ORIGINAL PAPER

On Minimum Saturated Matrices

Andrzej Dudek · Oleg Pikhurko · Andrew Thomason

Received: 7 September 2009 / Revised: 24 May 2012 / Published online: 19 June 2012 © Springer 2012

Abstract Motivated both by the work of Anstee, Griggs, and Sali on forbidden submatrices and also by the extremal sat-function for graphs, we introduce sat-type problems for matrices. Let \mathcal{F} be a family of *k*-row matrices. A matrix *M* is called \mathcal{F} -admissible if *M* contains no submatrix $F \in \mathcal{F}$ (as a row and column permutation of *F*). A matrix *M* without repeated columns is \mathcal{F} -saturated if *M* is \mathcal{F} -admissible but the addition of any column not present in *M* violates this property. In this paper we consider the function sat(n, \mathcal{F}) which is the *minimal* number of columns of an \mathcal{F} -saturated matrix with *n* rows. We establish the estimate sat(n, \mathcal{F}) = $O(n^{k-1})$ for any family \mathcal{F} of *k*-row matrices and also compute the sat-function for a few small forbidden matrices.

Keywords Saturated matrices · Forbidden submatrices · Forbidden configurations

A. Dudek (🖂)

O. Pikhurko

Present Address: O. Pikhurko Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

A. Thomason Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, UK e-mail: a.g.thomason@dpmms.cam.ac.uk

Research of the second author was partially supported by the National Science Foundation, Grants DMS-0758057 and DMS-1100215.

Department of Mathematics, Western Michigan University, Kalamazoo, MI, 49008, USA e-mail: andrzej.dudek@wmich.edu

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA e-mail: pikhurko@andrew.cmu.edu

1 Introduction

First, we must introduce some simple notation. Let the shortcut 'an $n \times m$ -matrix' M mean a matrix with n rows (which we view as horizontal arrays) and m 'vertical' columns such that each entry is 0 or 1. For an $n \times m$ -matrix M, its order v(M) = n is the number of rows and its size e(M) = m is the number of columns. We use expressions like 'an n-row matrix' and 'an n-row' to mean a matrix with n rows and a row containing n elements, respectively.

For an $n \times m$ -matrix M and sets $A \subseteq [n]$ and $B \subseteq [m]$, M(A, B) is the $|A| \times |B|$ submatrix of M formed by the rows indexed by A and the columns indexed by B. We use the following obvious shorthand: $M(A,) = M(A, [m]), M(A, i) = M(A, \{i\})$, etc. For example, the rows and the columns of M are denoted by $M(1,), \ldots, M(n,)$ and $M(, 1), \ldots, M(, m)$ respectively while individual entries – by $M(i, j), i \in [n]$, $j \in [m]$.

We say that a matrix M is a *permutation* of another matrix N if M can be obtained from N by permuting its rows and then permuting its columns. We write $M \cong N$ in this case. A matrix F is a *submatrix* of a matrix M (denoted $F \subseteq M$) if we can obtain a matrix which is a permutation of F by deleting some set of rows and columns of M. In other words, $F \cong M(A, B)$ for some index sets A and B. The *transpose* of Mis denoted by M^T (we use this notation mostly to denote vertical columns, for typographical reasons); $(a)^i$ is the (horizontal) sequence containing the element a i times. The $n \times (m_1 + m_2)$ -matrix $[M_1, M_2]$ is obtained by concatenating an $n \times m_1$ -matrix M_1 and an $n \times m_2$ -matrix M_2 . The *complement* 1 - M of a matrix M is obtained by interchanging ones and zeros in M. The *characteristic function* χ_Y of $Y \subseteq [n]$ is the n-column with *i*th entry being 1 if $i \in Y$ and 0 otherwise.

Many interesting and important properties of classes of matrices can be defined by listing forbidden submatrices (some authors use the term 'forbidden configurations'). More precisely, given a family \mathcal{F} of matrices (referred to as *forbidden*), we say that a matrix M is \mathcal{F} -admissible (or \mathcal{F} -free) if M contains no $F \in \mathcal{F}$ as a submatrix. A *simple* matrix M (that is, a matrix without repeated columns) is called \mathcal{F} -saturated (or \mathcal{F} -critical) if M is \mathcal{F} -free but the addition of any column not present in M violates this property; this is denoted by $M \in SAT(n, \mathcal{F})$, n = v(M). Note that, although the definition requires that M is simple, we allow multiple columns in matrices belonging to \mathcal{F} .

One well-known extremal problem is to consider forb (n, \mathcal{F}) , the maximal size of a simple \mathcal{F} -free matrix with n rows or, equivalently, the maximal size of $M \in SAT(n, \mathcal{F})$. Many different results on the topic have been obtained; we refer the reader to a recent survey by Anstee [2]. We just want to mention a remarkable fact that one of the first forb-type results, namely Formula (1) here, proved independently by Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19], was motivated by such different topics as probability, logic, and a problem of Erdős on infinite set systems.

The forb-problem is reminiscent of the Turán function $ex(n, \mathcal{F})$: given a family \mathcal{F} of forbidden graphs, $ex(n, \mathcal{F})$ is the maximal size of an \mathcal{F} -free graph on n vertices not containing any member of \mathcal{F} as a subgraph (see e.g., surveys [15, 17, 21]). Erdős, Hajnal, and Moon [11] considered the 'dual' function $sat(n, \mathcal{F})$, the *minimal* size of a

maximal \mathcal{F} -free graph on *n* vertices. This is an active area of extremal graph theory; see the dynamic survey by Faudree, Faudree, and Schmitt [12].

Here we consider the 'dual' of the forb-problem for matrices. Namely, we are interested in the value of $sat(n, \mathcal{F})$, the *minimal* size of an \mathcal{F} -saturated matrix with *n* rows:

$$\operatorname{sat}(n, \mathcal{F}) = \min\{e(M) : M \in \operatorname{SAT}(n, \mathcal{F})\}.$$

We decided to use the same notation as for its graph counterpart. This should not cause any confusion as this paper will deal with matrices. Obviously, $\operatorname{sat}(n, \mathcal{F}) \leq \operatorname{forb}(n, \mathcal{F})$. If $\mathcal{F} = \{F\}$ consists of a single forbidden matrix F then we write $\operatorname{SAT}(n, F) =$ $\operatorname{SAT}(n, \{F\})$, and so on.

We denote by T_k^l the simple $k \times {k \choose l}$ -matrix consisting of all k-columns with exactly l ones and by K_k – the $k \times 2^k$ matrix of all possible columns of order k. Naturally, $T_k^{\leq l}$ denotes the $k \times f(k, l)$ -matrix consisting of all distinct columns with at most l ones, and so on, where we use the shortcut

$$f(k,l) = \binom{k}{0} + \binom{k}{1} + \dots + \binom{k}{l}.$$

Vapnik and Chervonenkis [22], Perles and Shelah [20], and Sauer [19] showed independently that

$$forb(n, K_k) = f(n, k - 1).$$
 (1)

Formula (1) turns out to play a significant role in our study.

This paper is organized as follows. In Sect. 2 we give some general results about the sat-function, the principal one being Theorem 2 which states that $\operatorname{sat}(n, \mathcal{F}) = O(n^{k-1})$ holds for any family \mathcal{F} of k-row matrices. Turning to specific matrices, in Sect. 3 we compute $\operatorname{sat}(n, K_k)$ for k = 2 and k = 3. By Theorem 2, $\operatorname{sat}(n, K_2)$ can grow at most linearly, and indeed it is linear in n. Surprisingly, though, $\operatorname{sat}(n, K_3)$ is constant for $n \ge 4$. Finally, in Sect. 4, we examine a selection of small matrices F to see how $\operatorname{sat}(n, F)$ behaves. In particular, we find some F for which the function grows and other F for which it is constant (or bounded): it would be interesting to determine a criterion for when $\operatorname{sat}(n, F)$ is bounded, but we cannot guess one from the present data.

2 General Results

Here we present some results dealing with $sat(n, \mathcal{F})$ for a general family \mathcal{F} .

The following simple observation can be useful in tackling these problems. Let M' be obtained from $M \in SAT(n, \mathcal{F})$ by *duplicating* the *n*th row of M, that is, we let M'([n],) = M and M'(n+1,) = M(n,). Suppose that M' is \mathcal{F} -admissible. Complete M', by adding columns in an arbitrary way, to an \mathcal{F} -saturated matrix. Let C be any added (n + 1)-column. As both M'([n],) and $M'([n - 1] \cup \{n + 1\})$ are equal to

 $M \in SAT(n, \mathcal{F})$, we conclude that both C([n]) and $C([n-1] \cup \{n+1\})$ must be columns of M. As C is not an M'-column, C = (C', b, 1 - b) where $b \in \{0, 1\}$ and C' is some (n-1)-column such that both (C', 0) and (C', 1) are columns of M. This implies that sat $(n+1, \mathcal{F}) \leq e(M) + 2d$, where d is the number of pairs of equal columns in M after we delete the *n*th row. In particular, the following theorem follows.

Theorem 1 Suppose that *F* is a matrix with no two equal rows. Then either sat(n, F) is constant for large *n*, or sat $(n, F) \ge n + 1$ for every *n*.

Proof If some $M \in SAT(n, F)$ has at most n columns, then a well-known theorem of Bondy [7] (see, e.g., Theorem 2.1 in [6]) implies that there is $i \in [n]$ such that the removal of the *i*th row does not create two equal columns. Since F has no two equal rows, the duplication of any row cannot create a forbidden submatrix, so $sat(n + 1, F) \ge sat(n, F)$. However, by the remark made just prior to the theorem, the duplication of the *i*th row gives an (n + 1)-row F-saturated matrix, implying $sat(n + 1, F) \le sat(n, F)$, as required.

Suppose that \mathcal{F} consists of *k*-row matrices. Is there any good general upper bound on forb (n, \mathcal{F}) or sat (n, \mathcal{F}) ? There were different papers dealing with general upper bounds on forb (n, \mathcal{F}) , for example, by Anstee and Füredi [3], by Frankl, Füredi and Pach [14] and by Anstee [1], until the conjecture of Anstee and Füredi [3] that forb $(n, \mathcal{F}) = O(n^k)$ for any fixed \mathcal{F} was elegantly proved by Füredi (see [4] for a proof).

On the other hand, we can show that $\operatorname{sat}(n, \mathcal{F}) = O(n^{k-1})$ for any family \mathcal{F} of *k*-row matrices (including infinite families). Note that the exponent k - 1 cannot be decreased in general since, for example, $\operatorname{sat}(n, T_k^k) = f(n, k - 1)$.

Theorem 2 For any family \mathcal{F} of k-row matrices, sat $(n, \mathcal{F}) = O(n^{k-1})$.

Proof We may assume that K_k is \mathcal{F} -admissible (i.e., every matrix of \mathcal{F} contains a pair of equal columns) for otherwise we are home by (1) as then sat $(n, \mathcal{F}) \leq \operatorname{forb}(n, K_k) = O(n^{k-1})$.

Let us define some parameters l, d, and m that depend on \mathcal{F} . Let $l = l(\mathcal{F}) \in [0, k]$ be the smallest number such that there exists s for which $[sT_k^{\leq l}, T_k^{>l}]$ is not \mathcal{F} -admissible (clearly, such l exists: if we set l = k, then $sT_k^{\leq l} = sK_k$ contains any given k-row submatrix for all large s). Let $d = d(\mathcal{F})$ be the maximal integer such that $[sT_k^{<l}, dT_k^l, T_k^{>l}]$ is \mathcal{F} -admissible for every s. Note that $d \geq 1$ as $[sT_k^{<l}, T_k^l, T_k^{>l}] = [sT_k^{<l}, T_k^{\geq l}]$ cannot contain a forbidden submatrix by the choice of l. Choose the minimal $m = m(\mathcal{F}) \geq 0$ such that $[mT_k^{<l}, (d+1)T_k^l, T_k^{>l}]$ is not \mathcal{F} -admissible. The subsequent argument will be valid provided n is large enough, which we shall tacitly assume.

We consider the two possibilities $l(\mathcal{F}) < k$ and $l(\mathcal{F}) = k$ separately. Suppose first that $l(\mathcal{F}) < k$. Consider the following set system:

$$H = \bigcup_{j \in [d-1]} \left\{ Y \in {\binom{[n]}{l+1}} : \sum_{y \in Y} y \equiv j \pmod{n} \right\}.$$

Here $\binom{X}{i} = \{Y \subseteq X : |Y| = i\}$ denotes the set of all subsets of X of size *i*.

Deringer

Note that any $A \in {\binom{[n]}{l}}$ is contained in at most d-1 members of H, as there are at most d-1 possibilities to choose $i \in [n] \setminus A$ so that $A \cup \{i\} \in H$: namely, $i \equiv j - \sum_{a \in A} a \pmod{n}$ for $j \in [d-1]$.

On the other hand, the collection H', of all *l*-subsets of [n] contained in fewer than d-1 members of H, has size at most $2(d-1)\binom{n}{l-1}$. Indeed, if $A \in H'$ then, using the previous observation, it must be that for some $j \in [d-1]$ and $x \in A$ we have $2x \equiv j - \sum_{a \in A \setminus \{x\}} a \pmod{n}$: hence, once $A \setminus \{x\}$ and j have been chosen, there are at most 2 choices for x.

Call $X \in {\binom{[n]}{k}}$ bad if, for some $A \in {\binom{X}{l}}$,

$$|\{Y \in H : Y \cap X = A\}| \le d - 2.$$

To obtain a bad k-set X, we either complete some $A \in H'$ to any k-set, or we take any l-set A and let X contain some member of H that contains A. Therefore, the number of bad sets is at most

$$2(d-1)\binom{n}{l-1}\binom{n}{k-l} + \binom{n}{l}(d-1)\binom{n}{k-l-1} = O(n^{k-1}).$$

Let $M' = [N, T_n^l]$, where N is the $n \times |H|$ incidence matrix of H. Then we have that

$$M'(X,) \subseteq \left[e(M')T_k^{< l}, dT_k^l, T_k^{l+1}\right], \text{ for any } X \in \binom{[n]}{k}.$$

Hence, M' cannot contain a forbidden submatrix by the definition of d. Now complete it to arbitrary $M = [M', M''] \in SAT(n, \mathcal{F})$ by adding new columns as long as no forbidden submatrix is created.

Suppose that $e(M'') \neq O(n^{k-1})$. Then, by (1), $K_k \cong M''(X, Y)$ for some X, Y. Now, remove the columns corresponding to Y from M'' and repeat the procedure as long as possible to obtain more than $O(n^{k-1})$ column-disjoint copies of K_k in M''. No $X \in {\binom{[n]}{k}}$ can appear more than d times: otherwise (because $T_n^l(X,) \supseteq mT_k^{< l}$ for all large n) we have that $M(X,) = [M', M''](X,) \supseteq [mT_k^{< l}, (d+1)K_k]$ is not \mathcal{F} -admissible. Since we have $O(n^{k-1})$ bad k-sets of rows and, by above, each has at most d column-disjoint copies of K_k , we have that $K_k \subseteq M''(X,)$ for at least one good (i.e., not bad) $X \in {\binom{[n]}{k}}$. But then $N(X,) \supseteq (d-1)T_k^l$. Moreover, since $T_n^l(X,) \supseteq [mT_k^{< l}, T_k^l]$ for all large n, we obtain

$$M(X,) = [N, T_n^l, M''](X,) \supseteq [(d-1)T_k^l, mT_k^{< l}, T_k^l, K_k]$$

= $[(m+1)T_k^{< l}, (d+1)T_k^l, T_k^{> l}]$.

Thus, M(X,) contains a forbidden matrix. This contradiction proves the required bound for l < k.

Consider now the other possibility, that $l = l(\mathcal{F})$ equals k. The above argument does not work in this case because the size of $M' \supseteq T_n^l$ is too large. Let \mathcal{F}^* consist of those k-row matrices F such that $[dT_k^k, F]$ is not \mathcal{F} -admissible, where $d = d(\mathcal{F})$.

1273

Note that $[sT_k^{<k}, T_k^k] \in \mathcal{F}^*$ for all large *s* by the definition of *d*. Thus $l(\mathcal{F}^*) < k$ and by the above argument we can find $L \in SAT(n-d, \mathcal{F}^*)$ with $O(n^{k-1})$ columns. Define

$$M' = \begin{bmatrix} dT_{n-d}^{n-d} & L \\ T_d^1 & e(L)T_d^0 \end{bmatrix},$$

that is, M' is obtained from $[dT_{n-d}^{n-d}, L]$ by adding d extra rows that encode the sets $\{i\}, i \in [d]$. Note that M' does not have multiple columns even if T_{n-d}^{n-d} is a column of L because $d \ge 1$.

Take arbitrary $X \in {\binom{[n]}{k}}$. If $X \subseteq [n-d]$, then $M'(X,) = [dT_k^k, L(X,)]$ is \mathcal{F} -admissible because L is \mathcal{F}^* -admissible; otherwise $M'(X,) \subseteq [e(M')T_k^{< k}, T_k^k]$ is \mathcal{F} -admissible because $l(\mathcal{F}) = k$. Thus M' is \mathcal{F} -free.

Complete M' to an arbitrary $M \in SAT(n, \mathcal{F})$. Let C be any added column. Since

$$[M', C]([n-d],) = \left[dT_{n-d}^{n-d}, L, C([n-d])\right]$$

is \mathcal{F} -free, we have that [L, C([n-d])] is \mathcal{F}^* -free. By the \mathcal{F}^* -saturation of L, we have that C([n-d]) is a column of L. Hence

$$\operatorname{sat}(n, \mathcal{F}) \le e(M) \le 2^d e(L) + d = O(n^{k-1}),$$

proving the theorem.

Remark 1 Theorem 2 is the matrix analog of the main result in [18] that $sat(n, \mathcal{F}) = O(n^{k-1})$ for any finite family \mathcal{F} of *k*-graphs.

3 Forbidding Complete Matrices

Let us investigate the value of sat(n, K_k) (recall that K_k is the $k \times 2^k$ -matrix consisting of all distinct k-columns). We are able to settle the cases k = 2 and k = 3.

We will use the following trivial lemma a couple of times.

Lemma 1 Each row of any $M \in SAT(n, K_k)$, $n \ge k$, contains at least l ones and at least l zeros, where $l = 2^{k-1} - 1$.

Proof Suppose on the contrary that the first row M(1,) has m_0 zeros followed by m_1 ones with $m_0 \ge m_1$ and $l > m_1$.

For $i \in [m_0]$, let C_i equal the *i*th column of M with the first entry 0 replaced by 1. Then the addition of C_i to M cannot create a new copy of K_k , because the first row of M' contains too few 1's, while $C_i([2, n])$ is already a column of M([2, n],), which does not contain K_k . Therefore, C_i must be a column of M. Since $i \in [m_0]$ was arbitrary, we have $m_0 = m_1$.

But then *M* has at most $2^k - 2$ columns, which is a contradiction.

Theorem 3 For $n \ge 1$, we have $\operatorname{sat}(n, K_2) = n + 1$.

Proof The upper bound is given by $T_n^{\leq 1} \in SAT(n, K_2)$.

Suppose that the statement is not true, that is, there exists a K_2 -saturated matrix with its size not exceeding its order. By Theorem 1, sat (n, K_2) is eventually constant so we can find an $n \times m$ -matrix $M \in SAT(n, K_2)$ having two equal rows for some $n \in \mathbb{N}$.

As we are free to complement and permute rows, we may assume that, for some $i \ge 2$, $M(1,) = \cdots = M(i,)$ while $M(j,) \ne M(1,)$ and $M(j,) \ne 1 - M(1,)$ for any $j \in [i + 1, n]$. Note that i < n as we do not allow multiple columns in M (and $m \ge e(K_2) - 1 = 3$).

Let $j \in [i + 1, n]$. By Lemma 1, the *j*th row M(j, j) contains both 0's and 1's. By the definition of *i*, M(j, j) is not equal to M(1, j) nor to 1 - M(1, j). It easily follows that there are $f_j, g_j \in [m]$ with $M(1, f_j) = M(1, g_j)$ and $M(j, f_j) \neq M(j, g_j)$. Again by Lemma 1, we can furthermore find $h_j \in [m]$ with $M(1, h_j) = 1 - M(1, f_j)$. Let $b_j = M(j, h_j)$. By exchanging f_j and g_j if necessary, we can assume that $M(j, g_j) = b_j$.

Now, as $M \in SAT(n, K_2)$, the addition of the column

$$C = (1, (0)^{i-1}, b_{i+1}, \dots, b_n)^T$$

(which is not in *M* because $C(1) \neq C(2)$) must create a new K_2 -submatrix, say in the *x*th and *y*th rows for some $1 \leq x < y \leq n$. Clearly, $\{x, y\} \nsubseteq [i]$ because each column of M([i],) is either $((0)^i)^T$ or $((1)^i)^T$. Also, it is impossible that $x \in [i]$ and $y \in [i + 1, n]$ because then, for some $a_1, a_2 \in [m], M(y, a_1) = M(y, a_2) = 1 - C(y) = 1 - b_y, M(x, a_1) = 1 - M(x, a_2)$ and we can see that K_2 is isomorphic to $M(\{x, y\}, \{a_1, a_2, g_y, h_y\})$, which contradicts $K_2 \nsubseteq M(\{x, y\},)$. So we have to assume that $i < x < y \leq n$.

As $K_2 \not\subseteq M(\{x, y\})$, no column of $M(\{x, y\})$ can equal $C(\{x, y\}) = (b_x, b_y)^T$. In particular, since $M(x, g_x) = M(x, h_x) = b_x$ and similarly for y, we must have $\{g_x, h_x\} \cap \{g_y, h_y\} = \emptyset$, and moreover $M(y, g_x) = M(y, h_x) = 1 - b_y$. But then

$$K_2 \cong M(\{1, y\}, \{g_x, h_x, g_y, h_y\}),$$

which is a contradiction proving our theorem.

Note that forb $(n, K_2) = n + 1$ for $n \ge 1$; the upper bound follows, for example, from Formula (1) with k = 2. Thus Theorem 3 yields that sat $(n, K_2) = \text{forb}(n, K_2)$ which, in our opinion, is rather surprising. A greater surprise is yet to come as we are going to show now that sat (n, K_3) is constant for $n \ge 4$.

Theorem 4 For K₃ the following holds:

$$sat(n, K_3) = \begin{cases} 7, & if \ n = 3, \\ 10, & if \ n \ge 4. \end{cases}$$

Proof The claim is trivial for n = 3, so assume $n \ge 4$. A computer search [10] revealed that

$$sat(4, K_3) = sat(5, K_3) = sat(6, K_3) = sat(7, K_3) = 10,$$

which suggested that sat(n, K_3) is constant. An example of a K_3 -saturated 6 × 10-matrix is the following:

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

It is possible (but very boring) to check by hand that M is indeed K_3 -saturated as is, in fact, any $n \times 10$ -matrix M' obtained from M by duplicating any row, *cf*. Theorem 1 (the symmetries of M shorten the verification). A K_3 -saturated 5×10 -matrix can be obtained from M by deleting one row (any). For n = 4, we have to provide a special example:

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

So sat $(n, K_3) \le 10$ for each $n \ge 4$ and, to prove the theorem, we have to show that no K_3 -saturated matrix M with at most 9 columns and at least 4 rows can exist. Let us assume the contrary.

Claim 1 Any row of $M \in SAT(n, K_3)$ necessarily contains at least four 0's and at least four 1's, for $n \ge 4$.

Proof of Claim Suppose, contrary to the claim, that the first row M(1,) contains only three 0's, say in the first three columns (by Lemma 1 we must have at least three 0's).

If we replace the *i*th of these 0's by 1, $i \in [3]$, then the obtained column C_i , if added to M, does not create any K_3 -submatrix. Indeed, the first row of $[M, C_i]$ contains at most three 0's, while $C_i([2, n])$ is a column of $M([2, n],) \not\supseteq K_3$. As M is K_3 -saturated, C_1, C_2 and C_3 are columns of M. These columns differ only in the first entry from M(, 1), M(, 2) and M(, 3) respectively. Therefore, for each $A \in {\binom{[2,n]}{3}}$, the matrix M(A,) can contain at most $e(M) - 3 \le 6$ distinct columns. But then any column C which is not a column of M and has top entry 1 (C exists as $n \ge 4$) can be added to M without creating a K_3 submatrix, because the first row of [M, C] contains at most three 0's. This contradiction proves Claim 1.

Therefore, e(M) is either 8 or 9. As we are free to complement the rows, we may assume that each row of M contains exactly four 1's. Call $A \in {\binom{[n]}{3}}$ (and also M(A,)) nearly complete if M(A,) has 7 distinct columns.

Claim 2 Any nearly complete M(A,) contains $(0, 0, 0)^T$ as a column.

Proof of Claim Indeed, otherwise $M(A,) \supseteq T_3^{\ge 1}$ which already contains four 1's in each row; this implies that the (one or two) remaining columns must contain zeros only. Hence $M(A,) \supseteq K_3$, which is a contradiction.

Claim 3 Every nearly complete M(A,) contains T_3^1 as a submatrix.

Proof of Claim Indeed, if $(0, 0, 1)^T$ is the missing column of M(A,), then some 7 columns contain a copy of $K_3 \setminus (0, 0, 1)^T$. By counting 1's in the rows we deduce that the remaining column(s) of M(A,) must have exactly one non-zero entry, and moreover one of these columns equals $(0, 0, 1)^T$, which is a contradiction.

By the K_3 -saturation of M there exists some nearly complete M(A,); choose one such. Assume without loss of generality that A = [3] and that the first 7 columns of M([3],) are distinct. We know that the 3-column missing from M([3], [7]) has at least two 1's.

If $(1, 1, 1)^T$ is missing, then M([3], [7]) contains exactly three ones in each row, so the remaining column(s) of M must contain an extra 1 in each row. As $(1, 1, 1)^T$ is the missing column, we conclude that e(M) = 9 and the 8th and 9th columns of M([3],) are, up to a row permutation, $(0, 0, 1)^T$ and $(1, 1, 0)^T$. This implies that M([3],) contains the column $(0, 0, 0)^T$ only once. Thus at least one of the columns $C_0 = ((0)^n)^T$ and $C_1 = ((0)^{n-1}, 1)^T$ is not in M and its addition creates a copy of K_3 , say on the rows indexed by $B \in {[n] \choose 3}$. The submatrix M(B,) is nearly complete and, by Claims 2 and 3, contains $T_3^{\leq 1}$. But both $C_0(B)$ and $C_1(B)$ are columns of $T_3^{\leq 1} \subseteq M(B,)$, which is a contradiction.

Similarly, if $(1, 1, 0)^T$ is missing, then one can deduce that e(M) = 9 and, up to a row permutation, $M([3], \{8, 9\})$ consists of the columns $(1, 0, 0)^T$ and $(0, 1, 0)^T$. Again, the column $(0, 0, 0)^T$ appears only once in M([3],), which leads to a contradiction as above, completing the proof of the theorem.

We do not have any non-trivial results concerning K_k , $k \ge 4$, except that a computer search [10] showed that sat(5, K_4) = 22 and sat(6, K_4) \le 24 (we do not know if a K_4 -saturated 6 \times 24-matrix discovered by a partial search is minimum).

Problem 1 For which $k \ge 4$, is sat $(n, K_k) = O(1)$?

4 Forbidding Small Matrices

In this final section we try to gain further insight into the sat-function by computing sat(n, F) for some forbidden matrices with up to three rows.

4.1 Forbidding 1-Row Matrices

For any given 1-row matrix F, we can determine sat(n, F) for all but finitely many values of n. The answer is unpleasantly intricate.

Proposition 1 Let $F = ((0)^m, (1)^l) = [mT_1^0, lT_1^1]$ with $l \ge m$. Then, for $n \ge \max(l-1, 1)$,

$$\operatorname{sat}(n, F) = \begin{cases} l, & \text{if } m = 0 \text{ and } l \leq 2 \text{ or if } m = 1 \text{ and } l \geq 1 \text{ is a power of } 2, \\ l+1, & \text{if } m = 0 \text{ and } l \geq 3 \text{ or if } m = 1 \text{ and } l \text{ is not a power of } 2, \\ l+m-1, & \text{if } m \geq 2 \text{ and } l \geq 2. \end{cases}$$

Proof Assume that $l \ge 3$, as the case $l \le 2$ is trivial.

For $m \in \{0, 1\}$ an example of $M \in \text{SAT}(n, F)$ with e(M) = l + 1 can be built by taking $T_n^0, T_n^n, \chi_{[l-2]}$, and $\chi_{[n]\setminus\{i\}}$ for $i \in [l-2]$ as the columns. If m = 1 and $l = 2^k$, one can do slightly better by adding n - k copies of the row $((1)^l)$ to K_k .

Let us prove the lower bound for $m \in \{0, 1\}$. Suppose that some *F*-saturated matrix *M* has $n \ge l - 1$ rows and $c \le l$ columns. First, let m = 0. As $c < 2^n$ and *M* contains the all-0 column, we have c = l and some row M(i,) contains exactly l - 1 ones. As we are not allowed multiple columns in *M*, some other row, say M(j,), has at most l - 2 ones. Then $\chi_{\{j\}}$ is not a column of *M* but its addition does not create *l* ones in a row, a contradiction. Let m = 1. Trivially, $e(M) \ge e(F) - 1 = l$. It remains to show that *l* is a power of 2 if e(M) = l. Let *C* be the column whose *i*th entry is 1 if and only if $M(i,) = (1)^l$. Then the addition of the column *C* cannot create an *F*-submatrix, and so *C* is already a column of *M*. Let $C = M(, 1) = ((0)^i, (1)^{n-i})^T$. The last n - i rows of *M* consist of 1's only. Since $l \ge 3$ and *M* has no multiple columns, we have that $i \ge 2$ and that M([i], [2, l]) must contain at least one 0, say M(i, l) = 0. Since the addition of $\chi_{[i,n]}$ cannot create *F*, it is already a column of *M*. Thus each row of M([i],) has at least two 0's, and to avoid a contradiction we must have $M([i],) \cong K_i$ and $l = 2^i$. This completes the case when $m \le 1$.

For $m \ge 2$, let M consist of T_n^n plus $\chi_{\{i\}}$, $i \in [m-2]$, plus $\chi_{[n]\setminus\{i\}}$, $i \in [l-1]$ and $\chi_{[m-1,l-1]}$. Clearly, each row of M contains l 1's and m-1 0's, so the addition of any new column (which must contain at least one 0) creates an F-submatrix and the upper bound follows. The lower bound is trivial.

Remark 2 The case when $n \le l - 2$ in Proposition 1 seems messy so we do not investigate it here.

4.2 Forbidding 2-Row Matrices

Now let us consider some particular 2-row matrices.

Let $F = lT_2^2$, that is, F consists of the column $(1, 1)^T$ taken l times. Trivially, for l = 1 or 2, sat $(n, lT_2^2) = n + l$, with $T_n^{\leq 1}$ and $[T_n^{\leq 1}, T_n^n]$ being the only extremal matrices. For $l \geq 3$, we can only show the following lower bound. It is almost sharp for l = 3, when we can build a $3T_2^2$ -saturated $n \times (2n + 2)$ -matrix by taking $T_n^{\leq 1}$, $\chi_{[n-1]}, \chi_{[n]}$, plus $\chi_{\{i,n\}}$ for $i \in [n-1]$.

Lemma 2 For $l \ge 3$ and $n \ge 3$, sat $(n, lT_2^2) \ge 2n + 1$.

Proof Let $M = [T_n^{\leq 1}, M']$ be lK_2^2 -saturated. Note that M' must have the property that every column χ_A , with $A \in {\binom{[n]}{2}}$, either belongs already to M', or its addition

creates an F-submatrix; in the latter case, exactly l - 1 columns of M' have ones in both positions of A. Therefore, by adding to M' some columns of T_n^2 (with possibly some columns being added more than once), we can obtain a new matrix M'' such that, for every $A \in {\binom{[n]}{2}}, M''(A,)$ contains the column $(1, 1)^T$ exactly l - 1 times. If we let the set X_i be encoded by the *i*th row of M'' as its characteristic vector, we have that $|X_i \cap X_j| = l - 1$ for every $1 \le i < j \le n$. The result of Bose [8] (see [16, Theorem 14.6]), which can be viewed as an extension of the famous Fisher inequality [13], asserts that, either the rows of M'' are linearly independent over the reals, or M'' has two equal rows, say $X_i = X_i$. The second case is impossible here, because then $|X_i| = l - 1$ and each other X_h contains X_i as a subset; this in turn implies that the column $((1)^n)^T$ appears at least $l-1 \ge 2$ times in M'' and (since $n \ge 3$) the same number of times in M', a contradiction. Thus the rank of M'' over the reals is n. Note that every column $C \in T_n^2$ added to M' during the construction of M'' was already present in M' (otherwise C contradicts the assumption that M is lT_2^2 -saturated). Thus the matrices M' and M'' have the same rank over the reals. We conclude that M' has at least *n* columns and the lemma follows. П

Let us show that Lemma 2 is sharp for l = 3 and some *n*. Suppose there exists a *symmetric* (n, k, 2)-design (meaning we have n k-sets $X_1, \ldots, X_n \in {\binom{[n]}{k}}$ such that every pair $\{i, j\} \in {\binom{[n]}{2}}$ is covered by exactly two X_i 's). Let *M* be the $n \times n$ -matrix whose rows are the characteristic vectors of the sets X_i . Then $[T_n^{\leq 1}, M]$ is a $3T_2^2$ -saturated $n \times (2n + 1)$ -matrix. For n = 4, we can take all 3-subsets of [n]. For n = 7, we can take the family $\{[7] \setminus Y_i : i \in [7]\}$, where $Y_1, \ldots, Y_7 \in {\binom{[7]}{3}}$ form the Fano plane. Constructions of such designs for n = 16, 37, 56, and 79 can be found in [9, Table 6.47].

Of course, the non-existence of a symmetric (n, k, 2)-design does not directly imply anything about sat $(n, 3T_2^2)$, since a minimum $3T_2^2$ -saturated matrix $[T_n^{\leq 1}, M]$ need not have the same number of ones in the rows of M.

Lemma 2 is not always optimal for l = 3. One trivial example is n = 3. Another one is n = 5.

Lemma 3 sat $(5, 3T_2^2) = 12$.

Proof Suppose, on the contrary, that we have a $3T_2^2$ -saturated $5 \times (s + 6)$ -matrix $M = [N, T_5^{\leq 1}]$ with $s \leq 5$. Let X_1, \ldots, X_5 be the subsets of [s] encoded by the rows of N.

If, for example, $X_1 = [s]$, then every X_i with $i \ge 2$ has at most two elements. Let $C_1 = (0, 1, 1, 0, 0)^T$, $C_2 = (0, 0, 0, 1, 1)^T$ and $C_3 = (0, 0, 1, 1, 0)^T$. None of these columns is in M so the addition of any one of them creates a copy $3T_2^2$. So we may assume that $M(\{2, 3\}, \{a, b\}) = M(\{4, 5\}, \{c, d\}) = M(\{3, 4\}, \{e, f\}) = 2T_2^2$. If $\{a, b\} = \{c, d\}$ then M(, a) and M(, b) are two equal columns with all 1's, a contradiction. Hence $\{a, b\} \neq \{c, d\}$, and so at least one of $\{e, f\} \neq \{a, b\}$ or $\{e, f\} \neq \{c, d\}$ holds: we may assume the former. But then $M(\{1, 3\},)$ contains $3T_2^2$, a contradiction.

Thus we can assume that each X_i with $i \in [5]$ has at most s - 1 elements. If $X_1 \subseteq \{1, 2\}$, then by considering columns that begin with 1 and have one other entry 1, we conclude that $X_1 = \{1, 2\}$ and that every X_i contains X_1 as a subset. Thus $M(\{1, 2\}) = 2T_5^5$, that is, M has two equal columns, a contradiction.

So we can assume that each $|X_i| \ge 3$, which also implies that s = 5. If $X_1 = [4]$, then for each $i \in [2, 5]$ we have $5 \in X_i$ (because $|X_i| \ge 3$ and M is $3T_2^2$ -free). Each two of the sets X_2, \ldots, X_5 have to intersect in exactly two elements, which is impossible.

Thus each $|X_i| = 3$. A simple case analysis gives a contradiction in this case as well.

Problem 2 Determine sat $(n, 3T_2^2)$ for every *n*.

Remark 3 It is interesting to note that if we let $F = [lT_2^2, (0, 1)^T]$ then sat(n, F)-function is bounded. Indeed, complete $M' = [\chi_{[n] \setminus \{i\}}]_{i \in [l]}$ to an arbitrary *F*-saturated matrix *M*. Clearly, in any added column all entries after the *l*th position are either 0's or 1's; hence sat $(n, F) \le 2 \cdot 2^l$.

It is easy to compute sat (n, T_2^1) by observing that the *n*-row matrix M_Y whose columns encode $Y \subseteq 2^{[n]}$ is T_2^1 -free if and only if Y is a chain—that is, for any two members of Y, one is a subset of the other. Thus M_Y is T_2^1 -saturated if and only if Y is a maximal chain without repeated entries. As all maximal chains in $2^{[n]}$ have size n + 1, we conclude that

$$sat(n, T_2^1) = forb(n, T_2^1) = n + 1, n \ge 2.$$

Theorem 5 Let $F = [T_2^0, T_2^2] = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$. Then sat $(n, F) = 3, n \ge 2$.

Proof For $n \ge 3$, the matrix M consisting of the columns $(0, 1, (1)^{n-2})^T$, $(1, 0, (1)^{n-2})^T$ and $(0, 0, (1)^{n-2})^T$ can be easily verified to be *F*-saturated and the upper bound follows.

Since n = 2 is trivial, let $n \ge 3$. Any 2-column *F*-free matrix *M* is, without loss of generality, the following: we have n_{00} rows (0, 0), followed by n_{11} rows (1, 1), n_{10} rows (1, 0) and n_{01} rows (0, 1), where $n_{10} \le 1$ and $n_{01} \le 1$. Since (by taking complements if necessary) we may assume $n_{00} \le n_{11}$, we have $n_{11} \ge 1$ because $n \ge 3$. But then the addition of a new column $((0)^{n_{00}+1}, 1, 1, ...)^T$ does not create an *F*-submatrix.

Theorem 6 Let $F = T_2^{\geq 1} = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Then

$$\operatorname{sat}(n, F) = \operatorname{forb}(n, F) = n + 1, \quad n \ge 2.$$

Proof Clearly, $forb(n, F) \leq forb(n, K_2) = n + 1$.

Suppose the theorem is false and that $sat(n, F) \le n$ for some *n*. Since the rows of *F* are distinct, Theorem 1 shows that sat(n, F) is bounded.

It follows that, if *n* is large enough, then $M \in SAT(n, F)$ has two equal rows, for example, $M(1,) = M(2,) = ((1)^l, (0)^m)$. By considering the column $(1, 0, ..., 0)^T$ that is not in *M*, we conclude that $l, m \ge 1$. Let X = [l] and Y = [l + 1, l + m]. Define

$$A_i = \{j \in [l+m] : M(i, j) = 1\}, i \in [n].$$

For example, $A_1 = A_2 = X$. As *M* is *F*-free, for every $i, j \in [n]$, the sets A_i and A_j are either disjoint or one is a subset of the other. For $i \in [3, n]$, let $b_i = 1$ if A_i strictly contains *X* or *Y* and let $b_i = 0$ otherwise (that is, when A_i is contained in *X* or *Y*). Let $b_1 = 1$ and $b_2 = 0$.

Clearly, $C = (b_1, \ldots, b_n)^T$ is not a column of M so its addition creates a forbidden submatrix, say $F \subseteq [M, C](\{i, j\},)$. Of course, $b_i = b_j = 0$ is impossible because $(0, 0)^T \nsubseteq F$. If $b_i = b_j = 1$ then necessarily $A_i \cap A_j \neq \emptyset$, and $M(\{i, j\},) \supseteq (1, 1)^T$ contains F, a contradiction. Finally, if $b_i \neq b_j$, e.g., $b_i = 0$, $b_j = 1$ and i < j, then $A_i \supseteq A_j$ (as $(0, 1)^T$ cannot be a column of $M(\{i, j\},)$), which implies $A_i = A_j$; but then we do not have a copy of F as $(1, 0)^T$ is missing. This contradiction completes the proof.

Remark 4 It is trivial that

$$\operatorname{sat}(n, [(0, 1)^T, (1, 1)^T]) = \operatorname{sat}(n, [(0, 0)^T, (0, 1)^T, (1, 1)^T]) = 2.$$

We have thus determined the sat-function for every simple 2-row matrix.

4.3 Forbidding 3-Row Matrices

Here we consider some particular 3-row matrices. First we solve completely the case when $F = [T_3^0, T_3^3]$.

Theorem 7 Let
$$F = [T_3^0, T_3^3] = \begin{bmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}$$
. Then
 $\operatorname{sat}(n, F) = \begin{cases} 7, & \text{if } n = 3 \text{ or } n \ge 6, \\ 10, & \text{if } n = 4 \text{ or } 5. \end{cases}$

Proof For the upper bound we define the following family of matrices:

$$M_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix},$$

$$M_{5} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

$$M_{6} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

For any $n \ge 7$ define the $(n \times 7)$ -matrix M_n by $M_n([6],) = M_6$ and $M_n(i,) = [0\ 0\ 0\ 0\ 0\ 0]$ for every $7 \le i \le n$. A computer search [10] showed that M_n is a minimum *F*-saturated matrix for $3 \le n \le 10$. This implies that each M_n with $n \ge 11$ is *F*-saturated. It remains to show that

$$\operatorname{sat}(n, F) \ge 7$$

for $n \ge 11$. In order to see this, we show the following result first.

Claim If M is an F-saturated $n \times m$ -matrix with $n \ge 11$ and $m \le 6$ then M contains a row with all zero entries or with all one entries.

Proof of Claim Suppose, on the contrary, that we have a counterexample M. We may assume that the first 6 entries of the first column of M are equal to 0. Consider a matrix $A = M([6], \{2, ..., m\})$. Note that every column of A contains at most two entries equal to 1, otherwise $M([6],) \supseteq F$. Hence, the number of 1's in A is at most 2(m - 1). By our assumption, each row of A has at least one 1. Since 2(m - 1) < 12, A has a row with precisely one 1. We may assume that A(1, 1) = 1 and A(1, i) = 0 for $2 \le i \le m - 1$. Let C_2 be the second column of M (remember that $C_2(1) = A(1, 1) = 1$).

Consider the *n*-column $C_3 = [0, C_2(\{2, ..., n\})^T]^T$ which is obtained from C_2 by changing the first entry to 0. If it is not in M, then $F \subseteq [M, C_3]$. This copy of F has to contain the entry in which C_3 differs from C_2 . But the only non-zero entry in Row 1 is M(1, 2); thus $F \subseteq [C_2, C_3]$, which is an obvious contradiction. Thus we may assume that C_3 is the third column of M.

We have to consider two cases. First, suppose that $C_2(\{2, ..., 6\})$ has at least one entry equal to 1. Without loss of generality, assume that $C_2(2) = C_3(2) = 1$.

It follows that $C_2(i) = C_3(i) = 0$ for $3 \le i \le 6$ (otherwise the first and the second columns of *M* would contain *F*). Let

$$B = M(\{3, 4, 5, 6\}, \{4, \dots, m\}).$$
⁽²⁾

By our assumption, each row of *B* has at least one 1; in particular $m \ge 5$. Clearly, *B* contains at most 2(m-3) < 8 ones. Thus, by permuting Rows 3, ..., 6 and Columns 4, ..., *m*, we can assume that B(1, 1) = 1 while B(1, i) = 0 for $2 \le i \le m-3$. Let C_4 be the fourth column of *M* and C_5 be such that C_4 and C_5 differ at the third position only, i.e., $C_4(3) = 1$ and $C_5(3) = 0$. As before, C_5 must be in *M*, say it is the fifth column. Since $C_4(\{4, 5, 6\})$ has at most one 1, assume that $C_4(5) = C_4(6) =$ $C_5(5) = C_5(6) = 0$. We need another column C_6 with $C_6(5) = C_6(6) = 1$ (otherwise the fifth or the sixth row of *M* would consist of all zero entries). In particular, m = 6. But now the new column C_7 which differs from C_6 at the fifth position only (i.e., $C_7(5) = 0$ and $C_7(i) = C_6(i)$ for $i \ne 5$) should be also in *M*, since *M* is *F*-saturated. This contradicts e(M) = 6. Thus the first case does not hold.

In the second case, we have $C_2(i) = C_3(i) = 0$ for every $2 \le i \le 6$. We may define *B* as in (2) and get a contradiction in the same way as above. This proves the claim.

Suppose, contrary to the theorem, that we can find an *F*-saturated matrix *M* with $n \ge 11$ rows and $m \le 6$ columns. By the claim, *M* has a constant row; we may assume that the final row of *M* is all zero, and let N = M([n - 1],). If *C* is an (n - 1)-column missing from *N*, then the column $Q = (C^T, 0)^T$ is missing in *M*. Moreover, a copy of *F* in [M, Q] cannot use the *n*-th row. Thus $F \subseteq [N, C]$, which means that $N \in SAT(n - 1, F)$ and sat $(n - 1, F) \le m \le 6$. Repeating this argument, we eventually conclude that sat $(10, F) \le 6$, a contradiction to the results of our computer search. The theorem is proved.

Theorem 8 Let
$$F = [T_3^0, T_3^2, T_3^3] = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
. Then
sat $(n, F) = \begin{cases} 7, & \text{if } n = 3, 6 \text{ or } 7, \\ 9, & \text{if } n = 4 \text{ or } 5. \end{cases}$

Moreover, for any $n \ge 8$, sat $(n, F) \le 7$.

Proof We define the following matrices:

$$M_{4} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \end{bmatrix}$$
$$M_{5} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ \end{bmatrix}$$
$$M_{6} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}.$$

For any $n \ge 7$ let $M_n([6],) = M_6$ and $M_n(i,) = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$ for every $7 \le i \le n$ (i.e., the last row of M_6 is repeated (n - 6) times). For n = 3, ..., 7 the theorem (with M_n being a minimum *F*-saturated matrix) follows from a computer search [10]. It remains to show that $M_n, n \ge 8$, is *F*-saturated. Clearly, this is the case, since M_7 is *F*-saturated and *F* contains no pair of equal rows.

Conjecture 1 Let $F = [T_3^0, T_3^2, T_3^3]$. Then sat(n, F) = 7 for every $n \ge 8$.

Theorem 9 Let $F = T_3^{\leq 2} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$. Then sat $(n, F) = \begin{cases} 7, & \text{if } n = 3, \\ 10, & \text{if } 4 \leq n \leq 6. \end{cases}$

Moreover, for any $n \ge 7$ *,* sat $(n, F) \le 10$ *.*

Proof For n = 3, ..., 6 the statement follows from a computer search [10] with the following *F*-saturated matrices:

$$M_{4} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix},$$

For any $n \ge 6$ let $M_n([5],) = M_5$ and $M_n(i,) = [1\ 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1]$ for every $6 \le i \le n$. It remains to show that $M_n, n \ge 7$, is *F*-saturated. Clearly, this is the case, since M_6 is *F*-saturated and *F* contains no pair of equal rows.

Conjecture 2 Let $F = T_3^{\leq 2}$. Then sat(n, F) = 10 for every $n \geq 7$.

Theorem 10 Let $F_1 = T_3^2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, and $F_2 = [T_3^2, T_3^3] = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$. Then $\operatorname{sat}(n, F_1) = \operatorname{sat}(n, F_2) = 3n - 2$ for any $3 \le n \le 6$. Moreover, for any $n \ge 7$, $\operatorname{sat}(n, F_1) \le 3n - 2$ and $\operatorname{sat}(n, F_2) \le 3n - 2$ as well.

Proof Let $M_n = [T_n^0, T_n^1, T_n^n, \tilde{T}_n^2]$, where $\tilde{T}_n^2 \subseteq T_n^2$ consists of all those columns of T_n^2 which have precisely one entry equal to 1 either in the first or in the *n*th row (but not in both), e.g., for n = 5 we obtain

Clearly, $e(M_n) = e(T_n^0) + e(T_n^1) + e(T_n^n) + e(\tilde{T}_n^2) = 1 + n + 1 + 2n - 4 = 3n - 2$. Moreover, since \tilde{T}_n^2 is F_1 -admissible we get that M_n is both F_1 and F_2 admissible. Now we show that M_n is F_1 -saturated. Indeed, pick any column $C = (c_1, \ldots, c_n)^T$ which is not present in M_n . Such a column must contain at least 2 ones and 1 zero. Let $1 \le i, j, k \le n$ be the indices such that $c_i = 0, c_j = c_k = 1$. If i = 1 or i = n, then the matrix $[M_n, C](\{i, j, k\},)$ contains F_1 . Otherwise, $c_1 = c_n = 1$, and there also exists 1 < i < n such that $c_i = 0$. Here $[M_n, C](\{1, i, n\},)$ contains F_1 . Thus M_n is F_1 saturated and, since it must contain T_n^n is a column, M_n is also F_2 -saturated. We conclude that sat $(n, F_1) \le 3n - 2$ and sat $(n, F_2) \le 3n - 2$ for any $n \ge 3$. A computer search [10] yields that these inequalities are equalities when $n = 3, \ldots, 6$.

Conjecture 3 Let $F_1 = T_3^2$ and $F_2 = [T_3^2, T_3^3]$. Then sat $(n, F_1) = sat(n, F_2) = 3n - 2$ for every $n \ge 7$.

Remark 5 It is not hard to see that sat $(n, F_1) \ge n + c\sqrt{n}$ for some absolute constant c and all $n \ge 3$. Indeed, let M be an $n \times (n+2+\lambda)$ F_1 -saturated matrix of size sat (n, F_1) for some $\lambda = \lambda(n)$. We may assume that $M(, [n + 2]) = [T_n^0, T_n^1, T_n^n]$. Suppose that $\lambda \le n$ for otherwise we are done. Moreover, we assume that every column of matrix $M([\lambda], \{n + 3, ..., n + 2 + \lambda\})$ contains at least one entry equal to 1 (trivially, there must be a permutation of the rows of M satisfying this requirement). We claim that all rows of $M(\{\lambda + 1, ..., n\}, \{n + 3, ..., n + 2 + \lambda\})$ are different. Suppose not. Then, there are indices $\lambda + 1 \le i, j \le n$ such that $M(i, \{n + 3, ..., n + 2 + \lambda\}) = M(j, \{n + 3, ..., n + 2 + \lambda\})$. Now consider a column C in which the only nonzero entries correspond to i and j. Clearly, C is not present in M, since the first λ entries of C equal 0. Moreover, since M is F_1 -saturated, the matrix [M, C] contains F_1 . In other words, there are three rows in M which form F_1 as a submatrix. Note that the ith and jth row must be among them. But this is not possible since F_1 has no pair of equal rows.

Let $M_0 = M(\{\lambda + 1, ..., n\}, \{n + 3, ..., n + 2 + \lambda\})^T$. Clearly, M_0 is F_1 -admissible. Anstee and Sali showed (see Theorem 1.3 in [5]) that forb $(\lambda, F_1) = O(\lambda^2)$. That means that $n - \lambda = O(\lambda^2)$, and consequently, $\lambda = \Omega(\sqrt{n})$. Hence, sat $(n, F_1) = e(M) \ge n + \Omega(\sqrt{n})$, as required.

Acknowledgments We are grateful to the referees for their careful reading and insightful comments.

References

- 1. Anstee, R.P.: Forbidden configurations: Induction and linear algebra. Europ. J. Combin. 16, 427–438 (1995)
- 2. Anstee, R.P.: A survey of forbidden configuration results (2010). Manuscript
- 3. Anstee, R.P., Füredi, Z.: Forbidden submatrices. Discrete Math. 62, 225–243 (1986)
- 4. Anstee, R.P., Griggs, J.R., Sali, A.: Small forbidden configurations. Graphs Combin. 13, 97–118 (1997)
- Anstee, R.P., Sali, A.: Small forbidden configurations IV: the 3 rowed case. Combinatorica 25(5), 503– 518 (2005)
- Bollobás, B.: Combinatorics, Set Systems, Families of Vectors, and Combinatorial Probability. Cambridge University Press, Cambridge (1986)
- 7. Bondy, J.A.: Induced subsets. J. Combin. Theory (B) 12, 201–202 (1972)
- Bose, R.C.: A note on Fisher's inequality for balanced incomplete block designs. Ann. Math. Statist. 20, 619–620 (1949)
- 9. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs, second edn. Discrete Mathematics and its Applications (Boca Raton). Chapman & Hall/CRC, Boca Raton (2007)
- Dudek, A., Pikhurko, O., Thomason, A.: On minimum saturated matrices (2009). E-print arxiv.org:0909.1970

- 11. Erdős, P., Hajnal, A., Moon, J.W.: A problem in graph theory. Amer. Math. Monthly. **71**, 1107–1110 (1964)
- Faudree, J., Faudree, R., Schmitt, J.: A survey of minimum saturated graphs and hypergraphs. Elect. J. Combin. DS19, 36 (2011)
- Fisher, R.A.: An examination of the possible different solutions of a problem in incomplete blocks. Ann. Eugenics (London) 10, 52–75 (1940)
- 14. Frankl, P., Füredi, Z., Pach, J.: Bounding one-way differences. Graphs Combin. 3, 341–347 (1987)
- Füredi, Z.: Turán type problems. In: Surveys in Combinatorics, London Math. Soc. Lecture Notes Ser., vol. 166, pp. 253–300. Cambridge University Press, Cambridge (1991)
- 16. Jukna, S.: Extremal Combinatorics with Applications to Computer Science. Springer, Berlin (2001)
- Keevash, P.: Hypergraph Turán problem. In: Chapman, R. (ed.) Surveys in Combinatorics, pp. 83–140. Cambridge University Press, Cambridge (2011)
- Pikhurko, O.: The minimum size of saturated hypergraphs. Combin. Prob. Computing 8, 483–492 (1999)
- 19. Sauer, N.: On the density of families of sets. J. Combin. Theory (A) 13, 145–147 (1973)
- Shelah, S.: A combinatorial problem: Stability and order for models and theories in infinitary languages. Pac. J. Math. 4, 247–261 (1972)
- Sidorenko, A.: What we know and what we do not know about Turán numbers. Graphs Combin. 11, 179–199 (1995)
- Vapnik, V.N., Chervonenkis, A.: The uniform convergence of frequences of the appearance of events to their probabilities (in Russian). Teor. Veroyatn. Primen. 16, 264–279 (1971)