Graphs and Combinatorics (2013) 29:1269-1286
DOI 10.1007/s00373-012-1199-2

ORIGINAL PAPER

On Minimum Saturated Matrices

Andrzej Dudek - Oleg Pikhurko -
Andrew Thomason

Received: 7 September 2009 / Revised: 24 May 2012 / Published online: 19 June 2012
© Springer 2012

Abstract Motivated both by the work of Anstee, Griggs, and Sali on forbidden
submatrices and also by the extremal sat-function for graphs, we introduce sat-type
problems for matrices. Let F be a family of k-row matrices. A matrix M is called
F-admissible if M contains no submatrix F € F (as a row and column permutation
of F). A matrix M without repeated columns is F-saturated if M is F-admissible
but the addition of any column not present in M violates this property. In this paper
we consider the function sat(n, F) which is the minimal number of columns of an
F-saturated matrix with n rows. We establish the estimate sat(n, F) = O(n*~1) for
any family F of k-row matrices and also compute the sat-function for a few small
forbidden matrices.
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1 Introduction

First, we must introduce some simple notation. Let the shortcut ‘an n x m-matrix’
M mean a matrix with n rows (which we view as horizontal arrays) and m ‘vertical’
columns such that each entry is O or 1. For an n x m-matrix M, its order v(M) = n
is the number of rows and its size e(M) = m is the number of columns. We use
expressions like ‘an n-row matrix’ and ‘an n-row’ to mean a matrix with n rows and
arow containing n elements, respectively.

For an n x m-matrix M and sets A C [n] and B C [m], M(A, B) isthe |A| x |B|-
submatrix of M formed by the rows indexed by A and the columns indexed by B. We
use the following obvious shorthand: M (A,) = M (A, [m]), M(A,i) = M(A, {i}),
etc. For example, the rows and the columns of M are denoted by M (1,), ..., M(n,)
and M(, 1), ..., M(, m) respectively while individual entries — by M (i, j), i € [n],
j € [m].

We say that a matrix M is a permutation of another matrix N if M can be obtained
from N by permuting its rows and then permuting its columns. We write M = N in
this case. A matrix F is a submatrix of a matrix M (denoted FF € M) if we can obtain
a matrix which is a permutation of F by deleting some set of rows and columns of
M. In other words, F = M (A, B) for some index sets A and B. The transpose of M
is denoted by M7 (we use this notation mostly to denote vertical columns, for typo-
graphical reasons); (a)’ is the (horizontal) sequence containing the element a i times.
The n x (m + my)-matrix [M, M3] is obtained by concatenating an n x m-matrix
M and an n X my-matrix M;. The complement 1 — M of a matrix M is obtained by
interchanging ones and zeros in M. The characteristic function yxy of Y C [n] is the
n-column with ith entry being 1 if i € Y and O otherwise.

Many interesting and important properties of classes of matrices can be defined by
listing forbidden submatrices (some authors use the term ‘forbidden configurations’).
More precisely, given a family F of matrices (referred to as forbidden), we say that
a matrix M is F-admissible (or F-free) if M contains no F € F as a submatrix.
A simple matrix M (that is, a matrix without repeated columns) is called F-saturated
(or F-critical) if M is F-free but the addition of any column not present in M violates
this property; this is denoted by M € SAT(n, F), n = v(M). Note that, although the
definition requires that M is simple, we allow multiple columns in matrices belonging
to F.

One well-known extremal problem is to consider forb(n, F), the maximal size
of a simple F-free matrix with n rows or, equivalently, the maximal size of M €
SAT(n, F). Many different results on the topic have been obtained; we refer the
reader to a recent survey by Anstee [2]. We just want to mention a remarkable fact that
one of the first forb-type results, namely Formula (1) here, proved independently by
Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19], was motivated
by such different topics as probability, logic, and a problem of Erdds on infinite set
systems.

The forb-problem is reminiscent of the Turdn function ex(n, F): given a family F
of forbidden graphs, ex(n, F) is the maximal size of an F-free graph on n vertices
not containing any member of F as a subgraph (see e.g., surveys [15,17,21]). Erdés,
Hajnal, and Moon [11] considered the ‘dual’ function sat(n, F), the minimal size of a
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maximal F-free graph on n vertices. This is an active area of extremal graph theory;
see the dynamic survey by Faudree, Faudree, and Schmitt [12].

Here we consider the ‘dual’ of the forb-problem for matrices. Namely, we are
interested in the value of sat(n, F), the minimal size of an F-saturated matrix with n
rows:

sat(n, F) = min{e(M) : M € SAT(n, F)}.

We decided to use the same notation as for its graph counterpart. This should not cause
any confusion as this paper will deal with matrices. Obviously, sat(n, F) < forb(n, F).
If 7/ = {F} consists of a single forbidden matrix F then we write SAT(n, F) =
SAT(n, {F}), and so on.

We denote by Tkl the simple k x (l;)—matrix consisting of all k-columns with exactly
[ ones and by Ky — the k x 2F matrix of all possible columns of order k. Naturally,
TkSl denotes the k x f(k,[)-matrix consisting of all distinct columns with at most /
ones, and so on, where we use the shortcut

ran=()+(;)++ ()

Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19] showed inde-
pendently that

forb(n, K) = f(n, k — 1). (1

Formula (1) turns out to play a significant role in our study.

This paper is organized as follows. In Sect. 2 we give some general results about the
sat-function, the principal one being Theorem 2 which states that sat(n, ) = O (nF=1
holds for any family F of k-row matrices. Turning to specific matrices, in Sect. 3 we
compute sat(n, Ky) for k = 2 and k = 3. By Theorem 2, sat(n, K») can grow at most
linearly, and indeed it is linear in n. Surprisingly, though, sat(n, K3) is constant for
n > 4. Finally, in Sect. 4, we examine a selection of small matrices F to see how
sat(n, F') behaves. In particular, we find some F for which the function grows and
other F for which it is constant (or bounded): it would be interesting to determine a
criterion for when sat(n, F') is bounded, but we cannot guess one from the present
data.

2 General Results

Here we present some results dealing with sat(n, F) for a general family F.

The following simple observation can be useful in tackling these problems. Let M’
be obtained from M € SAT(n, F) by duplicating the nth row of M, that is, we let
M'([n],) = Mand M'(n+1,) = M(n,). Suppose that M’ is F-admissible. Complete
M’, by adding columns in an arbitrary way, to an F-saturated matrix. Let C be any
added (n + 1)-column. As both M’([n],) and M'([n — 1] U {n + 1},) are equal to
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M € SAT(n, F), we conclude that both C([n]) and C([n — 1] U {n + 1}) must be
columns of M. As C is not an M’-column, C = (C’,b,1 — b) where b € {0, 1}
and C’ is some (n — 1)-column such that both (C’, 0) and (C’, 1) are columns of M.
This implies that sat(n + 1, F) < e(M) + 2d, where d is the number of pairs of equal
columns in M after we delete the nth row. In particular, the following theorem follows.

Theorem 1 Suppose that F is a matrix with no two equal rows. Then either sat(n, F)
is constant for large n, or sat(n, F) > n + 1 for every n.

Proof If some M € SAT(n, F) has at most n columns, then a well-known theo-
rem of Bondy [7] (see, e.g., Theorem 2.1 in [6]) implies that there is i € [n] such
that the removal of the ith row does not create two equal columns. Since F has no
two equal rows, the duplication of any row cannot create a forbidden submatrix, so
sat(n + 1, F) > sat(n, F'). However, by the remark made just prior to the theorem,
the duplication of the ith row gives an (n 4+ 1)-row F-saturated matrix, implying
sat(n + 1, F) < sat(n, F), as required. O

Suppose that F consists of k-row matrices. Is there any good general upper bound
on forb(n, F) or sat(n, F)? There were different papers dealing with general upper
bounds on forb(n, F), for example, by Anstee and Fiiredi [3], by Frankl, Fiiredi
and Pach [14] and by Anstee [1], until the conjecture of Anstee and Fiiredi [3] that
forb(n, F) = O(n*) for any fixed F was elegantly proved by Fiiredi (see [4] for a
proof).

On the other hand, we can show that sat(n, F) = O(nk’l) for any family F of
k-row matrices (including infinite families). Note that the exponent k — 1 cannot be
decreased in general since, for example, sat(n, Tkk) = f(n,k—1).

Theorem 2 For any family F of k-row matrices, sat(n, F) = O(nk_l).

Proof We may assume that Ky is F-admissible (i.e., every matrix of F contains a pair
of eqkual columns) for otherwise we are home by (1) as then sat(n, F) < forb(n, Ki) =
o n*=1.

Letus define some parameters /, d, and m thatdepend on F. Let! = I(F) € [0, k] be
the smallest number such that there exists s for which [s TSI, Tk>l ]is not F-admissible
(clearly, such/ exists: if we set/ = k, thens kal = s K contains any given k-row subm-
atrix for all large s). Let d = d(F) be the maximal integer such that [sT<I, dil, Tk>l]
is F-admissible for every s. Note thatd > 1 as [s Tk<l, Tkl, Tk>l] = s Tk<l, Tkzl] cannot
contain a forbidden submatrix by the choice of /. Choose the minimal m = m(F) > 0
such that [m Tk<l, (d+ l)Tl, Tk>l] is not F-admissible. The subsequent argument will
be valid provided 7 is large enough, which we shall tacitly assume.

We consider the two possibilities [(F) < k and I(F) = k separately. Suppose first
that [(F) < k. Consider the following set system:

H = U [Ye(l[i]l):Zij(modn)}.
jeld—1] yer
Here (X) ={Y C X : |Y| = i} denotes the set of all subsets of X of size i.

i
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Note that any A € ([7]) is contained in at most d — 1 members of H, as there
are at most d — 1 possibilities to choose i € [n] \ A so that AU {i} € H: namely,
i=j—2>,caa (mod n)forjeld—1]

On the other hand, the collection H’, of all [-subsets of [n] contained in fewer than
d — 1 members of H, has size at most 2(d — 1)(,",). Indeed, if A € H' then, using
the previous observation, it must be that for some j € [d — 1] and x € A we have
2x = j = 2 4ea\n @ (mod n): hence, once A \ {x} and j have been chosen, there
are at most 2 choices for x.

Call X € ([Z]) bad if, for some A € (}l(),

WYeH:YNX=A}|<d-2.

To obtain a bad k-set X, we either complete some A € H' to any k-set, or we take any
[-set A and let X contain some member of H that contains A. Therefore, the number
of bad sets is at most

2(d—1)( " )( " )+(”)(d—1)( " )=O(nk_l).
—1)\k—1) T\ k—1—1

Let M’ = [N, T,f ], where N is the n x |H| incidence matrix of H. Then we have
that

M(X.) < [e(M’)T,:l, ary, Tk’“], for any X e ().

Hence, M’ cannot contain a forbidden submatrix by the definition of d. Now complete
it to arbitrary M = [M’, M"] € SAT(n, F) by adding new columns as long as no
forbidden submatrix is created.

Suppose that e(M”) # O(n*~1). Then, by (1), Kx = M"(X,Y) for some X, Y.
Now, remove the columns corresponding to ¥ from M” and repeat the procedure as
long as possible to obtain more than O (n*~!) column-disjoint copies of Ky in M” .
No X € ([Z]) can appear more than d times: otherwise (because T,f (X,) 2 mTk<l
for all large n) we have that M(X,) = [M', M"](X,) D [mTk<l, (d + 1)Kj] is not
JF-admissible. Since we have O(nk’l) bad k-sets of rows and, by above, each has
at most d column-disjoint copies of K, we have that K € M’ (X,) for at least
one good (i.e., not bad) X € ([Z]). But then N(X,) D (d — 1)Tkl. Moreover, since
TH(X,) 2 [mT,=', T}] for all large n, we obtain

M(X,)=[N,T,, M"\(X,) 2 [(d = DT}, mT;~", T], K]
=[(m+ DT, d+ DT T
Thus, M(X,) contains a forbidden matrix. This contradiction proves the required
bound for/ < k.
Consider now the other possibility, that [ = [(F) equals k. The above argument

does not work in this case because the size of M’ 2 T is too large. Let F* consist
of those k-row matrices F such that [d T}, F] is not F-admissible, where d = d (F).
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Note that [sTk<k , Tkk] € JF* for all large s by the definition of d. Thus I[(F*) < k
and by the above argument we can find L € SAT(n — d, F*) with O (n*~1) columns.
Define

—d
M/:[d{nn_d L ()i|’
T e(L)T!

that is, M’ is obtained from [d Tn”__j, L] by adding d extra rows that encode the sets
{i}, i € [d]. Note that M’ does not have multiple columns even if Tn”:j is a column
of L because d > 1.

Take arbitrary X € (). If X € [n — d], then M'(X,) = [dTf, L(X,)] is F-
admissible because L is F*-admissible; otherwise M'(X,) C [e(M/)T,fk, Tkk] is
F-admissible because [(F) = k. Thus M’ is F-free.

Complete M’ to an arbitrary M € SAT(n, F). Let C be any added column. Since

[M', Cllln = d1.) = [dT; = L, C(ln = D]

is F-free, we have that [L, C([n —d])] is F*-free. By the F*-saturation of L, we have
that C([n — d]) is a column of L. Hence

sat(n, F) < e(M) <2%e(L) +d = O(n* 1),

proving the theorem. O

Remark 1 Theorem 2 is the matrix analog of the main result in [18] that sat(n, F) =
O (n*=1) for any finite family F of k-graphs.

3 Forbidding Complete Matrices

Let us investigate the value of sat(n, Ki) (recall that Ky, is the k x 2k _matrix consisting
of all distinct k-columns). We are able to settle the cases k = 2 and k = 3.
We will use the following trivial lemma a couple of times.

Lemma 1 Each row of any M € SAT(n, Ki), n > k, contains at least | ones and at
least | zeros, where | = k=1 _ 1,

Proof Suppose on the contrary that the first row M (1, ) has m( zeros followed by m
ones with mg > my and [ > m;.

For i € [mo], let C; equal the ith column of M with the first entry O replaced by
1. Then the addition of C; to M cannot create a new copy of Ky, because the first
row of M’ contains too few 1’s, while C;([2, n]) is already a column of M ([2, n],),
which does not contain K. Therefore, C; must be a column of M. Since i € [mg]
was arbitrary, we have mg = m.

But then M has at most 2 — 2 columns, which is a contradiction. O
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Theorem 3 Forn > 1, we have sat(n, K») =n + 1.

Proof The upper bound is given by T,=! € SAT(n, K).

Suppose that the statement is not true, that is, there exists a Kp-saturated matrix
with its size not exceeding its order. By Theorem 1, sat(n, K7) is eventually constant
so we can find an n x m-matrix M € SAT(n, K») having two equal rows for some
neN.

As we are free to complement and permute rows, we may assume that, for some
i>2,M(,)="---=M(,)while M(j,) # M(1,) and M(j,) # 1 — M(l1,) for
any j € [i 4+ 1, n]. Note that i < n as we do not allow multiple columns in M (and
m > e(Ky) —1=3).

Let j € [i + 1, n]. By Lemma 1, the jth row M(j, ) contains both 0’s and I’s. By
the definition of i, M (j, ) isnotequal to M (1, ) norto 1 — M (1, ). It easily follows that
there are f;, g; € [m] with M(1, f;) = M(1, g;) and M (j, f;j) # M(j, g;). Again
by Lemma 1, we can furthermore find /; € [m] with M(1,h;) = 1 — M(1, f)).
Let b; = M(j, h;). By exchanging f; and g; if necessary, we can assume that
M(j,gj) =bj.

Now, as M € SAT(n, K3), the addition of the column

C=,00 " bigy,....b)T

(which is not in M because C(1) # C(2)) must create a new K»-submatrix, say in
the xth and yth rows for some 1 < x < y < n. Clearly, {x, y} §Z [i] because each
column of M([i],) is either ((0)')T or ((1)))T. Also, it is impossible that x € [i]
and y € [i 4+ 1, n] because then, for some ay,ay € [m], M(y,a;) = M(y,az) =
1-C(y)=1-by, M(x,a1) =1— M(x, az) and we can see that K> is isomorphic
to M({x, y},{a1, az, gy, hy}), which contradicts K> ,Q_ M({x, y},). So we have to
assume thati <x <y <n.

As K> SZ M ({x, y}, ), no column of M ({x, y},) can equal C({x, y}) = (by, by)T.
In particular, since M (x, gx) = M(x, hy) = b, and similarly for y, we must have
{gx, hx} N {gy, hy} =@, and moreover M (y, g) = M(y, hy) =1 — by. But then

K2 ; M({la y}’ {g)ﬁ h)Ca gya hy})v
which is a contradiction proving our theorem. O
Note that forb(n, K2) = n + 1 for n > 1; the upper bound follows, for example,
from Formula (1) with k = 2. Thus Theorem 3 yields that sat(n, K;) = forb(n, K»)

which, in our opinion, is rather surprising. A greater surprise is yet to come as we are
going to show now that sat(n, K3) is constant for n > 4.

Theorem 4 For K3 the following holds:

7, if n=3,

satn, K3) =110, i n > 4.
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Proof The claim is trivial for n = 3, so assume n > 4. A computer search [10]
revealed that

sat(4, K3) = sat(5, K3) = sat(6, K3) = sat(7, K3) = 10,

which suggested that sat(n, K3) is constant. An example of a K3-saturated 6 x 10-
matrix is the following:

0000110111
0011000111
y_lortotrooror
1000011011
1010001101
01001011011

It is possible (but very boring) to check by hand that M is indeed K3-saturated as is,
in fact, any n x 10-matrix M’ obtained from M by duplicating any row, cf. Theorem 1
(the symmetries of M shorten the verification). A K3-saturated 5 x 10-matrix can be
obtained from M by deleting one row (any). For n = 4, we have to provide a special
example:

Il
coc oo
— o oo
o—o o

0
0
1
1

— o = O
S = = O
— e O

1
1
1
0

S O = O
—_— O = =

Sosat(n, K3) < 10 for each n > 4 and, to prove the theorem, we have to show that
no Ks-saturated matrix M with at most 9 columns and at least 4 rows can exist. Let
us assume the contrary.

Claim 1 Any row of M € SAT(n, K3) necessarily contains at least four 0’s and at
least four 1’s, forn > 4.

Proof of Claim Suppose, contrary to the claim, that the first row M (1, ) contains only
three 0’s, say in the first three columns (by Lemma 1 we must have at least three 0’s).

If we replace the ith of these 0’s by 1, i € [3], then the obtained column Cj, if
added to M, does not create any K3-submatrix. Indeed, the first row of [M, C;] con-
tains at most three 0’s, while C;([2, n]) is a column of M([2,n],) 2 K3. As M is
K3-saturated, C, C» and C3 are columns of M. These columns differ only in the first
entry from M(, 1), M(,2) and M (, 3) respectively. Therefore, for each A € ([23"]),
the matrix M (A, ) can contain at most e(M) — 3 < 6 distinct columns. But then any
column C which is not a column of M and has top entry 1 (C exists as n > 4) can be
added to M without creating a K3 submatrix, because the first row of [M, C] contains
at most three 0’s. This contradiction proves Claim 1. O

Therefore, e(M) is either 8 or 9. As we are free to complement the rows, we may
assume that each row of M contains exactly four 1’s. Call A € (['3']) (and also M(A,))
nearly complete if M (A, ) has 7 distinct columns.
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Claim 2 Any nearly complete M (A, ) contains (0, 0, 0" as a column.

Proof of Claim Indeed, otherwise M (A,) 2D Tfl which already contains four 1’s in
each row; this implies that the (one or two) remaining columns must contain zeros
only. Hence M (A, ) 2 K3, which is a contradiction. O

Claim 3 Every nearly complete M(A,) contains T31 as a submatrix.

Proof of Claim Indeed, if (0, 0, DT is the missing column of M (A, ), then some 7
columns contain a copy of K3 \ (0,0, 1)7. By counting 1’s in the rows we deduce
that the remaining column(s) of M (A, ) must have exactly one non-zero entry, and
moreover one of these columns equals (0, 0, I)T, which is a contradiction. O

By the K3-saturation of M there exists some nearly complete M (A, ); choose one
such. Assume without loss of generality that A = [3] and that the first 7 columns of
M ([3], ) are distinct. We know that the 3-column missing from M ([3], [7]) has at least
two 1’s.

If(,1, l)T is missing, then M ([3], [7]) contains exactly three ones in each row,
so the remaining column(s) of M must contain an extra 1 in each row. As (1, 1, nr
is the missing column, we conclude that e(M) = 9 and the 8th and 9th columns
of M ([3],) are, up to a row permutation, (0, O, DT and (1, 1, 0)T. This implies that
M ([3],) contains the column (0, 0, 0)” only once. Thus at least one of the columns
Co = ((0))T and C; = ((0)"~', DT is not in M and its addition creates a copy of
K3, say on the rows indexed by B € ([’é]). The submatrix M (B, ) is nearly complete
and, by Claims 2 and 3, contains Tfl. But both Cy(B) and C(B) are columns of

Tfl C M(B,), which is a contradiction.

Similarly, if (1, 1, O)T is missing, then one can deduce that e(M) = 9 and, up to
a row permutation, M ([3], {8, 9}) consists of the columns (1, 0, 0) and (0, 1,0)7.
Again, the column (0, 0, 0’ appears only once in M ([3], ), which leads to a contra-

diction as above, completing the proof of the theorem. O

We do not have any non-trivial results concerning Ky, k > 4, except that a computer
search [10] showed that sat(5, K4) = 22 and sat(6, K4) < 24 (we do not know if a
K4-saturated 6 x 24-matrix discovered by a partial search is minimum).

Problem 1 For which & > 4, is sat(n, K;) = O(1)?

4 Forbidding Small Matrices

In this final section we try to gain further insight into the sat-function by computing
sat(n, F') for some forbidden matrices with up to three rows.

4.1 Forbidding 1-Row Matrices

For any given 1-row matrix F, we can determine sat(n, F) for all but finitely many
values of n. The answer is unpleasantly intricate.
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Proposition 1 Ler F = ((0)", (OH = [mTO,lTll] with | > m. Then, for n >
max(l — 1, 1),

[ ifm=0andl <2orifm=1andl > 1is a power of 2,
sat(n, F) = 11+ 1, ifm=0andl >3 orifm=1andl is not a power of 2,
l+m—1,ifm>2andl > 2.

Proof Assume that/ > 3, as the case [ < 2 is trivial.

For m € {0, 1} an example of M € SAT(n, F) with e(M) = [ + 1 can be built by
taking Tno, T}, xu—21- and x[aq\(i) fori € [/ — 2] as the columns. If m = 1 and [ = 2k,
one can do slightly better by adding n — k copies of the row ((1)}) to K.

Let us prove the lower bound for m € {0, 1}. Suppose that some F-saturated matrix
M hasn > [ —1rows and ¢ < [ columns. First, let m = 0. As ¢ < 2" and M contains
the all-0 column, we have ¢ = [ and some row M (i, ) contains exactly / — 1 ones. As
we are not allowed multiple columns in M, some other row, say M (j, ), has at most
[ — 2 ones. Then yxy;y is not a column of M but its addition does not create / ones in a
row, a contradiction. Let m = 1. Trivially, e(M) > e(F) — 1 = [. It remains to show
that [ is a power of 2 if e(M) = [. Let C be the column whose ith entry is 1 if and only
if M@,) = (1)1. Then the addition of the column C cannot create an F-submatrix,
and so C is already a column of M. Let C = M(, 1) = ((0)}, (1)*"))T. The last n — i
rows of M consist of 1’s only. Since [ > 3 and M has no multiple columns, we have
that i > 2 and that M ([i], [2, ]) must contain at least one 0, say M (i, ) = 0. Since
the addition of yxj; ,) cannot create F, it is already a column of M. Thus each row of
M ([i], ) has at least two 0’s, and to avoid a contradiction we must have M ([i],) = K;
and [ = 2!. This completes the case when m < 1.

Form > 2, let M consist of T plus xy;y, i € [m — 2], plus xp.\(i). ¢ € [[ — 1] and
Xim—1,i—1]. Clearly, each row of M contains / 1’s and m — 1 0’s, so the addition of
any new column (which must contain at least one 0) creates an F'-submatrix and the
upper bound follows. The lower bound is trivial. O

Remark 2 The case when n < [ — 2 in Proposition 1 seems messy so we do not
investigate it here.

4.2 Forbidding 2-Row Matrices

Now let us consider some particular 2-row matrices.

Let FF = lT22, that is, F' consists of the column (1, 1)T taken / times. Trivially, for
[ =1 or 2, sat(n, lT22) = n+ 1, with T=" and [T;=!, T/"] being the only extremal
matrices. For [ > 3, we can only show the following lower bound. It is almost sharp
for [ = 3, when we can build a 3T22—saturated n X (2n + 2)-matrix by taking Tnfl,

X[n—11> X[n]> Plus x{i,ny fori € [n —1].
Lemma 2 Forl > 3 and n > 3, sat(n, lT22) >2n+ 1.

Proof Let M = [T,=!, M'] be 1 K3-saturated. Note that M’ must have the property
that every column x4, with A € ([g]), either belongs already to M’, or its addition
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creates an F-submatrix; in the latter case, exactly [ — 1 columns of M’ have ones in
both positions of A. Therefore, by adding to M’ some columns of Tn2 (with possibly
some columns being added more than once), we can obtain a new matrix M” such
that, for every A € ([g]), M"(A,) contains the column (1, 1)T exactly [ — 1 times.
If we let the set X; be encoded by the ith row of M” as its characteristic vector, we
have that [ X; N X;j| =1 —1forevery 1 <i < j < n. Theresult of Bose [8] (see [16,
Theorem 14.6]), which can be viewed as an extension of the famous Fisher inequal-
ity [13], asserts that, either the rows of M"” are linearly independent over the reals, or
M" has two equal rows, say X; = X ;. The second case is impossible here, because
then | X;| =/ — 1 and each other X, contains X; as a subset; this in turn implies that
the column ((1)")T appears at least/ — 1 > 2 times in M” and (since n > 3) the same
number of times in M’, a contradiction. Thus the rank of M” over the reals is n. Note
that every column C € 7;? added to M’ during the construction of M" was already
present in M’ (otherwise C contradicts the assumption that M is T22-saturated). Thus
the matrices M’ and M" have the same rank over the reals. We conclude that M’ has
at least n columns and the lemma follows. m]

Let us show that Lemma 2 is sharp for /[ = 3 and some n. Suppose there exists a
symmetric (n, k,2)-design (meaning we have n k-sets X1,..., X, € ([Z]) such that
every pair {i, j} € ("4)) is covered by exactly two X;’s). Let M be the n x n-matrix
whose rows are the characteristic vectors of the sets X;. Then [TnSl ,Mlisa 3T22—sat—
urated n x (2n + 1)-matrix. For n = 4, we can take all 3-subsets of [n]. Forn = 7,
we can take the family {[7]\ ¥; : i € [7]}, where Y7,...,Y7 € ([g]) form the Fano
plane. Constructions of such designs for n = 16, 37, 56, and 79 can be found in
[9, Table 6.47].

Of course, the non-existence of a symmetric (n, k, 2)-design does not directly imply
anything about sat(n, 3T22), since a minimum 3T22-saturated matrix [Tnfl, M| need
not have the same number of ones in the rows of M.

Lemma 2 is not always optimal for / = 3. One trivial example is n = 3. Another
oneisn = 5.

Lemma 3 sat (5, 377) = 12.

Proof Suppose, on the contrary, that we have a 3T22—saturated 5 x (s + 6)-matrix
M =[N, Tsfl] with s < 5.Let X1, ..., X5 be the subsets of [s] encoded by the rows
of N.

If, for example, X| = [s], then every X; with i > 2 has at most two elements.
LetC; = (0,1,1,0,0)7, C; = (0,0,0,1, DT and C3 = (0,0, 1, 1, 0)”. None of
these columns is in M so the addition of any one of them creates a copy 3T22. So we
may assume that M ({2, 3}, {a, b}) = M({4,5}, {c,d}) = M({3,4},{e, f}) = 2T22.
If {a, b} = {c, d} then M (, a) and M (, b) are two equal columns with all 1’s, a contra-
diction. Hence {a, b} # {c, d}, and so atleastone of {e, f} # {a, b} or{e, f} # {c, d}
holds: we may assume the former. But then M ({1, 3}, ) contains 3T22, a contradiction.

Thus we can assume that each X; with i € [5] has at most s — 1 elements. If
X1 € {1, 2}, then by considering columns that begin with 1 and have one other entry
1, we conclude that X1 = {1, 2} and that every X; contains X as a subset. Thus
M(G{1,2}) = 2723, that is, M has two equal columns, a contradiction.
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So we can assume that each | X;| > 3, which also implies that s = 5. If X| = [4],
then for each i € [2,5] we have 5 € X; (because |X;| > 3 and M is 3T22-free).

Each two of the sets X», ..., X5 have to intersect in exactly two elements, which is
impossible.

Thus each | X;| = 3. A simple case analysis gives a contradiction in this case as
well. O

Problem 2 Determine sat(n, 3T22) for every n.

Remark 3 1t is interesting to note that if we let F' = [/ T22, (0, 1T then sat(n, F)-
function is bounded. Indeed, complete M’ = [ Xn\{i)Jiep) to an arbitrary F-saturated
matrix M. Clearly, in any added column all entries after the /th position are either 0’s
or 1’s; hence sat(n, F) <2 -2,

It is easy to compute sat(n, Tzl) by observing that the n-row matrix My whose
columns encode ¥ C 2" is Tzl-free if and only if Y is a chain—that is, for any two
members of Y, one is a subset of the other. Thus My is Tzl-saturated if and only if ¥
is a maximal chain without repeated entries. As all maximal chains in 21! have size
n + 1, we conclude that

sat(n, Ty)) = forb(n, T)) =n 41, n>2.

01

Theorem 5 Let F = [T}, T}] = |:O |

:|. Then sat(n, F) =3, n > 2.

Proof For n>3, the matrix M consisting of the columns (0,1, ()T,
(1,0, (D" HT and (0,0, (1)" 2T can be easily verified to be F-saturated and the
upper bound follows.

Since n = 2 is trivial, let n > 3. Any 2-column F-free matrix M is, without loss
of generality, the following: we have ngg rows (0, 0), followed by n1; rows (1, 1),
nio rows (1, 0) and ng; rows (0, 1), where njo < 1 and ng; < 1. Since (by taking
complements if necessary) we may assume ngg < n1;, we have n;; > 1 because

n > 3. But then the addition of a new column ((O)”00+1, 1,1,... )T does not create

an F-submatrix. O
_ >1 _ O 1 1

Theorem 6 Let F =T, = |:] 0 1:|. Then

sat(n, F') = forb(n, F) =n—+1, n > 2.

Proof Clearly, forb(n, F) < forb(n, K3) =n + 1.

Suppose the theorem is false and that sat(n, F) < n for some n. Since the rows of
F are distinct, Theorem 1 shows that sat(n, F') is bounded.

It follows that, if n is large enough, then M € SAT(n, F) has two equal rows, for
example, M(1,) = M(2,) = ((1)!, (0)™). By considering the column (1,0, ..., 0)7
that is not in M, we conclude that [,m > 1.Let X = [[lJand Y = [l + 1,1 + m].
Define

Ai={jell+m]: M@, j)=1}, ie€ln]
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For example, Ay = Ay = X. As M is F-free, for every i, j € [n], the sets A; and A;
are either disjoint or one is a subset of the other. For i € [3, n], let b; = 1 if A; strictly
contains X or Y and let b; = 0 otherwise (that is, when A; is contained in X or Y).
Leth; =1and by = 0.

Clearly, C = (by, ..., b,,)T is not a column of M so its addition creates a forbidden
submatrix, say F' C [M, C]({i, j},). Of course, b; = b; = 0 is impossible because
0,07 g_ F.1fb; = bj = 1 then necessarily A; NA; # @, and M ({i, j},) 2 (1, nr
contains F, a contradiction. Finally, if b; # bj,e.g.,b; =0,b; = l andi < j, then
A; 2 Aj (as (0, 1) cannot be a column of M ({i, j},)), which implies A; = Aj; but
then we do not have a copy of F as (1, 0)7 is missing. This contradiction completes
the proof. O

Remark 4 1t is trivial that
sat(n, [(0, DT, (1, DT]) = sat(n, [(0,0)T, 0, DT, (1, DT =2.

We have thus determined the sat-function for every simple 2-row matrix.

4.3 Forbidding 3-Row Matrices

Here we consider some particular 3-row matrices. First we solve completely the case
when F = [T), T3].

01
Theorem 7 Let F = [T, T31= | 01 |. Then
01
_ |7, if n=30rn>6,
Sat(n’F)_[IO,ifn:4or5.
Proof For the upper bound we define the following family of matrices:
(101010110 0]
Ma — 0110011010
“Z1looo0o1 111001/
(00000001 11
[1 101101071 0]
1011010110
Ms={011100T1T1Q0T1],
000O0O1T1TT1TT1O0DO0
(000000001 1]
1010010
1001100
0110100
Me=10101010
0011001
_0000111
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For any n > 7 define the (n x 7)-matrix M, by M, ([6],) = M and M,(i,) =
[O 00000 0] for every 7 < i < n. A computer search [10] showed that M, is a
minimum F -saturated matrix for 3 < n < 10. This implies that each M,, withn > 11
is F-saturated. It remains to show that

sat(n, F') > 7

for n > 11. In order to see this, we show the following result first.

Claim If M is an F-saturated n x m-matrix withn > 11 and m < 6 then M contains
a row with all zero entries or with all one entries.

Proof of Claim Suppose, on the contrary, that we have a counterexample M. We may
assume that the first 6 entries of the first column of M are equal to 0. Consider
a matrix A = M([6], {2,...,m}). Note that every column of A contains at most
two entries equal to 1, otherwise M ([6],) © F. Hence, the number of 1’s in A
is at most 2(m — 1). By our assumption, each row of A has at least one 1. Since
2(m — 1) < 12, A has a row with precisely one 1. We may assume that A(1, 1) =1
and A(1,i) = 0for2 <i < m — 1. Let Cy be the second column of M (remember
that Co(1) = A(1, 1) = 1).

Consider the n-column C3 = [0, C2({2, ..., n})T1" which is obtained from C, by
changing the first entry to 0. If it is not in M, then F C [M, C3]. This copy of F has
to contain the entry in which C3 differs from C,. But the only non-zero entry in Row
1is M(1,2); thus F C [C3, C3], which is an obvious contradiction. Thus we may
assume that C3 is the third column of M.

We have to consider two cases. First, suppose that C>({2, ..., 6}) has at least one
entry equal to 1. Without loss of generality, assume that C2(2) = C3(2) = 1.

It follows that C»(i) = C3(i) = 0 for 3 <i < 6 (otherwise the first and the second
columns of M would contain F'). Let

B=M(3,4,5,6}, {4, ...,m}). 2)

By our assumption, each row of B has at least one 1; in particular m > 5. Clearly,
B contains at most 2(m — 3) < 8 ones. Thus, by permuting Rows 3, ..., 6 and Col-
umns 4, ..., m, we can assume that B(1, 1) = 1 while B(1,i) =0for2 <i <m—3.
Let Cy4 be the fourth column of M and Cs5 be such that C4 and C5 differ at the third
position only, i.e., C4(3) = 1 and C5(3) = 0. As before, C5 must be in M, say it is
the fifth column. Since C4({4, 5, 6}) has at most one 1, assume that C4(5) = C4(6) =
Cs5(5) = C5(6) = 0. We need another column Cg with Cg(5) = Cg(6) = 1 (otherwise
the fifth or the sixth row of M would consist of all zero entries). In particular, m = 6.
But now the new column C7 which differs from Cg at the fifth position only (i.e.,
C7(5) = 0and C7(i) = Cg(i) fori # 5) should be also in M, since M is F-saturated.
This contradicts e(M) = 6. Thus the first case does not hold.

In the second case, we have C»(i) = C3(i) = 0 for every 2 < i < 6. We may
define B as in (2) and get a contradiction in the same way as above. This proves the
claim. O
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Suppose, contrary to the theorem, that we can find an F-saturated matrix M with
n > 11rows and m < 6 columns. By the claim, M has a constant row; we may assume
that the final row of M is all zero, and let N = M ([n — 1], ). If C is an (n — 1)-col-
umn missing from N, then the column Q = (C T O)T is missing in M. Moreover,
a copy of F in [M, Q] cannot use the n-th row. Thus F C [N, C], which means
that N € SAT(n — 1, F) and sat(n — 1, F) < m < 6. Repeating this argument, we
eventually conclude that sat(10, F) < 6, a contradiction to the results of our computer

search. The theorem is proved. O
00111
Theorem 8 Let F = [T, T, T{1= [ 01011 |. Then
01101
7,if n=3,60r7,
Sat(i’l,F)— [9’ lf‘ n:40r5.

Moreover, for any n > 8, sat(n, F) <.

Proof We define the following matrices:

(101010001
011001011
000110111

000001111

[111010101]
010101011
Ms=|001010111
000110011
000001111 |

1100110
1011010
1010101
0111100
0110011
10001111

Forany n > 7let M, ([6],) = Mg and M,,(i,) =[000 111 1]forevery7 <i <n
(i.e., the last row of Mg is repeated (n — 6) times). For n = 3,...,7 the theorem
(with M, being a minimum F -saturated matrix) follows from a computer search [10].
It remains to show that M,, n > 8§, is F-saturated. Clearly, this is the case, since M7
is F-saturated and F contains no pair of equal rows. O

Conjecture 1 Let F = [T, T, T5'1. Then sat(n, F) = 7 for every n > 8.
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01 000T1°1
Theorem 9 Let F=T;>=|0 0 1 0 1 0 1| Then
0001110
7, if n=3,
satn, F) =110 i a<n <o,
Moreover, for any n > 7, sat(n, F) < 10.
Proof Forn = 3, ..., 6 the statement follows from a computer search [10] with the

following F-saturated matrices:

[01010110017]
V.| 0011001101
+=lo000111011 "

0000000111

(101010001 1]
0101101001
Ms=|0010111001
0001100111
0000011111

For any n > 6 let M,([5],) = Ms and M, (i,) = [11000010 1 1] for every
6 < i < n.Itremains to show that M,,, n > 7, is F-saturated. Clearly, this is the case,
since Mg is F-saturated and F contains no pair of equal rows. O

Conjecture 2 Let F = T3§2. Then sat(n, F) = 10 for everyn > 7.

011 0111
Theorem 10 Let Fj = T7 = | 101 |, and F, = [T{,T{1= | 1011 |. Then
110 1101

sat(n, F1) = sat(n, F2) = 3n — 2 for any 3 < n < 6. Moreover, for any n > 7,
sat(n, F1) < 3n — 2 and sat(n, F») < 3n — 2 as well.

Proof Let M, = [T?, T}, "', T?], where T> C T? consists of all those columns of
Tn2 which have precisely one entry equal to 1 either in the first or in the nth row (but
not in both), e.g., for n = 5 we obtain

0100001111000
0010001100100
0001001010010
0000101001001
0000011000111

M5

Clearly, e(M,) = e(T?) + e(T,)) + e(T") +e(T?) =1 +n+1+2n —4 =3n 2.
Moreover, since fnz is F-admissible we get that M,, is both F and F, admissible.
Now we show that M), is Fi-saturated. Indeed, pick any column C = (cy, ..., c,,)T
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which is not present in M,,. Such a column must contain at least 2 ones and 1 zero. Let
1 <i, j, k < n be the indices such that ¢; = 0,¢; = ¢, = 1.If i = 1 ori = n, then
the matrix [M,, C1({i, j, k}, ) contains F;. Otherwise, c; = ¢, = 1, and there also
exists 1 < i < n such that ¢; = 0. Here [M,,, C1({1, i, n}, ) contains F;. Thus M, is
Fy saturated and, since it must contain 7, is a column, M, is also F>-saturated. We
conclude that sat(n, F1) < 3n —2 and sat(n, F») < 3n —2 forany n > 3. A computer
search [10] yields that these inequalities are equalities whenn = 3, ..., 6. O

Conjecture 3 Let F| = T32 and F, = [T2, T33]. Then sat(n, F1) = sat(n, Fr) =
3n — 2 foreveryn > 1.

Remark 5 Itis not hard to see that sat(n, Fi) > n + c/n for some absolute constant ¢
and alln > 3.Indeed, let M be ann x (n+2+ L) F;-saturated matrix of size sat(n, Fp)
for some A = A(n). We may assume that M(, [n + 2]) = [Tno, Tnl, T.']. Suppose that
A < n for otherwise we are done. Moreover, we assume that every column of matrix
M([A], {n+3,...,n 4+ 2+ A}) contains at least one entry equal to 1 (trivially, there
must be a permutation of the rows of M satisfying this requirement). We claim that
all rowsof M({A + 1,...,n},{n +3,...,n 4+ 2 + A}) are different. Suppose not.
Then, there are indices A + 1 < i, j < nsuchthat M(i,{n+3,...,n+24+1}) =
MG, {n+3,...,n+ 2+ A}). Now consider a column C in which the only nonzero
entries correspond to i and j. Clearly, C is not present in M, since the first A entries
of C equal 0. Moreover, since M is Fi-saturated, the matrix [M, C] contains Fj. In
other words, there are three rows in M which form F| as a submatrix. Note that the
ith and jth row must be among them. But this is not possible since F7 has no pair of
equal rows.

Let Mo =M({A+1,....,n},{n+3,....n+2+ )T Clearly, My is Fi-admis-
sible. Anstee and Sali showed (see Theorem 1.3 in [5]) that forb(1, F}) = O(Az).
That means that n — & = O (A?), and consequently, A = Q(4/n). Hence, sat(n, Fy) =
e(M) > n + Q(y/n), as required.
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