bijection from V2 to V1. Finally, observe that if c and c

′ are distinct elements of V3,
then for any b ∈ V2, ψc(b) �= ψc′(b), since otherwise {b, ψc(b)} would be an overused
pair for F . In particular the map φ assigning color c to the 2-edge (b, ψc(b)) is an
edge coloring of the complete bipartite 2-graph between V1 and V2 using m colors.

The 3-graph G thus belongs to T (n), as claimed.

4.2.2. The case n congruent to 2 modulo 3. When n is congruent to 2
modulo 3 and sufficiently large, the upper bound in Corollary 34 is again sharp.
Extremal constructions are very similar to those in the previous case. However, there
are now some 3-edges in the extremal configuration which can be deleted without
lowering the minimal codegree, so that a proof of an analogue of Theorem 37 becomes
more delicate.

Construction 4 (Family T (3m+ 2)). Pick any H from the family T (3m+ 3)
that was defined by Construction 3, and remove one vertex from H.

Clearly, any obtained 3-graph is F3,2-free and, as is easy to check, has minimum
codegree m.

Corollary 38. For all n that are congruent to 2 modulo 3 and sufficiently large,
coex(n, F3,2) = 
n/3�.

Theorem 39. Let n = 3m + 2 be large. Let G be an F3,2-free 3-graph with
v(G) = n and δ2(G) = m. Then G is a subgraph of some H ∈ T (n).

Proof. Let V1, V2, V3 be as in section 4.1. Consider any pair of vertices from
V1. By Lemmas 32 and 33, their joint neighborhood is a subset of V2, so that by the
codegree condition we must have |V2| ≥ m. Similarly, we have |V3| and |V1| both at
least m.

Without loss of generality, we may therefore assume that |V3| = m, and m ≤
|Vi| ≤ m+2 for i = 1, 2. We know (Lemmas 32 and 33) that for every b, b′ ∈ V2 their
joint neighborhood is a subset of V3. By the codegree condition δ2(G) = m, it follows
that all 3-edges taking two vertices in V2 and one vertex in V3 must be in E(G). We
claim that in addition all 3-edges taking two vertices in V3 and one in V1 must be in
E(G).

Lemma 40. For all c, c′ ∈ V3 and all a ∈ V1, acc
′ ∈ E(G).

Proof. Suppose for contradiction we had a triple acc′ /∈ E(G) with c, c′ ∈ V3
and a ∈ V1. Consider Γ(a, c). We know from Lemma 33 that this is a subset of
V3∪V2 \{c, c′}, and it must have size at least m. Since |V3 \{c, c′}| = m−2, it follows
that there must be at least two vertices b, b′ ∈ Γ(a, c) ∩ V2.

Now we know that for all c′′ ∈ V3, bb
′c′′ ∈ E(G). In particular, for all c′′ ∈

V3 \ {c, c′} the triple acc′′ must also be missing from E(G), since otherwise we would
have ac|bb′c′′. Running through the argument again with c′′ instead of c′, it follows
that axy is missing for all possible choices of distinct x, y ∈ V3. But then a ∈ V1
has missing degree dM (a) ≥

(
m
2

)
= Ω(n2), contradicting Lemma 31. Thus all triples

taking two vertices in V3 and one vertex in V1 must be in G.
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THE CODEGREE THRESHOLD OF F3,2 1531

Now let F be the set of tripartite 3-edges of G associated with the tripartition
V1 � V2 � V3.

Lemma 41. F contains no overused pairs.

Proof. We consider each possible type of overused pairs in turn and show that
they cannot occur in G:

(i) Suppose first of all that we had an overused pair ac with a ∈ V1, c ∈ V3. Then
there exist b, b′ ∈ V2 such that abc and ab′c are both in G. But then let c′ be
any element of V3 \{c}. We know that both of acc′, bb′c′ are in G (by Lemma 40
and the preceding remark), so we have ac|bb′c′, a contradiction.

(ii) Now suppose that we had an overused pair bc with b ∈ V2, c ∈ V3. Then there
exist a, a′ ∈ V1 with abc, a′bc ∈ E(G). But we know that for any b′ ∈ V2 \{b} we
have bb′c ∈ E(G). In particular we cannot have aa′b′ ∈ E(G), since otherwise
bc|aa′b′. But we know that Γ(a, a′) ⊆ V2 (Lemmas 32 and 33), so this would
imply that a, a′ have codegree at most 1, contradicting our minimum codegree
condition (provided n ≥ 8).

(iii) Finally, suppose that we had an overused pair ab with a ∈ V1 and b ∈ V2. Then
there exist c, c′ ∈ V3 such that abc, abc′ ∈ E(G). For any a′ ∈ V1 \ {a}, we have
a′cc′ ∈ E(G) (by Lemma 40). In particular we must have aa′b /∈ E(G), since
otherwise ab|a′cc′.
It then follows from our codegree assumption that Γ(a, b) = V3. Also, for all
a′ ∈ V1 \ {a}, Γ(a, a′) ⊆ V2 \ {b}. By our codegree assumption again we deduce
that |V2| ≥ m+ 1, and hence |V1| ≤ m+ 1.
Now for all a′ ∈ V1 \ {a} we have Γ(a′, b) ⊆ (V1 \ {a, a′}) ∪ V3, so that by the
codegree assumption again there is at least one c′′ ∈ V3 such that a′bc′′ ∈ E(G).
The pair bc′′ is then an overused pair (used by a, a′) taking one vertex in each
of V2 and V3, contradicting (ii).

Lemma 42. |V1| = |V2| = m+ 1.

Proof. We already know thatm ≤ |V1| and |V2| ≤ m+2. Suppose for contradiction
that |V2| = m+ 2, and thus |V1| = m. For every (a, b) ∈ V1 × V2, we know Γ(a, b) ⊆
(V1 \ {a})∪ V3. Since |V1 \ {a}| = m− 1, there must be at least one tripartite 3-edge
containing the pair (a, b). Thus there must be in total at least |V1| · |V2| = m(m+ 2)
distinct tripartite 3-edges. Averaging over them2 pairs (a, c) ∈ V1×V3, we deduce that
at least one such pair must be contained in at least two tripartite 3-edges, contradicting
Lemma 41.

By symmetry, it also cannot be the case that |V1| = m + 2 and |V2| = |V3| = m,
and we are done.

For every a, c ∈ V1 × V3, we have Γ(a, c) ⊆ V2 ∪ (V3 \ {c}). Since δ2(G) = m
and |V3| = m, it follows that there is at least one b ∈ V2 such that abc ∈ E(G).
Furthermore, we know this b is unique since the set of tripartite 3-edges of G contains
no overused pair. Define φ(a, c) = b.

Also, φ−1(b) consists of vertex-disjoint pairs (again, as there are no overused
pairs). Thus φ corresponds to some proper (m + 1)-edge coloring of V1 × V3. It is
easy to see that any (m + 1)-edge coloring of the complete bipartite graph Km+1,m

extends to that of Km+1,m+1 (in fact, in the unique way). We conclude that G is a
subgraph of some 3-graph in T (n+ 1) and thus of some H ∈ T (n). This finishes the
proof of Theorem 39.

Remark 43. Note that an extremal G with |V3| = n−2
3 can have some edges of

the form aa′b with a, a′ ∈ V1 and b ∈ V2 missing. Namely, if there exist c, c′ ∈ V3 such
that abc and a′bc′ are both 3-edges of G, then we may delete aa′b without lowering
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1532 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

the codegree of G. On the other hand, for each pair a, a′ ∈ V1 we have at most one
b ∈ V2 for which aa′b is missing, and similarly for every pair (a, b) ∈ V1 × V2 we have
at most one a′ for which aa′b is missing.

4.2.3. The case n congruent to 1 modulo 3. In this section, let n = 3m+1
be congruent to 1 modulo 3 and sufficiently large. Unlike the two previous cases, the
upper bound in Corollary 34 is not sharp.

Proposition 44. For all n congruent to 1 modulo 3 and sufficiently large,
coex(n, F3,2) = 
n/3� − 1.

Proof. Let n = 3m + 1 be large, and let G, V1, V2, V3 be as in section 4.1.
Suppose for contradiction that δ2(G) = m. Consider any pair of vertices from V1. By
Lemmas 32 and 33, their joint neighborhood is a subset of V2, so that by the codegree
condition we must have |V2| ≥ m. Similarly, we have |V3| and |V1| both at least m,
so that in fact we must have two parts of size m and one part of size m+ 1. Assume
without loss of generality that |V3| = m+ 1 and that |V1| = |V2| = m.

By the codegree condition, all edges with two vertices in V3 and one in V1 or
two vertices in V1 and one vertex in V2 must be in E(G). In addition, for every pair
(b, c) ∈ V2×V3 we know that Γ(b, c) ⊆ V1∪(V2 \ {b}). Since (b, c) has codegree at least
m and |V2| = m, it follows that there exists at least one a ∈ V1 such that abc ∈ E(G).
Summing over all possible pairs (b, c), we see that there must be at least m(m + 1)
tripartite 3-edges in G. But there are only m2 distinct pairs (a, b) ∈ V1 × V2. Thus
there is at least one such pair appearing in at least two tripartite 3-edges; i.e., there
must be a ∈ V1, b ∈ V2, c, c

′ ∈ V3 such that both abc and abc′ are in E(G).
But then let a′ be any vertex in V1 \ {a}. By our earlier observations, we know

that aa′b and cc′a′ are both 3-edges of G, so that ab|cc′a′, contradicting the fact that
G is F3,2-free.

A consequence of this lower codegree threshold is that the extremal structures
are considerably more complicated. We present three families T1(n), T2(n), and T3(n)
of extremal 3-graphs on [n] and show that for every extremal G there is some H ∈
∪3
i=1Ti(n) containing G as a (spanning) subgraph. One could say more about the

possible structure of E(H) \ E(G) (along the lines of Remark 43), but we do not
think that this description will be very illuminating. Let us define each family Ti(n).

Construction 5 (Family T1(3m + 1)). Start with TA,B,C, where |A| = m,
|B| = m + 2, and |C| = m − 1. Add an arbitrary set of tripartite edges so that no
overused pairs are created and for every a ∈ A and c ∈ C there is a tripartite edge
containing {a, c}.

Construction 6 (Family T2(3m+ 1)). Let 0 ≤ k ≤ m+ 1. Start with TA,B,C,
where |A| = |B| = m + 1 and |C| = m − 1. Let S consist of k vertex-disjoint pairs
from A×B.

Remove all 3-edges of TA,B,C that contain a pair from S. Add all tripartite 3-edges
that contain a pair from S. Thus S is precisely the set of overused pairs now. Add an
arbitrary collection of tripartite 3-edges so that no new overused pair is created and
for every a ∈ A and c ∈ C there is at least one tripartite edge containing {a, c}. (Note
that if a belongs to a pair in S, then this condition is automatically satisfied.)

Construction 7 (Family T3(3m+1)). Start with TV1,V2,V3 , where |V1| = m+1
and |V2| = |V3| = m.

Let S consist of pairs of vertices containing at most one pair from Vi × Vi+1

for each i ∈ [3] so that if i ∈ {1, 3} and S contains both (x, y) ∈ Vi−1 × Vi and
(y′, z) ∈ Vi × Vi+1, then y = y′. (Thus 0 ≤ |S| ≤ 3; for example, if |S| = 3, then the
pairs in S form either a 3-cycle or a path ending and starting in V2.)
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THE CODEGREE THRESHOLD OF F3,2 1533

Remove all 3-edges from TV1,V2,V3 that contain a pair in S. Add an arbitrary
collection of tripartite 3-edges so that

• each pair of S is contained in at least m− 1 added edges;
• there are no overused pairs other than those from S; and
• if |Vi| = m (that is, i ∈ {2, 3}) and (x, y) ∈ Vi × Vi+1 is in S, then for every
x′ ∈ Vi \ {x} the pair {x′, y} is contained in exactly one tripartite edge.

We leave it to the reader to verify that each constructed 3-graph has minimum
codegree m− 1. The following result implies that all these 3-graphs are F3,2-free.

Proposition 45. Let V be a set of vertices with tripartition V = V1�V2�V3. Let
G be obtained from TV1,V2,V3 by adding some set F of tripartite 3-edges and removing
all 3-edges of TV1,V2,V3 that contain a pair overused by F . Then G is F3,2-free.

Proof. By Proposition 35 we need only check for copies of F3,2 that contain two
tripartite edges sharing an overused pair, say abc, ab′c ∈ F with a ∈ V1, c ∈ V3 and
b, b′ ∈ V2. Each such F3,2 has to be of form ac|bb′x for some x. Now, bb′x ∈ E(G)
implies x ∈ V3. Since (a, c) is an overused pair, we have acx /∈ E(G) by the definition
of G. Thus we cannot have ac|bb′x, as desired.

Examples of 3-graphs in T1(n), T2(n), and T3(n) can be obtained by taking a
3-graph in, respectively, T (n + 5), T (n + 2), and T (n + 2) and deleting arbitrary
vertices so that the parts have the desired sizes. However, note that, for example, not
all 3-graphs in T2(n)∪T3(n) with S = ∅ come from T (n+2), as there are (m+1)-edge
colorings of Km+1,m−1 (for m ≥ 4) and Km,m (for m ≥ 2) that do not extend to an
(m+ 1)-edge coloring of Km+1,m+1.

We shall show that the 3-graphs in ∪3
i=1Ti(n) contain (as spanning subgraphs) all

possible extremal configurations of order n. We know from our analysis in section 4.1
that every extremal configuration G for the codegree problem consists of a subgraph
of TV1,V2,V3 together with a set of tripartite 3-edges. Thus the minimum codegree is
at most min(|Vi| : i ∈ [3]). As δ2(G) = m − 1, we must have |Vi| ≥ m − 1 for every
i ∈ [3]. We separate out into two cases according to whether or not we have equality
for some i.

Theorem 46. Let G, V1, V2, V3 be as in section 4.1, and suppose n = 3m+ 1 is
large and δ2(G) = m− 1. If |Vi| = m− 1 for any i = 1, 2, 3, then G is isomorphic to
a subgraph of some H ∈ T1(n) ∪ T2(n).

Proof. Without loss of generality, assume that |V3| = m − 1. By Lemmas 32
and 33, we have that Γ(x, x′) ⊆ V3 for every x, x′ ∈ V2. The codegree condition
δ2(G) ≥ m − 1 then implies that all 3-edges taking two vertices in V2 and one in V3
are in G. In addition, we have the following.

Lemma 47. All 3-edges taking two vertices in V3 and one in V1 are in G.

Proof. Indeed, suppose that acc′ /∈ E(G) for some c, c′ ∈ V3 and a ∈ V1. Since
Γ(c, a) contains at least m− 1 vertices and is contained in V2 ∪ V3 \ {c, c′} and since
V3\{c, c′} has sizem−3, it follows that there exist b, b′ such that abc and ab′c are both
in E(G). But then for all x ∈ V3 \ {c} the 3-edge acx cannot be in G, for otherwise
ac|bb′x. Likewise, for every y ∈ V3 \ {x} we have that axy is missing from G. This
implies dM (a) ≥

(
m−1
2

)
= Ω(n2), contradicting Lemma 31.

With Lemma 47 in hand, we can now turn our attention to the tripartite 3-edges
of G. Write F for the tripartite 3-edges associated with the tripartition V1 � V2 � V3.

Corollary 48. V1 × V3 contains no overused pair.

Proof. Suppose we had a ∈ V1, b, b
′ ∈ V2, and c ∈ V3 with abc, ab′c ∈ F . Then for

all c′ ∈ V3 \ {c} we must have acc′ missing from G to prevent ac|bb′c′, contradicting
Lemma 47 (recall that bb′c ∈ E(G), as observed just before Lemma 47).
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1534 FALGAS–RAVRY, MARCHANT, PIKHURKO, AND VAUGHAN

Next we show that V2 × V3 does not contain overused pairs either.

Lemma 49. V2 × V3 contains no overused pairs

Proof. Suppose we had a, a′ ∈ V1, b ∈ V2, and c ∈ V3 such that abc and a′bc
are both in F . We know that Γ(a, a′) ⊆ V2 (by Lemmas 32 and 33), so provided n
is sufficiently large (which we are assuming) there is at least one b′ ∈ V2 \ {b} such
that aa′b′ ∈ E(G). But since we also have bb′c ∈ E(G) (as observed just before
Lemma 47), this means bc|aa′b′, a contradiction.

In particular, all overused pairs from F come from V1 × V2.

Lemma 50. Let (a, b) ∈ V1 × V2 be an overused pair from F . Then the following
hold:

(i) Γ(a, b) = V3;
(ii) {f ∈ F : a ∈ f} = {f ∈ F : b ∈ f}.

Proof. Let (a, b) ∈ V1 × V2 be such an overused pair. Then there exist c, c′ ∈ V3
such that abc and abc′ are 3-edges of G.

By Lemma 33, we know Γ(a, b) ⊆ V1 ∪ V3. Suppose aa′b ∈ E(G) for some
a′ ∈ V1. By Lemma 47, we know a′cc′ ∈ E(G), so that ab|a′cc′, a contradiction. Thus
Γ(a, b) ⊆ V3, and the codegree condition d(a, b) ≥ m − 1 = |V3| tells us Γ(a, b) = V3,
proving part (i) of the lemma.

Part (ii) is then immediate from Corollary 48 and Lemma 49: if ab′c′′ ∈ E(G)
for some b′ ∈ V2 \ {b} and c′′ ∈ V3, then (a, c′′) is an overused pair (used by b and
b′) from V1 × V3, contradicting Corollary 48; similarly, if a′bc′′ ∈ E(G) for some
a′ ∈ V1 \ {a} and c′′ ∈ V3, then (b, c′′) is an overused pair (used by a and a′) from
V2 × V3, contradicting Lemma 49.

Note that Lemma 50 implies that the overused pairs from F are vertex-disjoint
pairs from V1 × V2.

For every pair (a, c) ∈ V1 × V3, the joint neighborhood Γ(a, c) is a subset of
V2∪(V3 \ {c}). By the codegree condition δ2(G) ≥ m−1 and the fact that |V3| = m−1,
it follows that for every such pair there is at least one tripartite 3-edge abc ∈ F with
b ∈ V2. Now there are exactly (m− 1)|V1| distinct such pairs (a, c) ∈ V1 ×V3. On the
other hand, since there are no overused V2 × V3 pairs arising from F , there can be
at most (m − 1)|V2| such tripartite 3-edges, one for each pair (b, c) ∈ V2 × V3. Thus
|V2| ≥ |V1|.

If |V2| = |V1| = m+ 1, then by adding all missing V1V1V2 3-edges to G we obtain
a member of T2(n), as desired.

So let us suppose that |V1| ≤ m. We know from our codegree condition that
|V1| ≥ m− 1, and the inequality |V1| ≤ m implies |V2| ≥ m+ 2.

We claim that F contains no overused pair. Indeed, suppose (a, b) ∈ V1 × V2 is
an overused pair. By Lemma 50, part (i), aa′b /∈ E(G) for all a′ ∈ V1 \ {a}. For
each a′ ∈ V1 \ {a}, the codegree condition then tells us that Γ(a′, b) is a subset of
(V1 \ {a, a′}) ∪ V3 of size at least m − 1. In particular there must exist c ∈ V3 with
a′bc ∈ E(G). But this is a tripartite 3-edge containing b and not a, contradicting part
(ii) of Lemma 50. Thus F has no overused pair, as claimed.

Next, suppose that |V1| = m − 1. Then for every (a, b) ∈ V1 × V2, Γ(a, b) ⊆
(V1 \ {a}) ∪ V3. By the codegree assumption δ2(G) ≥ m − 1, we deduce that there
must be at least one tripartite 3-edge involving the pair (a, b). Thus there must be at
least |V1|·|V2| > |V1|·|V3| tripartite 3-edges in G, implying the existence of an overused
pair in V1 × V3, contradicting Corollary 48. Thus |V1| = m, and hence |V2| = m+ 2.

As observed after Lemma 50, every pair (a, c) ∈ V1 × V3 is covered by at least
one tripartite 3-edge (otherwise its codegree is at most |V3| − 1 < m − 1); we have
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THE CODEGREE THRESHOLD OF F3,2 1535

already shown that there are no overused pairs in F . By adding all missing 3-edges
of the form V1V1V2 to G we thus obtain a member of T1(n), as required.

Theorem 51. Let G, V1, V2, V3 be as in section 4.1, and suppose n = 3m + 1
is large and δ2(G) = m− 1. If |Vi| ≥ m for all i ∈ [3], then G is a subgraph of some
H ∈ T3(n).

Proof. Assume without loss of generality that |V1| = m+ 1 and |V2| = |V3| = m.
Let us show first that overused pairs are contained in tripartite 3-edges only.
Lemma 52. If (x, y) is an overused pair in Vi × Vi+1, then Γ(x, y) ⊆ Vi−1.
Proof. Since (x, y) is an overused pair, there exist z, z′ in Vi−1 such that xyz, xyz′

are 3-edges of G. Now Γ(z, z′) ⊆ Vi (by Lemmas 32 and 33) so that by the codegree
condition Γ(z, z′) contains at least m− 2 elements of |Vi \ {x}|. For any such element
x′, xx′y /∈ E(G), for otherwise we would have xy|x′zz′. Now the joint neighborhood
of x and y is contained in Vi ∪ Vi−1 (Lemma 33) and has size at least m − 1, from
which it follows that

|Γ(x, y) ∩ Vi−1| ≥ m− 1− (|Vi \ {x}| − (m− 2))

= 2m− 3− |Vi \ {x}|
≥ m− 3.

Now suppose xx′y ∈ E(G) for some x′ ∈ Vi. Then for all w,w′ ∈ Γ(x, y) ∩ Vi−1 we
would have x′ww′ /∈ E(G), for otherwise xy|x′ww′. But then dM (x′) ≥

(
m−3
2

)
=

Ω(n2), contradicting Lemma 31. Thus if (x, y) is an overused pair from Vi × Vi+1,
then Γ(x, y) ⊆ Vi−1.

We now turn our attention to showing that for each i ∈ {1, 2, 3} the set Vi ×Vi+1

contains at most one overused pair.
Lemma 53. If |Vi+1| = m and (a, b), (a′, b′) are overused pairs from Vi × Vi+1,

then b = b′.
Proof. Suppose not. We know by Lemma 52 that for all a′′ ∈ Vi neither aa

′′b nor
a′a′′b′ are 3-edges of G.

If a = a′, then we have for any a′′ ∈ Vi \ {a} that

|Γ(a, a′′)| ≤ |Vi+1 \ {b, b′}| = m− 2,

contradicting our codegree assumption δ2(G) = m− 1. On the other hand, if a �= a′,
then

|Γ(a, a′)| ≤ |Vi+1 \ {b, b′}| = m− 2,

contradicting again the codegree assumption.
Lemma 54. Suppose (a, b) and (a′, b) are overused pairs from Vi × Vi+1. Then

a = a′.
Proof. By Lemma 52, we know that Γ(a, b) and Γ(a′, b) are both subsets of Vi−1

of size at leastm−1. In particular, since |Vi−1| ≤ m+1, we have that Γ(a, b)∩Γ(a′, b)
is a subset of Vi−1 of size at least m− 3.

Now we know from Lemma 31 that dM (b) = o(n2) = o(m2). Thus for all but
o(m) vertices b′ ∈ Vi+1 \ {b} we have that bb′c ∈ E(G) for all but o(m) vertices
c ∈ Γ(a, b) ∩ Γ(a, b′).

But for such b′ and c, aa′b′ /∈ E(G), for otherwise we would have bc|aa′b′. Thus
Γ(a, a′) (which we know is a subset of Vi+1) can contain at most o(m) vertices, con-
tradicting our codegree assumption for n (and hence m) sufficiently large.
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Taken together, the last two lemmas imply the following.
Corollary 55. V1 × V2 and V2 × V3 each contain at most one overused pair.
We now prove analogues of Lemma 53 for V3 × V1, to show that it also contains

at most one overused pair.
Lemma 56. Suppose (c, a) and (c, a′) are overused pairs from V3 × V1. Then

a = a′.
Proof. Suppose not. Then by Lemma 52 we know that Γ(a, c) and Γ(a′, c) are

subsets of V2 of size at least δ2(G) = m− 1. We also know (Lemmas 32 and 33) that
Γ(a, a′) is a subset of V2 of size at least δ2(G) = m− 1. Thus the intersection

I = Γ(a, c) ∩ Γ(a′, c) ∩ Γ(a, a′)

has size at least 3(m− 1)− 2|V2| = m− 3.
For every distinct b, b′ ∈ I, we have that bb′c �∈ E(G) because otherwise we have

bc|aa′b′. But then dM (c) ≥
(|I|
2

)
, contradicting Lemma 31.

Lemma 57. Suppose (c, a) and (c′, a′) are overused pairs from V3 × V1. Then
a = a′ and c = c′. (In particular, V1 × V3 contains at most one overused pair.)

Proof. Suppose not. The only case left over from Lemmas 54 and 56 is the case
when both a �= a′ and c �= c′, i.e., when we have vertex-disjoint overused pairs.

By Lemma 52, we know that Γ(a, c) and Γ(a′, c′) are both subsets of V2. Now
consider an arbitrary c′′ ∈ V3 \ {c, c′}. Since acc′′ /∈ E(G) and |V3 \ {c, c′′}| = m− 2,
there must exist b = b(c′′) ∈ V2 such that abc′′ ∈ E(G). Similarly, there must exist
b′ = b′(c′′) ∈ V2 such that a′b′c′′ ∈ E(G).

Now note that if b ∈ Γ(a, c), then (a, b) is overused (since both abc and abc′′ are
in G). Similarly, if b′ ∈ Γ(a′, c′), then (a′, b′) is overused.

Also, V2 has size m while Γ(a, c) and Γ(a′, c′) both have size at least m − 1. So
there is at most one vertex b� ∈ V2 \Γ(a, c) and at most one vertex b′� ∈ V2 \Γ(a′, c′).

We now apply the pigeonhole principle to get a contradiction for m large enough
(at least 4):

• if b(c′′) = b� for at least two distinct c
′′ ∈ V3\{c, c′}, then (a, b�) is as overused

pair;
• if b(c′′) �= b� for at least one c′′ ∈ V3 \ {c, c′}, then (a, b(c′′)) is an overused
pair;

• if b′(c′′) = b′� for at least two distinct c′′ ∈ V3 \ {c, c′}, then (a′, b′�) is an
overused pair;

• if b′(c′′) �= b′� for at least one c′′ ∈ V3 \ {c, c′}, then (a′, b′(c′′)) is an overused
pair.

Thus, provided |V3 \ {c, c′}| ≥ 2, we have at least two distinct overused pairs from
V1 × V2, one involving a and the other a′. This contradicts Corollary 55.

We have thus shown that for every i ∈ [3], Vi×Vi+1 contains at most one overused
pair.

Lemma 58. If (x, y) ∈ Vi×Vi+1 is an overused pair and |Vi| = m, then for every
x′ ∈ Vi \ {x} there is exactly one z ∈ Vi−1 with {x′, y, z} ∈ E(G).

Proof. The joint neighborhood of x′, y lies inside Vi−1∪Vi \{x, x′}. Since δ2(G) ≥
m − 1, there must exist at least one z as required. Since {x′, y} is not an overused
pair, this z is unique.

Lemma 59. Suppose (a, c) and (b′, c′) are overused pairs from V1×V3 and V2×V3,
respectively. Then c = c′.

Proof. Suppose not. For b′′ ∈ V2 \ {b′}, let z(b′′) be the vertex in V1 with
{b′′, c′, z(b′′)} ∈ E(G) given by Lemma 58.
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THE CODEGREE THRESHOLD OF F3,2 1537

If a′ = z(b′′1) = z(b′′2) for some distinct b′′1 , b
′′
2 ∈ V2 \ {b′}, then we have that (a′, c′)

is an overused pair from V1 × V3 distinct from (a, c) (since c �= c′), contradicting
Lemma 57. Thus the map z : V2 \ {b1} → V1 is injective.

By Lemma 52, Γ(b′, c′) is a subset of V1 of size at least m − 1. As n is large,
Γ(b′, c′) must contain some a′ = z(b′′). But then a′c′b′, a′c′b′′ ∈ E(G), so a′c′ is an
overused pair from V1 × V3 distinct from (a, c) (since c �= c′), again contradicting
Lemma 57.

Similarly, we have the following.

Lemma 60. Suppose (a, c) and (a′, b′) are overused pairs from V1×V3 and V1×V2,
respectively. Then a = a′.

Proof. The proof is identical to that of Lemma 59, with Vi playing the role of
Vi−1.

The above lemmas show that if we add all edges from TV1,V2,V3 to G, we obtain
an element of T3(n), as claimed.

5. Turán density subject to a codegree constraint. A natural variation of
the Turán density and codegree density problems is the following.

Definition 6. Let F be a family of nonempty 3-graphs, and let (cn)n∈N be a

sequence of real numbers with cn ∈ [0, coex(n,F)
n−2 ] for each n ∈ N. The Turán number

of F subject to the codegree constraint (cn)n∈N is the function excn(·,F) sending
n ∈ N to the maximum number of 3-edges in an F-free n-vertex 3-graph with minimum
codegree at least cn(n− 2).

Problem 5. Let F be a family of nonempty 3-graphs, and let c ∈ [0, γ(F)).
Determine exc(n,F).

To the best of our knowledge, Lo and Markström [25] were the first to pose
a question of the kind considered in Problem 5. They asked for the behavior of
exc(n,F) when F is the 3-graph K−

4 .

Problem 5 can be thought of as a way of viewing Problems 1 and 3 together within
a common framework. In addition, codegree constraints are natural in the context of
3-graphs, so that Problem 5 is appealing from an extremal hypergraph perspective.

For the Fano plane F7, Problem 5 is trivial from the work of Keevash and Su-
dakov [23], Füredi and Simonovits [16], and Keevash [21]: the extremal configurations
for the Turán number and for the codegree threshold are identical for all n sufficiently
large, so that exc(n, F7) = ex(n, F7) for all c ∈ [0, 1/2] and all but finitely many n.

The situation is very different for F3,2, where codegree-extremal configurations
have n3/18+o(n3) 3-edges, as we have shown, while the extremal configurations have
2n3/27+o(n3) 3-edges, i.e., about one and a third times as many. A first step towards
the resolution of Problem 5 for F3,2 would be to identify the asymptotic behavior of
exc(n, F3,2) for c ∈ [0, 1/3].

A lower bound can be obtained by shifting weight in a continuous fashion from
part A to part C in a TA,B,C construction, and so one can move from Construction 1
(where |A| = 2n

3 + O(1), |B| = n
3 + O(1), and |C| = 0) to Construction 2 (where all

three parts have size n
3 +O(1)). For c ∈ [0, 1/3], this gives the following:

exc(n, F3,2) ≥
(
1

3
+ 3

(
1

3
− c

)3
)(

n

3

)
+ o(n3).

Question 2. Is this lower bound asymptotically best possible?
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