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Abstract Motivated both by the work of Anstee, Griggs, and Sali on forbidden
submatrices and also by the extremal sat-function for graphs, we introduce sat-type
problems for matrices. Let F be a family of k-row matrices. A matrix M is called
F-admissible if M contains no submatrix F ∈ F (as a row and column permutation
of F). A matrix M without repeated columns is F-saturated if M is F-admissible
but the addition of any column not present in M violates this property. In this paper
we consider the function sat(n,F) which is the minimal number of columns of an
F-saturated matrix with n rows. We establish the estimate sat(n,F) = O(nk−1) for
any family F of k-row matrices and also compute the sat-function for a few small
forbidden matrices.
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1 Introduction

First, we must introduce some simple notation. Let the shortcut ‘an n × m-matrix’
M mean a matrix with n rows (which we view as horizontal arrays) and m ‘vertical’
columns such that each entry is 0 or 1. For an n × m-matrix M , its order v(M) = n
is the number of rows and its size e(M) = m is the number of columns. We use
expressions like ‘an n-row matrix’ and ‘an n-row’ to mean a matrix with n rows and
a row containing n elements, respectively.

For an n × m-matrix M and sets A ⊆ [n] and B ⊆ [m], M(A, B) is the |A| × |B|-
submatrix of M formed by the rows indexed by A and the columns indexed by B. We
use the following obvious shorthand: M(A, ) = M(A, [m]), M(A, i) = M(A, {i}),
etc. For example, the rows and the columns of M are denoted by M(1, ), . . . , M(n, )

and M(, 1), . . . , M(, m) respectively while individual entries – by M(i, j), i ∈ [n],
j ∈ [m].

We say that a matrix M is a permutation of another matrix N if M can be obtained
from N by permuting its rows and then permuting its columns. We write M ∼= N in
this case. A matrix F is a submatrix of a matrix M (denoted F ⊆ M) if we can obtain
a matrix which is a permutation of F by deleting some set of rows and columns of
M . In other words, F ∼= M(A, B) for some index sets A and B. The transpose of M
is denoted by MT (we use this notation mostly to denote vertical columns, for typo-
graphical reasons); (a)i is the (horizontal) sequence containing the element a i times.
The n × (m1 + m2)-matrix [M1, M2] is obtained by concatenating an n × m1-matrix
M1 and an n × m2-matrix M2. The complement 1 − M of a matrix M is obtained by
interchanging ones and zeros in M . The characteristic function χY of Y ⊆ [n] is the
n-column with i th entry being 1 if i ∈ Y and 0 otherwise.

Many interesting and important properties of classes of matrices can be defined by
listing forbidden submatrices (some authors use the term ‘forbidden configurations’).
More precisely, given a family F of matrices (referred to as forbidden), we say that
a matrix M is F-admissible (or F-free) if M contains no F ∈ F as a submatrix.
A simple matrix M (that is, a matrix without repeated columns) is called F-saturated
(or F-critical) if M is F-free but the addition of any column not present in M violates
this property; this is denoted by M ∈ SAT(n,F), n = v(M). Note that, although the
definition requires that M is simple, we allow multiple columns in matrices belonging
to F .

One well-known extremal problem is to consider forb(n,F), the maximal size
of a simple F-free matrix with n rows or, equivalently, the maximal size of M ∈
SAT(n,F). Many different results on the topic have been obtained; we refer the
reader to a recent survey by Anstee [2]. We just want to mention a remarkable fact that
one of the first forb-type results, namely Formula (1) here, proved independently by
Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19], was motivated
by such different topics as probability, logic, and a problem of Erdős on infinite set
systems.

The forb-problem is reminiscent of the Turán function ex(n,F): given a family F
of forbidden graphs, ex(n,F) is the maximal size of an F-free graph on n vertices
not containing any member of F as a subgraph (see e.g., surveys [15,17,21]). Erdős,
Hajnal, and Moon [11] considered the ‘dual’ function sat(n,F), the minimal size of a
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maximal F-free graph on n vertices. This is an active area of extremal graph theory;
see the dynamic survey by Faudree, Faudree, and Schmitt [12].

Here we consider the ‘dual’ of the forb-problem for matrices. Namely, we are
interested in the value of sat(n,F), the minimal size of an F-saturated matrix with n
rows:

sat(n,F) = min{e(M) : M ∈ SAT(n,F)}.

We decided to use the same notation as for its graph counterpart. This should not cause
any confusion as this paper will deal with matrices. Obviously, sat(n,F) ≤ forb(n,F).
If F = {F} consists of a single forbidden matrix F then we write SAT(n, F) =
SAT(n, {F}), and so on.

We denote by T l
k the simple k × (k

l

)
-matrix consisting of all k-columns with exactly

l ones and by Kk – the k × 2k matrix of all possible columns of order k. Naturally,
T ≤l

k denotes the k × f (k, l)-matrix consisting of all distinct columns with at most l
ones, and so on, where we use the shortcut

f (k, l) =
(

k

0

)
+

(
k

1

)
+ · · · +

(
k

l

)
.

Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19] showed inde-
pendently that

forb(n, Kk) = f (n, k − 1). (1)

Formula (1) turns out to play a significant role in our study.
This paper is organized as follows. In Sect. 2 we give some general results about the

sat-function, the principal one being Theorem 2 which states that sat(n,F) = O(nk−1)

holds for any family F of k-row matrices. Turning to specific matrices, in Sect. 3 we
compute sat(n, Kk) for k = 2 and k = 3. By Theorem 2, sat(n, K2) can grow at most
linearly, and indeed it is linear in n. Surprisingly, though, sat(n, K3) is constant for
n ≥ 4. Finally, in Sect. 4, we examine a selection of small matrices F to see how
sat(n, F) behaves. In particular, we find some F for which the function grows and
other F for which it is constant (or bounded): it would be interesting to determine a
criterion for when sat(n, F) is bounded, but we cannot guess one from the present
data.

2 General Results

Here we present some results dealing with sat(n,F) for a general family F .
The following simple observation can be useful in tackling these problems. Let M ′

be obtained from M ∈ SAT(n,F) by duplicating the nth row of M , that is, we let
M ′([n],) = M and M ′(n +1,) = M(n,). Suppose that M ′ is F-admissible. Complete
M ′, by adding columns in an arbitrary way, to an F-saturated matrix. Let C be any
added (n + 1)-column. As both M ′([n], ) and M ′([n − 1] ∪ {n + 1},) are equal to
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M ∈ SAT(n,F), we conclude that both C([n]) and C([n − 1] ∪ {n + 1}) must be
columns of M . As C is not an M ′-column, C = (C ′, b, 1 − b) where b ∈ {0, 1}
and C ′ is some (n − 1)-column such that both (C ′, 0) and (C ′, 1) are columns of M .
This implies that sat(n + 1,F) ≤ e(M)+ 2d, where d is the number of pairs of equal
columns in M after we delete the nth row. In particular, the following theorem follows.

Theorem 1 Suppose that F is a matrix with no two equal rows. Then either sat(n, F)

is constant for large n, or sat(n, F) ≥ n + 1 for every n.

Proof If some M ∈ SAT(n, F) has at most n columns, then a well-known theo-
rem of Bondy [7] (see, e.g., Theorem 2.1 in [6]) implies that there is i ∈ [n] such
that the removal of the i th row does not create two equal columns. Since F has no
two equal rows, the duplication of any row cannot create a forbidden submatrix, so
sat(n + 1, F) ≥ sat(n, F). However, by the remark made just prior to the theorem,
the duplication of the i th row gives an (n + 1)-row F-saturated matrix, implying
sat(n + 1, F) ≤ sat(n, F), as required. 	


Suppose that F consists of k-row matrices. Is there any good general upper bound
on forb(n,F) or sat(n,F)? There were different papers dealing with general upper
bounds on forb(n,F), for example, by Anstee and Füredi [3], by Frankl, Füredi
and Pach [14] and by Anstee [1], until the conjecture of Anstee and Füredi [3] that
forb(n,F) = O(nk) for any fixed F was elegantly proved by Füredi (see [4] for a
proof).

On the other hand, we can show that sat(n,F) = O(nk−1) for any family F of
k-row matrices (including infinite families). Note that the exponent k − 1 cannot be
decreased in general since, for example, sat(n, T k

k ) = f (n, k − 1).

Theorem 2 For any family F of k-row matrices, sat(n,F) = O(nk−1).

Proof We may assume that Kk is F-admissible (i.e., every matrix of F contains a pair
of equal columns) for otherwise we are home by (1) as then sat(n,F) ≤ forb(n, Kk) =
O(nk−1).

Let us define some parameters l, d, and m that depend on F . Let l = l(F) ∈ [0, k] be
the smallest number such that there exists s for which [sT ≤l

k , T >l
k ] is not F-admissible

(clearly, such l exists: if we set l = k, then sT ≤l
k = sKk contains any given k-row subm-

atrix for all large s). Let d = d(F) be the maximal integer such that [sT <l
k , dT l

k , T >l
k ]

is F-admissible for every s. Note that d ≥ 1 as [sT <l
k , T l

k , T >l
k ] = [sT <l

k , T ≥l
k ] cannot

contain a forbidden submatrix by the choice of l. Choose the minimal m = m(F) ≥ 0
such that [mT <l

k , (d + 1)T l
k , T >l

k ] is not F-admissible. The subsequent argument will
be valid provided n is large enough, which we shall tacitly assume.

We consider the two possibilities l(F) < k and l(F) = k separately. Suppose first
that l(F) < k. Consider the following set system:

H =
⋃

j∈[d−1]

{

Y ∈ ( [n]
l+1

) : ∑

y∈Y
y ≡ j (mod n)

}

.

Here
(X

i

) = {Y ⊆ X : |Y | = i} denotes the set of all subsets of X of size i .
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Note that any A ∈ ([n]
l

)
is contained in at most d − 1 members of H , as there

are at most d − 1 possibilities to choose i ∈ [n] \ A so that A ∪ {i} ∈ H : namely,
i ≡ j − ∑

a∈A a (mod n) for j ∈ [d − 1].
On the other hand, the collection H ′, of all l-subsets of [n] contained in fewer than

d − 1 members of H , has size at most 2(d − 1)
( n

l−1

)
. Indeed, if A ∈ H ′ then, using

the previous observation, it must be that for some j ∈ [d − 1] and x ∈ A we have
2x ≡ j − ∑

a∈A\{x} a (mod n): hence, once A \ {x} and j have been chosen, there
are at most 2 choices for x .

Call X ∈ ([n]
k

)
bad if, for some A ∈ (X

l

)
,

|{Y ∈ H : Y ∩ X = A}| ≤ d − 2.

To obtain a bad k-set X , we either complete some A ∈ H ′ to any k-set, or we take any
l-set A and let X contain some member of H that contains A. Therefore, the number
of bad sets is at most

2(d − 1)

(
n

l − 1

)(
n

k − l

)
+

(
n

l

)
(d − 1)

(
n

k − l − 1

)
= O(nk−1).

Let M ′ = [N , T l
n ], where N is the n × |H | incidence matrix of H . Then we have

that

M ′(X, ) ⊆
[
e(M ′)T <l

k , dT l
k , T l+1

k

]
, for any X ∈ ([n]

k

)
.

Hence, M ′ cannot contain a forbidden submatrix by the definition of d. Now complete
it to arbitrary M = [M ′, M ′′] ∈ SAT(n,F) by adding new columns as long as no
forbidden submatrix is created.

Suppose that e(M ′′) 
= O(nk−1). Then, by (1), Kk ∼= M ′′(X, Y ) for some X, Y .
Now, remove the columns corresponding to Y from M ′′ and repeat the procedure as
long as possible to obtain more than O(nk−1) column-disjoint copies of Kk in M ′′.
No X ∈ ([n]

k

)
can appear more than d times: otherwise (because T l

n(X, ) ⊇ mT <l
k

for all large n) we have that M(X, ) = [M ′, M ′′](X, ) ⊇ [mT <l
k , (d + 1)Kk] is not

F-admissible. Since we have O(nk−1) bad k-sets of rows and, by above, each has
at most d column-disjoint copies of Kk , we have that Kk ⊆ M ′′(X, ) for at least
one good (i.e., not bad) X ∈ ([n]

k

)
. But then N (X, ) ⊇ (d − 1)T l

k . Moreover, since
T l

n(X, ) ⊇ [mT <l
k , T l

k ] for all large n, we obtain

M(X, ) = [N , T l
n , M ′′](X, ) ⊇ [(d − 1)T l

k , mT <l
k , T l

k , Kk]
= [(m + 1)T <l

k , (d + 1)T l
k , T >l

k ].

Thus, M(X, ) contains a forbidden matrix. This contradiction proves the required
bound for l < k.

Consider now the other possibility, that l = l(F) equals k. The above argument
does not work in this case because the size of M ′ ⊇ T l

n is too large. Let F∗ consist
of those k-row matrices F such that [dT k

k , F] is not F-admissible, where d = d(F).
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Note that [sT <k
k , T k

k ] ∈ F∗ for all large s by the definition of d. Thus l(F∗) < k
and by the above argument we can find L ∈ SAT(n − d,F∗) with O(nk−1) columns.
Define

M ′ =
[

dT n−d
n−d L

T 1
d e(L)T 0

d

]
,

that is, M ′ is obtained from [dT n−d
n−d , L] by adding d extra rows that encode the sets

{i}, i ∈ [d]. Note that M ′ does not have multiple columns even if T n−d
n−d is a column

of L because d ≥ 1.
Take arbitrary X ∈ ([n]

k

)
. If X ⊆ [n − d], then M ′(X, ) = [dT k

k , L(X, )] is F-
admissible because L is F∗-admissible; otherwise M ′(X, ) ⊆ [e(M ′)T <k

k , T k
k ] is

F-admissible because l(F) = k. Thus M ′ is F-free.
Complete M ′ to an arbitrary M ∈ SAT(n,F). Let C be any added column. Since

[M ′, C]([n − d], ) =
[
dT n−d

n−d , L , C([n − d])
]

is F-free, we have that [L , C([n −d])] is F∗-free. By the F∗-saturation of L , we have
that C([n − d]) is a column of L . Hence

sat(n,F) ≤ e(M) ≤ 2d e(L) + d = O(nk−1),

proving the theorem. 	

Remark 1 Theorem 2 is the matrix analog of the main result in [18] that sat(n,F) =
O(nk−1) for any finite family F of k-graphs.

3 Forbidding Complete Matrices

Let us investigate the value of sat(n, Kk) (recall that Kk is the k ×2k-matrix consisting
of all distinct k-columns). We are able to settle the cases k = 2 and k = 3.

We will use the following trivial lemma a couple of times.

Lemma 1 Each row of any M ∈ SAT(n, Kk), n ≥ k, contains at least l ones and at
least l zeros, where l = 2k−1 − 1.

Proof Suppose on the contrary that the first row M(1, ) has m0 zeros followed by m1
ones with m0 ≥ m1 and l > m1.

For i ∈ [m0], let Ci equal the i th column of M with the first entry 0 replaced by
1. Then the addition of Ci to M cannot create a new copy of Kk , because the first
row of M ′ contains too few 1’s, while Ci ([2, n]) is already a column of M([2, n], ),
which does not contain Kk . Therefore, Ci must be a column of M . Since i ∈ [m0]
was arbitrary, we have m0 = m1.

But then M has at most 2k − 2 columns, which is a contradiction. 	
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Theorem 3 For n ≥ 1, we have sat(n, K2) = n + 1.

Proof The upper bound is given by T ≤1
n ∈ SAT(n, K2).

Suppose that the statement is not true, that is, there exists a K2-saturated matrix
with its size not exceeding its order. By Theorem 1, sat(n, K2) is eventually constant
so we can find an n × m-matrix M ∈ SAT(n, K2) having two equal rows for some
n ∈ N.

As we are free to complement and permute rows, we may assume that, for some
i ≥ 2, M(1, ) = · · · = M(i, ) while M( j, ) 
= M(1, ) and M( j, ) 
= 1 − M(1, ) for
any j ∈ [i + 1, n]. Note that i < n as we do not allow multiple columns in M (and
m ≥ e(K2) − 1 = 3).

Let j ∈ [i + 1, n]. By Lemma 1, the j th row M( j, ) contains both 0’s and 1’s. By
the definition of i , M( j, ) is not equal to M(1, ) nor to 1− M(1, ). It easily follows that
there are f j , g j ∈ [m] with M(1, f j ) = M(1, g j ) and M( j, f j ) 
= M( j, g j ). Again
by Lemma 1, we can furthermore find h j ∈ [m] with M(1, h j ) = 1 − M(1, f j ).
Let b j = M( j, h j ). By exchanging f j and g j if necessary, we can assume that
M( j, g j ) = b j .

Now, as M ∈ SAT(n, K2), the addition of the column

C = (1, (0)i−1, bi+1, . . . , bn)T

(which is not in M because C(1) 
= C(2)) must create a new K2-submatrix, say in
the x th and yth rows for some 1 ≤ x < y ≤ n. Clearly, {x, y} � [i] because each
column of M([i], ) is either ((0)i )T or ((1)i )T . Also, it is impossible that x ∈ [i]
and y ∈ [i + 1, n] because then, for some a1, a2 ∈ [m], M(y, a1) = M(y, a2) =
1 − C(y) = 1 − by , M(x, a1) = 1 − M(x, a2) and we can see that K2 is isomorphic
to M({x, y}, {a1, a2, gy, hy}), which contradicts K2 � M({x, y}, ). So we have to
assume that i < x < y ≤ n.

As K2 � M({x, y}, ), no column of M({x, y}, ) can equal C({x, y}) = (bx , by)
T .

In particular, since M(x, gx ) = M(x, hx ) = bx and similarly for y, we must have
{gx , hx } ∩ {gy, hy} = ∅, and moreover M(y, gx ) = M(y, hx ) = 1 − by . But then

K2 ∼= M({1, y}, {gx , hx , gy, hy}),

which is a contradiction proving our theorem. 	


Note that forb(n, K2) = n + 1 for n ≥ 1; the upper bound follows, for example,
from Formula (1) with k = 2. Thus Theorem 3 yields that sat(n, K2) = forb(n, K2)

which, in our opinion, is rather surprising. A greater surprise is yet to come as we are
going to show now that sat(n, K3) is constant for n ≥ 4.

Theorem 4 For K3 the following holds:

sat(n, K3) =
{

7, if n = 3,

10, if n ≥ 4.

123



1276 Graphs and Combinatorics (2013) 29:1269–1286

Proof The claim is trivial for n = 3, so assume n ≥ 4. A computer search [10]
revealed that

sat(4, K3) = sat(5, K3) = sat(6, K3) = sat(7, K3) = 10,

which suggested that sat(n, K3) is constant. An example of a K3-saturated 6 × 10-
matrix is the following:

M =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 0 1 1 0 1 1 1
0 0 1 1 0 0 0 1 1 1
0 1 0 1 0 0 1 0 1 1
1 0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1 0 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.

It is possible (but very boring) to check by hand that M is indeed K3-saturated as is,
in fact, any n × 10-matrix M ′ obtained from M by duplicating any row, cf. Theorem 1
(the symmetries of M shorten the verification). A K3-saturated 5 × 10-matrix can be
obtained from M by deleting one row (any). For n = 4, we have to provide a special
example:

M =

⎡

⎢
⎢
⎣

0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 0 1 1
0 0 1 1 0 0 1 1 0 1
0 1 0 1 0 1 0 1 1 0

⎤

⎥
⎥
⎦ .

So sat(n, K3) ≤ 10 for each n ≥ 4 and, to prove the theorem, we have to show that
no K3-saturated matrix M with at most 9 columns and at least 4 rows can exist. Let
us assume the contrary.

Claim 1 Any row of M ∈ SAT(n, K3) necessarily contains at least four 0’s and at
least four 1’s, for n ≥ 4.

Proof of Claim Suppose, contrary to the claim, that the first row M(1, ) contains only
three 0’s, say in the first three columns (by Lemma 1 we must have at least three 0’s).

If we replace the i th of these 0’s by 1, i ∈ [3], then the obtained column Ci , if
added to M , does not create any K3-submatrix. Indeed, the first row of [M, Ci ] con-
tains at most three 0’s, while Ci ([2, n]) is a column of M([2, n], ) 
⊇ K3. As M is
K3-saturated, C1, C2 and C3 are columns of M . These columns differ only in the first
entry from M(, 1), M(, 2) and M(, 3) respectively. Therefore, for each A ∈ ([2,n]

3

)
,

the matrix M(A, ) can contain at most e(M) − 3 ≤ 6 distinct columns. But then any
column C which is not a column of M and has top entry 1 (C exists as n ≥ 4) can be
added to M without creating a K3 submatrix, because the first row of [M, C] contains
at most three 0’s. This contradiction proves Claim 1. 	


Therefore, e(M) is either 8 or 9. As we are free to complement the rows, we may
assume that each row of M contains exactly four 1’s. Call A ∈ ([n]

3

)
(and also M(A, ))

nearly complete if M(A, ) has 7 distinct columns.
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Claim 2 Any nearly complete M(A, ) contains (0, 0, 0)T as a column.

Proof of Claim Indeed, otherwise M(A, ) ⊇ T ≥1
3 which already contains four 1’s in

each row; this implies that the (one or two) remaining columns must contain zeros
only. Hence M(A, ) ⊇ K3, which is a contradiction. 	

Claim 3 Every nearly complete M(A, ) contains T 1

3 as a submatrix.

Proof of Claim Indeed, if (0, 0, 1)T is the missing column of M(A, ), then some 7
columns contain a copy of K3 \ (0, 0, 1)T . By counting 1’s in the rows we deduce
that the remaining column(s) of M(A, ) must have exactly one non-zero entry, and
moreover one of these columns equals (0, 0, 1)T , which is a contradiction. 	


By the K3-saturation of M there exists some nearly complete M(A, ); choose one
such. Assume without loss of generality that A = [3] and that the first 7 columns of
M([3], ) are distinct. We know that the 3-column missing from M([3], [7]) has at least
two 1’s.

If (1, 1, 1)T is missing, then M([3], [7]) contains exactly three ones in each row,
so the remaining column(s) of M must contain an extra 1 in each row. As (1, 1, 1)T

is the missing column, we conclude that e(M) = 9 and the 8th and 9th columns
of M([3], ) are, up to a row permutation, (0, 0, 1)T and (1, 1, 0)T . This implies that
M([3], ) contains the column (0, 0, 0)T only once. Thus at least one of the columns
C0 = ((0)n)T and C1 = ((0)n−1, 1)T is not in M and its addition creates a copy of
K3, say on the rows indexed by B ∈ ([n]

3

)
. The submatrix M(B, ) is nearly complete

and, by Claims 2 and 3, contains T ≤1
3 . But both C0(B) and C1(B) are columns of

T ≤1
3 ⊆ M(B, ), which is a contradiction.

Similarly, if (1, 1, 0)T is missing, then one can deduce that e(M) = 9 and, up to
a row permutation, M([3], {8, 9}) consists of the columns (1, 0, 0)T and (0, 1, 0)T .
Again, the column (0, 0, 0)T appears only once in M([3], ), which leads to a contra-
diction as above, completing the proof of the theorem. 	


We do not have any non-trivial results concerning Kk , k ≥ 4, except that a computer
search [10] showed that sat(5, K4) = 22 and sat(6, K4) ≤ 24 (we do not know if a
K4-saturated 6 × 24-matrix discovered by a partial search is minimum).

Problem 1 For which k ≥ 4, is sat(n, Kk) = O(1)?

4 Forbidding Small Matrices

In this final section we try to gain further insight into the sat-function by computing
sat(n, F) for some forbidden matrices with up to three rows.

4.1 Forbidding 1-Row Matrices

For any given 1-row matrix F , we can determine sat(n, F) for all but finitely many
values of n. The answer is unpleasantly intricate.
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Proposition 1 Let F = ((0)m, (1)l) = [mT 0
1 , lT 1

1 ] with l ≥ m. Then, for n ≥
max(l − 1, 1),

sat(n, F) =
⎧
⎨

⎩

l, if m = 0 and l ≤ 2 or if m = 1 and l ≥ 1 is a power of 2,

l + 1, if m = 0 and l ≥ 3 or if m = 1 and l is not a power of 2,
l + m − 1, if m ≥ 2 and l ≥ 2.

Proof Assume that l ≥ 3, as the case l ≤ 2 is trivial.
For m ∈ {0, 1} an example of M ∈ SAT(n, F) with e(M) = l + 1 can be built by

taking T 0
n , T n

n , χ[l−2], and χ[n]\{i} for i ∈ [l − 2] as the columns. If m = 1 and l = 2k ,
one can do slightly better by adding n − k copies of the row ((1)l) to Kk .

Let us prove the lower bound for m ∈ {0, 1}. Suppose that some F-saturated matrix
M has n ≥ l − 1 rows and c ≤ l columns. First, let m = 0. As c < 2n and M contains
the all-0 column, we have c = l and some row M(i, ) contains exactly l − 1 ones. As
we are not allowed multiple columns in M , some other row, say M( j, ), has at most
l − 2 ones. Then χ{ j} is not a column of M but its addition does not create l ones in a
row, a contradiction. Let m = 1. Trivially, e(M) ≥ e(F) − 1 = l. It remains to show
that l is a power of 2 if e(M) = l. Let C be the column whose i th entry is 1 if and only
if M(i, ) = (1)l . Then the addition of the column C cannot create an F-submatrix,
and so C is already a column of M . Let C = M(, 1) = ((0)i , (1)n−i )T . The last n − i
rows of M consist of 1’s only. Since l ≥ 3 and M has no multiple columns, we have
that i ≥ 2 and that M([i], [2, l]) must contain at least one 0, say M(i, l) = 0. Since
the addition of χ[i,n] cannot create F , it is already a column of M . Thus each row of
M([i], ) has at least two 0’s, and to avoid a contradiction we must have M([i], ) ∼= Ki

and l = 2i . This completes the case when m ≤ 1.
For m ≥ 2, let M consist of T n

n plus χ{i}, i ∈ [m − 2], plus χ[n]\{i}, i ∈ [l − 1] and
χ[m−1,l−1]. Clearly, each row of M contains l 1’s and m − 1 0’s, so the addition of
any new column (which must contain at least one 0) creates an F-submatrix and the
upper bound follows. The lower bound is trivial. 	

Remark 2 The case when n ≤ l − 2 in Proposition 1 seems messy so we do not
investigate it here.

4.2 Forbidding 2-Row Matrices

Now let us consider some particular 2-row matrices.
Let F = lT 2

2 , that is, F consists of the column (1, 1)T taken l times. Trivially, for
l = 1 or 2, sat(n, lT 2

2 ) = n + l, with T ≤1
n and [T ≤1

n , T n
n ] being the only extremal

matrices. For l ≥ 3, we can only show the following lower bound. It is almost sharp
for l = 3, when we can build a 3T 2

2 -saturated n × (2n + 2)-matrix by taking T ≤1
n ,

χ[n−1], χ[n], plus χ{i,n} for i ∈ [n − 1].
Lemma 2 For l ≥ 3 and n ≥ 3, sat(n, lT 2

2 ) ≥ 2n + 1.

Proof Let M = [T ≤1
n , M ′] be l K 2

2 -saturated. Note that M ′ must have the property
that every column χA, with A ∈ ([n]

2

)
, either belongs already to M ′, or its addition
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creates an F-submatrix; in the latter case, exactly l − 1 columns of M ′ have ones in
both positions of A. Therefore, by adding to M ′ some columns of T 2

n (with possibly
some columns being added more than once), we can obtain a new matrix M ′′ such
that, for every A ∈ ([n]

2

)
, M ′′(A, ) contains the column (1, 1)T exactly l − 1 times.

If we let the set Xi be encoded by the i th row of M ′′ as its characteristic vector, we
have that |Xi ∩ X j | = l − 1 for every 1 ≤ i < j ≤ n. The result of Bose [8] (see [16,
Theorem 14.6]), which can be viewed as an extension of the famous Fisher inequal-
ity [13], asserts that, either the rows of M ′′ are linearly independent over the reals, or
M ′′ has two equal rows, say Xi = X j . The second case is impossible here, because
then |Xi | = l − 1 and each other Xh contains Xi as a subset; this in turn implies that
the column ((1)n)T appears at least l − 1 ≥ 2 times in M ′′ and (since n ≥ 3) the same
number of times in M ′, a contradiction. Thus the rank of M ′′ over the reals is n. Note
that every column C ∈ T 2

n added to M ′ during the construction of M ′′ was already
present in M ′ (otherwise C contradicts the assumption that M is lT 2

2 -saturated). Thus
the matrices M ′ and M ′′ have the same rank over the reals. We conclude that M ′ has
at least n columns and the lemma follows. 	


Let us show that Lemma 2 is sharp for l = 3 and some n. Suppose there exists a
symmetric (n, k, 2)-design (meaning we have n k-sets X1, . . . , Xn ∈ ([n]

k

)
such that

every pair {i, j} ∈ ([n]
2

)
is covered by exactly two Xi ’s). Let M be the n × n-matrix

whose rows are the characteristic vectors of the sets Xi . Then [T ≤1
n , M] is a 3T 2

2 -sat-
urated n × (2n + 1)-matrix. For n = 4, we can take all 3-subsets of [n]. For n = 7,
we can take the family {[7] \ Yi : i ∈ [7]}, where Y1, . . . , Y7 ∈ ([7]

3

)
form the Fano

plane. Constructions of such designs for n = 16, 37, 56, and 79 can be found in
[9, Table 6.47].

Of course, the non-existence of a symmetric (n, k, 2)-design does not directly imply
anything about sat(n, 3T 2

2 ), since a minimum 3T 2
2 -saturated matrix [T ≤1

n , M] need
not have the same number of ones in the rows of M .

Lemma 2 is not always optimal for l = 3. One trivial example is n = 3. Another
one is n = 5.

Lemma 3 sat
(
5, 3T 2

2

) = 12.

Proof Suppose, on the contrary, that we have a 3T 2
2 -saturated 5 × (s + 6)-matrix

M = [N , T ≤1
5 ] with s ≤ 5. Let X1, . . . , X5 be the subsets of [s] encoded by the rows

of N .
If, for example, X1 = [s], then every Xi with i ≥ 2 has at most two elements.

Let C1 = (0, 1, 1, 0, 0)T , C2 = (0, 0, 0, 1, 1)T and C3 = (0, 0, 1, 1, 0)T . None of
these columns is in M so the addition of any one of them creates a copy 3T 2

2 . So we
may assume that M({2, 3}, {a, b}) = M({4, 5}, {c, d}) = M({3, 4}, {e, f }) = 2T 2

2 .
If {a, b} = {c, d} then M(, a) and M(, b) are two equal columns with all 1’s, a contra-
diction. Hence {a, b} 
= {c, d}, and so at least one of {e, f } 
= {a, b} or {e, f } 
= {c, d}
holds: we may assume the former. But then M({1, 3}, ) contains 3T 2

2 , a contradiction.
Thus we can assume that each Xi with i ∈ [5] has at most s − 1 elements. If

X1 ⊆ {1, 2}, then by considering columns that begin with 1 and have one other entry
1, we conclude that X1 = {1, 2} and that every Xi contains X1 as a subset. Thus
M(, {1, 2}) = 2T 5

5 , that is, M has two equal columns, a contradiction.
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So we can assume that each |Xi | ≥ 3, which also implies that s = 5. If X1 = [4],
then for each i ∈ [2, 5] we have 5 ∈ Xi (because |Xi | ≥ 3 and M is 3T 2

2 -free).
Each two of the sets X2, . . . , X5 have to intersect in exactly two elements, which is
impossible.

Thus each |Xi | = 3. A simple case analysis gives a contradiction in this case as
well. 	

Problem 2 Determine sat(n, 3T 2

2 ) for every n.

Remark 3 It is interesting to note that if we let F = [lT 2
2 , (0, 1)T ] then sat(n, F)-

function is bounded. Indeed, complete M ′ = [χ[n]\{i}]i∈[l] to an arbitrary F-saturated
matrix M . Clearly, in any added column all entries after the lth position are either 0’s
or 1’s; hence sat(n, F) ≤ 2 · 2l .

It is easy to compute sat(n, T 1
2 ) by observing that the n-row matrix MY whose

columns encode Y ⊆ 2[n] is T 1
2 -free if and only if Y is a chain—that is, for any two

members of Y , one is a subset of the other. Thus MY is T 1
2 -saturated if and only if Y

is a maximal chain without repeated entries. As all maximal chains in 2[n] have size
n + 1, we conclude that

sat(n, T 1
2 ) = forb(n, T 1

2 ) = n + 1, n ≥ 2.

Theorem 5 Let F = [T 0
2 , T 2

2 ] =
[

0 1
0 1

]
. Then sat(n, F) = 3, n ≥ 2.

Proof For n ≥ 3, the matrix M consisting of the columns (0, 1, (1)n−2)T ,
(1, 0, (1)n−2)T and (0, 0, (1)n−2)T can be easily verified to be F-saturated and the
upper bound follows.

Since n = 2 is trivial, let n ≥ 3. Any 2-column F-free matrix M is, without loss
of generality, the following: we have n00 rows (0, 0), followed by n11 rows (1, 1),
n10 rows (1, 0) and n01 rows (0, 1), where n10 ≤ 1 and n01 ≤ 1. Since (by taking
complements if necessary) we may assume n00 ≤ n11, we have n11 ≥ 1 because
n ≥ 3. But then the addition of a new column ((0)n00+1, 1, 1, . . . )T does not create
an F-submatrix. 	

Theorem 6 Let F = T ≥1

2 =
[

0 1 1
1 0 1

]
. Then

sat(n, F) = forb(n, F) = n + 1, n ≥ 2.

Proof Clearly, forb(n, F) ≤ forb(n, K2) = n + 1.
Suppose the theorem is false and that sat(n, F) ≤ n for some n. Since the rows of

F are distinct, Theorem 1 shows that sat(n, F) is bounded.
It follows that, if n is large enough, then M ∈ SAT(n, F) has two equal rows, for

example, M(1, ) = M(2, ) = ((1)l , (0)m). By considering the column (1, 0, . . . , 0)T

that is not in M , we conclude that l, m ≥ 1. Let X = [l] and Y = [l + 1, l + m].
Define

Ai = { j ∈ [l + m] : M(i, j) = 1}, i ∈ [n].
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For example, A1 = A2 = X . As M is F-free, for every i, j ∈ [n], the sets Ai and A j

are either disjoint or one is a subset of the other. For i ∈ [3, n], let bi = 1 if Ai strictly
contains X or Y and let bi = 0 otherwise (that is, when Ai is contained in X or Y ).
Let b1 = 1 and b2 = 0.

Clearly, C = (b1, . . . , bn)T is not a column of M so its addition creates a forbidden
submatrix, say F ⊆ [M, C]({i, j}, ). Of course, bi = b j = 0 is impossible because
(0, 0)T

� F . If bi = b j = 1 then necessarily Ai ∩ A j 
= ∅, and M({i, j}, ) ⊇ (1, 1)T

contains F , a contradiction. Finally, if bi 
= b j , e.g., bi = 0, b j = 1 and i < j , then
Ai ⊇ A j (as (0, 1)T cannot be a column of M({i, j}, )), which implies Ai = A j ; but
then we do not have a copy of F as (1, 0)T is missing. This contradiction completes
the proof. 	

Remark 4 It is trivial that

sat(n, [(0, 1)T , (1, 1)T ]) = sat(n, [(0, 0)T , (0, 1)T , (1, 1)T ])=2.

We have thus determined the sat-function for every simple 2-row matrix.

4.3 Forbidding 3-Row Matrices

Here we consider some particular 3-row matrices. First we solve completely the case
when F = [T 0

3 , T 3
3 ].

Theorem 7 Let F = [T 0
3 , T 3

3 ] =
⎡

⎣
0 1
0 1
0 1

⎤

⎦. Then

sat(n, F) =
{

7, if n = 3 or n ≥ 6,
10, if n = 4 or 5.

Proof For the upper bound we define the following family of matrices:

M4 =

⎡

⎢⎢
⎣

1 0 1 0 1 0 1 1 0 0
0 1 1 0 0 1 1 0 1 0
0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 1 1

⎤

⎥⎥
⎦ ,

M5 =

⎡

⎢⎢⎢⎢
⎣

1 1 0 1 1 0 1 0 1 0
1 0 1 1 0 1 0 1 1 0
0 1 1 1 0 0 1 1 0 1
0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥
⎦

,

M6 =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

1 0 1 0 0 1 0
1 0 0 1 1 0 0
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 0 1 1 0 0 1
0 0 0 0 1 1 1

⎤

⎥⎥⎥
⎥⎥⎥
⎦

.
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For any n ≥ 7 define the (n × 7)-matrix Mn by Mn([6], ) = M6 and Mn(i, ) =[
0 0 0 0 0 0 0

]
for every 7 ≤ i ≤ n. A computer search [10] showed that Mn is a

minimum F-saturated matrix for 3 ≤ n ≤ 10. This implies that each Mn with n ≥ 11
is F-saturated. It remains to show that

sat(n, F) ≥ 7

for n ≥ 11. In order to see this, we show the following result first.

Claim If M is an F-saturated n ×m-matrix with n ≥ 11 and m ≤ 6 then M contains
a row with all zero entries or with all one entries.

Proof of Claim Suppose, on the contrary, that we have a counterexample M . We may
assume that the first 6 entries of the first column of M are equal to 0. Consider
a matrix A = M([6], {2, . . . , m}). Note that every column of A contains at most
two entries equal to 1, otherwise M([6], ) ⊇ F . Hence, the number of 1’s in A
is at most 2(m − 1). By our assumption, each row of A has at least one 1. Since
2(m − 1) < 12, A has a row with precisely one 1. We may assume that A(1, 1) = 1
and A(1, i) = 0 for 2 ≤ i ≤ m − 1. Let C2 be the second column of M (remember
that C2(1) = A(1, 1) = 1).

Consider the n-column C3 = [0, C2({2, . . . , n})T ]T which is obtained from C2 by
changing the first entry to 0. If it is not in M , then F ⊆ [M, C3]. This copy of F has
to contain the entry in which C3 differs from C2. But the only non-zero entry in Row
1 is M(1, 2); thus F ⊆ [C2, C3], which is an obvious contradiction. Thus we may
assume that C3 is the third column of M .

We have to consider two cases. First, suppose that C2({2, . . . , 6}) has at least one
entry equal to 1. Without loss of generality, assume that C2(2) = C3(2) = 1.

It follows that C2(i) = C3(i) = 0 for 3 ≤ i ≤ 6 (otherwise the first and the second
columns of M would contain F). Let

B = M({3, 4, 5, 6}, {4, . . . , m}). (2)

By our assumption, each row of B has at least one 1; in particular m ≥ 5. Clearly,
B contains at most 2(m − 3) < 8 ones. Thus, by permuting Rows 3, . . . , 6 and Col-
umns 4, . . . , m, we can assume that B(1, 1) = 1 while B(1, i) = 0 for 2 ≤ i ≤ m −3.
Let C4 be the fourth column of M and C5 be such that C4 and C5 differ at the third
position only, i.e., C4(3) = 1 and C5(3) = 0. As before, C5 must be in M , say it is
the fifth column. Since C4({4, 5, 6}) has at most one 1, assume that C4(5) = C4(6) =
C5(5) = C5(6) = 0. We need another column C6 with C6(5) = C6(6) = 1 (otherwise
the fifth or the sixth row of M would consist of all zero entries). In particular, m = 6.
But now the new column C7 which differs from C6 at the fifth position only (i.e.,
C7(5) = 0 and C7(i) = C6(i) for i 
= 5) should be also in M , since M is F-saturated.
This contradicts e(M) = 6. Thus the first case does not hold.

In the second case, we have C2(i) = C3(i) = 0 for every 2 ≤ i ≤ 6. We may
define B as in (2) and get a contradiction in the same way as above. This proves the
claim. 	
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Suppose, contrary to the theorem, that we can find an F-saturated matrix M with
n ≥ 11 rows and m ≤ 6 columns. By the claim, M has a constant row; we may assume
that the final row of M is all zero, and let N = M([n − 1], ). If C is an (n − 1)-col-
umn missing from N , then the column Q = (CT , 0)T is missing in M . Moreover,
a copy of F in [M, Q] cannot use the n-th row. Thus F ⊆ [N , C], which means
that N ∈ SAT(n − 1, F) and sat(n − 1, F) ≤ m ≤ 6. Repeating this argument, we
eventually conclude that sat(10, F) ≤ 6, a contradiction to the results of our computer
search. The theorem is proved. 	


Theorem 8 Let F = [T 0
3 , T 2

3 , T 3
3 ] =

⎡

⎣
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1

⎤

⎦. Then

sat(n, F) =
{

7, if n = 3, 6 or 7,
9, if n = 4 or 5.

Moreover, for any n ≥ 8, sat(n, F) ≤ 7.

Proof We define the following matrices:

M4 =

⎡

⎢⎢
⎣

1 0 1 0 1 0 0 0 1
0 1 1 0 0 1 0 1 1
0 0 0 1 1 0 1 1 1
0 0 0 0 0 1 1 1 1

⎤

⎥⎥
⎦ ,

M5 =

⎡

⎢⎢⎢⎢
⎣

1 1 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 1
0 0 1 0 1 0 1 1 1
0 0 0 1 1 0 0 1 1
0 0 0 0 0 1 1 1 1

⎤

⎥⎥⎥⎥
⎦

,

M6 =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

1 1 0 0 1 1 0
1 0 1 1 0 1 0
1 0 1 0 1 0 1
0 1 1 1 1 0 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

For any n ≥ 7 let Mn([6], ) = M6 and Mn(i, ) = [
0 0 0 1 1 1 1

]
for every 7 ≤ i ≤ n

(i.e., the last row of M6 is repeated (n − 6) times). For n = 3, . . . , 7 the theorem
(with Mn being a minimum F-saturated matrix) follows from a computer search [10].
It remains to show that Mn , n ≥ 8, is F-saturated. Clearly, this is the case, since M7
is F-saturated and F contains no pair of equal rows. 	


Conjecture 1 Let F = [T 0
3 , T 2

3 , T 3
3 ]. Then sat(n, F) = 7 for every n ≥ 8.
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Theorem 9 Let F = T ≤2
3 =

⎡

⎣
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0

⎤

⎦. Then

sat(n, F) =
{

7, if n = 3,
10, if 4 ≤ n ≤ 6.

Moreover, for any n ≥ 7, sat(n, F) ≤ 10.

Proof For n = 3, . . . , 6 the statement follows from a computer search [10] with the
following F-saturated matrices:

M4 =

⎡

⎢⎢
⎣

0 1 0 1 0 1 1 0 0 1
0 0 1 1 0 0 1 1 0 1
0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 1 1 1

⎤

⎥⎥
⎦ ,

M5 =

⎡

⎢⎢
⎢⎢
⎣

1 0 1 0 1 0 0 0 1 1
0 1 0 1 1 0 1 0 0 1
0 0 1 0 1 1 1 0 0 1
0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 1 1 1 1 1

⎤

⎥⎥
⎥⎥
⎦

.

For any n ≥ 6 let Mn([5], ) = M5 and Mn(i, ) = [
1 1 0 0 0 0 1 0 1 1

]
for every

6 ≤ i ≤ n. It remains to show that Mn , n ≥ 7, is F-saturated. Clearly, this is the case,
since M6 is F-saturated and F contains no pair of equal rows. 	

Conjecture 2 Let F = T ≤2

3 . Then sat(n, F) = 10 for every n ≥ 7.

Theorem 10 Let F1 = T 2
3 =

⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦, and F2 = [T 2
3 , T 3

3 ] =
⎡

⎣
0 1 1 1
1 0 1 1
1 1 0 1

⎤

⎦. Then

sat(n, F1) = sat(n, F2) = 3n − 2 for any 3 ≤ n ≤ 6. Moreover, for any n ≥ 7,
sat(n, F1) ≤ 3n − 2 and sat(n, F2) ≤ 3n − 2 as well.

Proof Let Mn = [T 0
n , T 1

n , T n
n , T̃ 2

n ], where T̃ 2
n ⊆ T 2

n consists of all those columns of
T 2

n which have precisely one entry equal to 1 either in the first or in the nth row (but
not in both), e.g., for n = 5 we obtain

M5 =

⎡

⎢
⎢⎢⎢
⎣

0 1 0 0 0 0 1 1 1 1 0 0 0
0 0 1 0 0 0 1 1 0 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0 0 1 0 0 1
0 0 0 0 0 1 1 0 0 0 1 1 1

⎤

⎥
⎥⎥⎥
⎦

.

Clearly, e(Mn) = e(T 0
n ) + e(T 1

n ) + e(T n
n ) + e(T̃ 2

n ) = 1 + n + 1 + 2n − 4 = 3n − 2.
Moreover, since T̃ 2

n is F1-admissible we get that Mn is both F1 and F2 admissible.
Now we show that Mn is F1-saturated. Indeed, pick any column C = (c1, . . . , cn)T
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which is not present in Mn . Such a column must contain at least 2 ones and 1 zero. Let
1 ≤ i, j, k ≤ n be the indices such that ci = 0, c j = ck = 1. If i = 1 or i = n, then
the matrix [Mn, C]({i, j, k}, ) contains F1. Otherwise, c1 = cn = 1, and there also
exists 1 < i < n such that ci = 0. Here [Mn, C]({1, i, n}, ) contains F1. Thus Mn is
F1 saturated and, since it must contain T n

n is a column, Mn is also F2-saturated. We
conclude that sat(n, F1) ≤ 3n −2 and sat(n, F2) ≤ 3n −2 for any n ≥ 3. A computer
search [10] yields that these inequalities are equalities when n = 3, . . . , 6. 	

Conjecture 3 Let F1 = T 2

3 and F2 = [T 2
3 , T 3

3 ]. Then sat(n, F1) = sat(n, F2) =
3n − 2 for every n ≥ 7.

Remark 5 It is not hard to see that sat(n, F1) ≥ n + c
√

n for some absolute constant c
and all n ≥ 3. Indeed, let M be an n×(n+2+λ) F1-saturated matrix of size sat(n, F1)

for some λ = λ(n). We may assume that M(, [n + 2]) = [T 0
n , T 1

n , T n
n ]. Suppose that

λ ≤ n for otherwise we are done. Moreover, we assume that every column of matrix
M([λ], {n + 3, . . . , n + 2 + λ}) contains at least one entry equal to 1 (trivially, there
must be a permutation of the rows of M satisfying this requirement). We claim that
all rows of M({λ + 1, . . . , n}, {n + 3, . . . , n + 2 + λ}) are different. Suppose not.
Then, there are indices λ + 1 ≤ i, j ≤ n such that M(i, {n + 3, . . . , n + 2 + λ}) =
M( j, {n + 3, . . . , n + 2 + λ}). Now consider a column C in which the only nonzero
entries correspond to i and j . Clearly, C is not present in M , since the first λ entries
of C equal 0. Moreover, since M is F1-saturated, the matrix [M, C] contains F1. In
other words, there are three rows in M which form F1 as a submatrix. Note that the
i th and j th row must be among them. But this is not possible since F1 has no pair of
equal rows.

Let M0 = M({λ + 1, . . . , n}, {n + 3, . . . , n + 2 + λ})T . Clearly, M0 is F1-admis-
sible. Anstee and Sali showed (see Theorem 1.3 in [5]) that forb(λ, F1) = O(λ2).
That means that n −λ = O(λ2), and consequently, λ = �(

√
n). Hence, sat(n, F1) =

e(M) ≥ n + �(
√

n), as required.
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