
Order 20: 53–66, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

53

On the Cofinality of Infinite Partially Ordered Sets:
Factoring a Poset into Lean Essential Subsets

REINHARD DIESTEL1 and OLEG PIKHURKO2

1Mathematisches Seminar, Universität Hamburg, Bundesstraße 55, D-20146 Hamburg, Germany.
e-mail: diestel@math.uni-hamburg.de
2DPMMS, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, England.
e-mail: oleg@dpmms.cam.ac.uk

(Received: 9 April 2002; in final form: 11 March 2003)

Abstract. We study which infinite posets have simple cofinal subsets such as chains, or decompose
canonically into such subsets. The posets of countable cofinality admitting such a decomposition
are characterized by a forbidden substructure; the corresponding problem for uncountable cofinality
remains open.

Mathematics Subject Classifications (2000): 06A07, 06A11.

Key words: infinite posets, cofinality, poset decomposition.

1. Introduction

A subset Q of a partially ordered set (P,�) is cofinal in P if for every x ∈ P there
exists a y ∈ Q with x � y. The least cardinality of a cofinal subset of P is the
cofinality cf(P ) of P .

In this paper, we shall work from the assumption that we ‘understand’ an infinite
poset (P,�) as soon as we understand one of its cofinal subsets, and our aim will
be to either find in P a particularly simple cofinal subset Q (which may then be
studied instead of P ), or to decompose P into such simple subsets. This paradigm
makes immediate sense, for example, if P is itself a down-closed subset of some
larger poset, and ‘understanding’ P means being able to decide which elements of
that larger poset it contains.�

So when is a cofinal subset Q of P ‘particularly simple’? As a first approach, we
might require that Q should be ‘lean’ in the sense that it contains no large amounts
of junk not needed to make it cofinal in P . More precisely: we might require that
every subset Q′ ⊆ Q of cardinality |Q′| = |Q| is cofinal in Q (and, hence, in P ).
This works well for countable posets, and was the definition of leanness adopted

� In the context [2] from which this study arose, P would be a property of finite graphs, such as
planarity with the graph minor relation. In this example, the grids form a cofinal subset of P (since
every planar graph is a minor of some grid), and indeed for many minor-related questions it suffices
to consider grids instead of arbitrary planar graphs.
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in [1]. For arbitrary posets, it is clearly more appropriate to replace cardinality with
cofinality: we shall call Q lean if every subset Q′ ⊆ Q of cardinality at least cf(Q)

is cofinal in Q. Thus, in a lean poset we can pick any subset that is large enough to
be cofinal, and can be sure that it is indeed cofinal.

Not every poset has a lean cofinal subset. For example, an unrelated disjoint
union of two ω-chains does not, and neither does an infinite antichain. Indeed we
shall see later that, trivial exceptions aside, any poset P with a lean cofinal subset
must be directed: for every two points x, y ∈ P there must be a z ∈ P above both,
i.e. such that x � z and y � z. But also directed posets can fail to have lean cofinal
subsets. A simple example was given in [1]: start with an uncountable antichain,
and perform ω times the operation of adding for every pair of points a new point
above both.

Our first aim, then, will be to see which posets have lean cofinal subsets. These
posets will be characterized in Section 3; it turns out that they are precisely
the posets that are indivisible in a sense defined in Section 2. For the remaining
(divisible) posets we then try to find canonical decompositions into indivisible
subsets (which will have lean cofinal subsets by the result from Section 3). We
shall be able in Section 4 to characterize the posets admitting such canonical de-
compositions when their cofinality is countable. In general, it may still be possible
to take a nontrivial step towards that goal: we show that decompositions of divisible
posets into directed ‘essential’ subsets are canonical in the sense that any partition
into indivisible sets would refine it. (A subset is essential if every cofinal subset
meets it.) The problem of how to decompose those directed sets further into indi-
visible sets is addressed in Section 5 but remains open, as does the characterization
problem from Section 4 for uncountable cofinality.

2. Terminology and Basic Facts

The ordering of any poset we consider will be denoted by �. Subsets will carry
the induced ordering. The direct product P × Q of two posets P and Q is the set
of pairs (p, q) with p ∈ P and q ∈ Q in which (p, q) � (p′, q ′) if and only if
p � p′ and q � q ′.

A tree is a poset in which the set of points less than any given point is well-order-
ed. A tree is ever-branching if it is nonempty and every point has at least two suc-
cessors. If every point of a tree T has exactly two successors, T has a least element,
and every other point has a predecessor, then T is the binary tree denoted by T2.

To avoid trivialies we shall only be interested in posets P of infinite cofinality.
We usually think of an ordering as vertical, and use freely expressions like ‘x lies
below y’ to express that x � y. We call

�A�P := {x ∈ P | ∃a ∈ A: a � x}
and


A�P := {x ∈ P | ∃a ∈ A: x � a}
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the up-closure and the down-closure of A ⊆ P in P , respectively. Two points of P
are compatible if they have a common upper bound in P ; if every two points of P
are compatible then P is directed.

Given subsets A,B ⊆ P , we write A � B if A ⊆ 
B�. If both A � B and
B � A we call A and B cofinally equivalent, or just equivalent, and write A ∼ B;
note that A ∼ P if and only if A is cofinal in P . We also write A < B if A � B

but A �∼ B. We shall usually be interested in subsets of P only up to cofinal
equivalence.

LEMMA 2.1. If A ∼ B then cf(A) = cf(B).
Proof. To show that cf(A) � cf(B), choose a cofinal subset B ′ in B of cardinal-

ity |B ′| = cf(B). For every b ∈ B ′ pick an a(b) ∈ A above it. Then A′ := {a(b) |
b ∈ B ′} is a set of cardinality at most cf(B) satisfying A � B � B ′ � A′, so A′ is
cofinal in A. ✷

If A ⊆ P is not cofinal in P , we call A small in P . Complements in P of
small sets are called essential; thus, every cofinal subset of P meets all its essential
subsets. The canonical example of an essential set is the up-closure �x�P of a single
point x: as is easily checked, a subset of P is essential if and only if it contains the
up-closure in P of at least one of its points.

As a typical example of a poset that has no lean cofinal subset we mentioned
an unrelated disjoint union of two ω-chains. The reason why no subset Q of this
poset P can be both lean and cofinal in P is that cofinality will force it to contain
infinitely many points from each of the two chains, which will prevent it from being
lean because its ℵ0 = cf(Q) points in one chain are not cofinal in the other. Posets
with lean cofinal subsets thus cannot be divisible in this sense, which motivates the
following definition:

DEFINITION 2.2. A partially ordered set (P,�) is called divisible if it is a union
of either two� or fewer than cf(P ) small subsets.

Linear orders are easily seen to be indivisible, and we shall see that, conversely,
all indivisible posets have equivalent linear suborders (Theorem 3.5).

Indivisible subsets�� of a poset behave somewhat like primes:

LEMMA 2.3. If A ⊆ P is indivisible and A � B = ⋃
β<α Bβ with α < cf(A)

or α = 2, then A � Bβ for some β < α.
Proof. Since A � B we have A = ⋃

β<α Aβ , where Aβ := A ∩ 
Bβ�. Since A

is indivisible these Aβ cannot all be small, so A � Aβ � Bβ for some β. ✷
Unlike leanness, divisibility is invariant under cofinal equivalence:

� The ‘either two’ option is needed only to make posets of cofinality 2 divisible. For posets of
infinite cofinality, which this paper is about, it is obviously redundant.
�� Note that the divisibiblity or indivisibility of a subset Q ⊆ P depends only on Q, not on P

(except that Q inherits its ordering from P ): the ‘small’ subsets referred to in the definition of
divisibility for Q have to be small in Q, not just in P .
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PROPOSITION 2.4. Let A,B ⊆ P and A ∼ B. If B is divisible then so is A.
Proof. Since B is divisible we have B = ⋃

β<α Bβ , where either α = 2 or
α < cf(B) = cf(A) (cf. Lemma 2.1) and all the Bβ are small in B. If A were
indivisible, then Lemma 2.3 would imply that B � A � Bβ for some β, a contra-
diction. ✷

Recall that a poset is directed if every two points are compatible, i.e. have a
common upper bound.

PROPOSITION 2.5. P is directed if and only if P is not a union of two small
subsets.

Proof. Note that for every point x ∈ P the set Ax := P \ �x� is small in P , and
that two points x, y are compatible in P if and only if Ax ∪ Ay � P .

Now if X,Y ⊆ P are two small subsets, there exist x, y ∈ P such that X ⊆ Ax

and Y ⊆ Ay . If P is directed then x and y are compatible, so X∪Y ⊆ Ax∪Ay � P .
Conversely if P is undirected then P has incompatible points x, y, and P is the
union of the small sets Ax and Ay . ✷
COROLLARY 2.6. Indivisible posets are directed. ✷

The converse of Corollary 2.6 does not hold: the poset from [1] mentioned in
the Introduction is directed and has only ω levels, but it has uncountable cofinality
(and is hence divisible into its ω levels). In Section 5 we shall see that this structure
is canonical: every divisible directed poset P has uncountable cofinality and can
be viewed as a vertical stack of fewer than cf(P ) horizontal layers.

Recall that every essential set A ⊆ P contains the up-closure �a� of one of its
points a. If A is directed, then A is in fact equivalent to �a� (and hence any two
such sets �a� are also equivalent):

LEMMA 2.7. If A ⊆ P is essential in P and directed, and if a ∈ A is such that
�a�P ⊆ A, then A � �a�P .

Proof. Since A is directed, every x ∈ A has a common upper bound with a in A,
which is an element of �a�P above x. ✷

3. Posets with Lean Cofinal Subsets

In this section we characterize the posets that have lean cofinal subsets. Although
the notion of a lean poset appears to be new, the results in this section could alter-
natively be derived from related results of Pouzet as presented in Fraïssé [4, §10 of
Chapter 4]. Lemma 3.3 has also been noted by Galvin, Milner and Pouzet [3], who
gave a different proof.

Let us start by recalling the definition of ‘lean’:
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DEFINITION 3.1. A partially ordered set (P,�) is called lean if every subset of
cardinality at least cf(P ) is cofinal in P .

Note that a poset of finite cofinality is lean if and only if it is an antichain.
So we shall be interested in posets of infinite cofinality only.

We start with a couple of lemmas on the cofinality of lean posets. While the
cofinality of an arbitrary poset P can be any cardinal (even singular) up to |P |,
the cofinality of a lean poset always equals its cardinality, and it is always regular
(or finite).

LEMMA 3.2. If a poset P is lean then cf(P ) = |P |.
Proof. Suppose not; then |P | > κ := cf(P ) � ℵ0. Let X = {xα | α < κ} be a

cofinal subset of P . Since
⋃

α<κ 
xα�P = P and κ+ � |P | is regular, there exists
an α < κ with |
xα�| � κ+. Then 
xα� \ {xα} has a subset A of order κ , which
contradicts the leanness of P because xα /∈ 
A� and, hence, P �� A. ✷
LEMMA 3.3. Lean posets have finite or regular cofinality.

Proof. Let P be a lean poset. By Lemma 3.2 we have κ := cf(P ) = |P |; let
P = {pλ | λ < κ} be a well-ordering of P . Suppose κ is infinite and singular, say
µ := cf(κ) < κ; let � be a cofinal subset of κ of order µ and consisting of regular
cardinals.

We first prove that some λ0 ∈ � is such that |
x�| � λ0 for all x ∈ P . Suppose
not. For each λ ∈ � choose an xλ ∈ P with |
x�| > λ, and put X := {xλ | λ ∈ �}.
Then |
X�| = κ , and hence P � 
X� � X because P is lean. This contradicts the
fact that |X| � µ < cf(P ).

Now pick λ1 ∈ � with µ, λ0 < λ1, and let Y ⊆ P be a set of size λ1. For each
y ∈ Y consider the set Py := P \ �y�. Since Py is not cofinal in P (as y /∈ 
Py�)
and P is lean, we have |Py| < κ; pick λ(y) ∈ � greater than |Py |. Since |Y | = λ1 is
regular, one of the µ < λ1 sets Yλ := {y ∈ Y | λ(y) = λ} with λ ∈ � (which have
union Y ) has size λ1. Let this set be Y ′ = Yλ2; then |Y ′| = λ1 and |Py | < λ(y) = λ2

for all y ∈ Y ′. Hence |⋃y∈Y ′ Py | � λ1λ2 < κ , so
⋂

y∈Y ′
�y� = P \

⋃

y∈Y ′
Py �= ∅.

But every x ∈ ⋂
y∈Y ′ �y� satisfies 
x� ⊇ Y ′ and hence

|
x�| � |Y ′| = λ1 > λ0,

contradicting the definition of λ0. ✷
COROLLARY 3.4. Lean posets have regular cardinality. ✷

The following theorem characterizes the posets that have lean cofinal subsets.
But it has other aspects too. For example, it can be viewed as a characterization
of (in)divisibility, or as a statement on how much stronger the property of being
indivisible is than that of being directed (cf. condition (iv)).
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THEOREM 3.5. Let (P,�) be a partially ordered set of infinite cofinality. Then
the following assertions are equivalent:

(i) P has a lean cofinal subset;
(ii) P is indivisible;

(iii) P contains a cofinal chain;
(iv) every set A ⊆ P of order |A| < cf(P ) has an upper bound in P .

Proof. We prove the implications (i) ⇒ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i). Let
cf(P ) =: κ .

(i) ⇒ (ii) Let Q be a lean cofinal subset of P , and suppose that P is divisible.
Then Q is divisible too (Proposition 2.4), so it is a union of fewer than cf(Q)

small subsets. By Lemma 3.3 one of these has cardinality at least cf(Q), which
contradicts our assumption that Q is lean.

(ii) ⇒ (iv) Let A ⊆ P be given as in (iv), and for every a ∈ A put Pa := P \�a�.
These Pa are small subsets of P . Hence if P is indivisible (as assumed in (ii)), their
union cannot be all of P , as |A| < cf(P ). Thus ∅ �= P \ ⋃

a∈A Pa = ⋂
a∈A �a�,

and any element of this set is the desired upper bound for A.
(iv) ⇒ (iii) Let X = {xα | α < cf(P )} be cofinal in P , and assume that (iv)

holds. Inductively for all α < cf(P ) choose points yα ∈ P so that yα is an upper
bound of A := {xα} ∪ {yβ | β < α}. Then C := {yα | α < cf(P )} is a chain, which
is cofinal in P because X is cofinal in P and contained in 
C�.

(iii) ⇒ (i) Every chain C contains a lean cofinal subchain. (Any cofinal sub-
chain of order type cf(C) will do, because cf(C) is a regular cardinal.) ✷

For completeness, we remark that the assertions of Theorem 3.5 for posets P of
finite cofinality hold as follows: (i) is always true; (ii)–(iii) are true iff cf(P ) � 1;
(iv) is true iff cf(P ) � 2.

We shall later be interested in the structure of divisible directed posets. The-
orem 3.5 implies that these must have uncountable cofinality, which we note for
future reference:

COROLLARY 3.6. Directed posets of countable cofinality are indivisible.
Proof. Directed posets of finite cofinality have cofinality 1, and the assertion is

trivial. Directed posets of cofinality ℵ0 satisfy condition (iv) of Theorem 3.5, and
hence also condition (ii). ✷

We conclude with another corollary of Theorem 3.5:

COROLLARY 3.7. Any directed divisible poset P contains a chain C such that
|C| < cf(P ) and C has no upper bound in P .

Proof. By Theorem 3.5(iv) there is a set A ⊆ P such that |A| < cf(P ) and A

has no upper bound in P . Well-order A =: {aβ | β < α}. Inductively on β < α try
to find a point cβ above both aβ and all of Cβ := {cγ | γ < β}. If we fail for some
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β < α, then the chain Cβ has no upper bound in P . Otherwise Cα has no upper
bound in P . ✷

4. Factoring Posets into Essential Directed Subsets

In Section 3 we asked which posets P have a lean cofinal subset (which could
then replace P in any study of properties that depend only on the equivalence type
of P ), and found that these are precisely the indivisible posets. It remains to study
the structure of divisible posets, if possible in terms of their indivisible subsets.

Of course, a poset can always be partitioned somehow into indivisible subsets,
e.g. into single points. So one approach to the above question is to try to determine
how few indivisible subsets will cover P . This approach was taken by Milner
and Prikry [5], who found an upper bound on the number of directed sets (not
necessarily indivisible) needed to cover P , in terms of the size of the antichains
occurring in P .

We shall here take a slightly different tack. Instead of just trying to minimize the
number of indivisible (or directed) sets covering P we shall ask whether there is
some canonical such decomposition that makes sense. But like Milner and Prikry,
we shall not at first insist that the parts of this decomposition must be indivisible,
but be content with decompositions into directed sets.

When the cofinality of those directed subsets is countable, they will in fact be
indivisible by Corollary 3.6. But even in general, partitioning divisible posets into
directed rather than indivisible subsets makes sense as a first step – especially if
the directed partition sets are canonical in the sense that, as in factoring integers,
any partition into indivisible subsets will refine this partition into directed sets. Our
topic in this section is how to characterize the posets that admit such canonical
decompositions into directed subsets; in Section 5 we shall address the question of
how to partition those directed sets further into indivisible sets.

An arbitrary partition into directed sets will not, of course, be canonical in the
above sense: for example, all partitions of a chain are partitions into both directed
and indivisible sets, but not every two such partitions are compatible in the sense
that one refines the other. To make our partitions canonical, we thus have to impose
further conditions on the partitions allowed. Those conditions should ensure in par-
ticular that linear orders become indecomposable, i.e. have no nontrivial canonical
partitions.

The following lemma and discussion show that partitions into essential directed
subsets fit this bill:

LEMMA 4.1. If P = ⋃
β<α Aβ is a partition of P into essential directed subsets,

then every essential directed subset of P is cofinally equivalent in P to one of
the Aβ . In particular, there is at most one such partition up to cofinal equivalence.

Proof. Let A be an essential directed subset of P , and let a ∈ A be such that
�a� ⊆ A. Let Aβ be the partition set containing a, and let b ∈ Aβ be such that
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�b� ⊆ Aβ . Let c be a common upper bound of a and b in Aβ . Then �c� ⊆ �a� ∩
�b� ⊆ A∩Aβ . By Lemma 2.7 both A and Aβ are equivalent to �c� in P , and hence
to each other. ✷

Decompositions into essential directed subsets are canonical not only in that
they are unique up to cofinal equivalence. They are also (essentially) canonical in
the sense discussed earlier, that no indivisible subset of P should meet more than
one of their parts (and hence that this decomposition could be seen as a first step
towards every possible decomposition of P into indivisible subsets). Indeed, every
Aβ as above has a point aβ with Aβ � �aβ� ⊆ Aβ (Lemma 2.7), and we may think
of �aβ� as the ‘essential part’ of Aβ . Now if B is any other directed subset of P (in
particular, if B is indivisible), then B cannot meet the ‘essential parts’ �aβ�, �aγ �
of two different partition sets Aβ,Aγ : the common upper bound which aβ and aγ
would have in B would then lie in �aβ� ∩ �aγ � ⊆ Aβ ∩ Aγ = ∅.

The price we have to pay for obtaining uniqueness for the decompositions in
Lemma 4.1 is that their existence is no longer trivial. Indeed there is an obvious
poset that has no essential directed subsets at all, and hence no such partition: the
binary tree T2. In the remainder of this section we shall prove that T2 must occur
in every poset that has no partition into essential directed subsets, and investigate
how exactly T2 will be embedded in such a poset.

We begin with two lemmas. Call a point x ∈ P special (in P ) if its up-closure
�x� in P is directed. Our first lemma says that these points are cofinal in every
essential directed subset:

LEMMA 4.2. Every essential directed subset of P has a cofinal subset consisting
of special points of P .

Proof. Let A ⊆ P be an essential directed subset, and let x ∈ A be given; we
have to find a point y ∈ A above x that is special in P . Since A is essential, it
contains the up-closure �a�P of one of its points. Since A is directed, the points
x, a have a common upper bound y in A. Then �y�P ⊆ �a�P ⊆ A, so �y� is
directed because A is directed. Thus, y is special in P . ✷

Lemma 4.2 implies that if P has a partition into essential directed subsets then
its special points are cofinal in P . The converse of this holds too:

LEMMA 4.3. If the special points of P are cofinal in P , then P admits a partition
into essential directed subsets.

Proof. Let A ⊆ P be a maximal set of points with disjoint directed up-closures.
Then these up-closures are essential directed subsets of P , and P �

⋃
a∈A �a�:

given x ∈ P , pick a special point y above it, and notice that �y� ∩ �a� �= ∅ for
some a ∈ A by the maximality of A. Hence, some z ∈ �a� satisfies x � y � z.

It remains to extend the sets �a� so as to cover all of P , while keeping them
disjoint and directed. This is easily done: just add any point of P not in any of
these sets to some set �a� in whose down-closure it lies. This covers all of P
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since P �
⋃

a∈A �a�, and the enlarged sets will be directed because the �a� are
directed. ✷

Lemmas 4.2 and 4.3 imply that a decomposition into essential directed subsets
exists as soon as every point lies in such a set:

COROLLARY 4.4. If P is a union of essential directed subsets, then it admits a
partition into such sets. ✷

Call a subset X of P cofinally faithful if any two incomparable points of X are
incompatible in P , i.e. have no common upper bound.

PROPOSITION 4.5. If P admits no partition into essential directed subsets then
P contains a cofinally faithful copy of T2.

Proof. Suppose that P has no partition into essential directed subsets. By
Lemma 4.3 there is a point x ∈ P such that �x� contains no special points.
Starting with x as the root, we can construct a cofinally faithful copy of T2 in
�x� inductively: we first find incompatible points x0, x1 ∈ �x� because x is not
special (and, hence, �x� is undirected), and let these be the two successors of
x in our copy of T2; we then continue inductively inside the undirected disjoint
sets �x0� and �x1�, finding incompatible successors x00 and x01 of x0 in �x0� and
incompatible successors x10 and x11 of x1 in �x1�, and so on. ✷

It is not difficult to see that the converse of Proposition 4.5 is false. For example,
we can add above each point x of T2 a new maximal point x′, so that the new
poset P contains the original T2 as a cofinally faithful subset but partitions into the
essential directed sets {x, x′}. Thus in order to preclude the existence of a partition
of P into essential directed subsets, T2 has to be contained in P ‘more cofinally’
than in this example.

More precisely, we have the following definition and converse of Proposi-
tion 4.5. Call a set X ⊆ P essentially cofinal in P if, for some essential subset A
of P , the set X ∩ A is cofinal in A. (Requiring A to be of the form �a� would
yield an equivalent definition. Another equivalent requirement is simply that 
X�
be essential in P .)

LEMMA 4.6. If P admits a partition into essential directed subsets, then P has no
essentially cofinal subset isomorphic to an ever-branching tree (cofinally faithful
or not).

Proof. Suppose that T ⊆ P is an isomorphic copy in P of an ever-branching
tree whose points are cofinal in some essential subset B of P . Let b ∈ B be such
that �b� ⊆ B. We show that P has no essential directed subset A containing b.

Suppose A is such a set, and let a ∈ A be such that �a� ⊆ A. Let c be a common
upper bound of a and b in A. Then �c� ⊆ �a� ∩ �b�, so �c� is again directed and
T ∩ �c� is cofinal in �c�. Pick t ∈ T ∩ �c�, and let t ′, t ′′ be distinct successors of t
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in T . As these lie in �c� they have a common upper bound in �c�, which lies below
some t∗ ∈ T ∩ �c�. Then t ′, t ′′ ∈ 
t∗�T , which is linear since T is a tree. But t ′, t ′′
are incomparable in T , so we have a contradiction. ✷

We believed for a while that the converse of Lemma 4.6 was true too, i.e. that
containing an ever-branching tree as an essentially cofinal subset characterized the
posets without our desired partition. In fact it does not, and we shall give a coun-
terexample at the end of this section. For posets of countable cofinality, however,
we do have an exact characterization:

THEOREM 4.7. For a partially ordered set (P,�) of countable cofinality the
following assertions are equivalent:

(i) P admits a partition into essential directed sets;
(ii) P admits a partition into essential indivisible sets;

(iii) P has no essentially cofinal subset isomorphic to an ever-branching tree;
(iv) P has no essentially cofinal subset that is isomorphic to an ever-branching

tree and cofinally faithful in P .

If these assertions hold, then the partitions in (i) and (ii) are unique up to cofinal
equivalence of their parts.

Proof. The uniqueness statement at the end of the theorem follows from
Lemma 4.1. Assertions (i) and (ii) are equivalent by Corollaries 2.6 and 3.6. Since
(i) implies (iii) by Lemma 4.6, and (iii) trivially implies (iv), it remains to prove
(iv) ⇒ (i).

Suppose that (i) fails. Then by Lemma 4.3 the special points of P are not cofinal
in P ; choose x0 ∈ P so that �x0� contains no special point. Let X = {x0, x1, . . .}
be a countable cofinal subset of �x0�. Starting with T0 := {x0}, we shall construct a
sequence T0 ⊆ T1 ⊆ · · · of finite trees in X that are cofinally faithful in P , and such
that T := ⋃

n<ω Tn is cofinal in X and hence in �x0�. Since �x0� contains no special
points, every point of T will have two incompatible points of P above it, which
we can find in T because T is cofinal in �x0�. Deleting from T every point that has
only one successor, we thus obtain an ever-branching subtree of T that is cofinal
in T and hence in �x0�, and is cofinally faithful in P (because all the Tn are).

Supposing that T0, . . . , Tn−1 have already been constructed, let us construct Tn.
If xn ∈ 
Tn−1�, let Tn := Tn−1. If not, then for every x ∈ X ∩ �xn� the points
of Tn−1 to which x is related lie below x, and they form a chain in P because
Tn−1 is cofinally faithful. (The chain is nonempty, because it contains x0.) Choose
x ∈ X ∩ �xn� with this chain maximal; call it Cn and its greatest element tn. To
form Tn we add x to Tn−1 directly above tn, i.e. making it greater than every point
of Cn but incomparable to every other point of Tn−1. Then xn ∈ 
Tn�.

Let us show that Tn is cofinally faithful in P , i.e. that any two incomparable
points t, t ′ ∈ Tn are incompatible in P . Assuming inductively that Tn−1 is cofinally
faithful, we may assume that t ′ is our new point x. Then t /∈ Cn. Now if t and x
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have a common upper bound r in P , then there exists an x′ ∈ X with x′ � r �
x � xn, and the chain C ′

n of points in Tn−1 comparable to (and hence below) x′
includes Cn as well as t . This contradicts the maximality of Cn assumed in the
choice of x. ✷

We finish this section with a counterexample to the statement of Theorem 4.7
for posets of uncountable cofinality.

PROPOSITION 4.8. The direct product P = T2 × ω1 admits no partition into
essential directed subsets, and no essentially cofinal subset of P is isomorphic to
an ever-branching tree.

Proof. For the first claim, note that every set of the form �(t, λ)�P contains the
incompatible points (t ′, λ) and (t ′′, λ), where t ′, t ′′ are the successors of t in T2. So
no set of this form, and hence no essential subset of P , can be directed.

To prove the second claim, suppose that T ⊆ P is isomorphic to an ever-
branching tree and T ∩ A is cofinal in A for some essential subset A of P . Pick
a ∈ A with �a� ⊆ A. Then T ∩ �a� is again an ever-branching tree cofinal in �a�.
As �a� is isomorphic to P , we may thus assume from the start that T is cofinal
in P .

Since the projection of T onto the second coordinate of P must be cofinal in ω1,
T must be uncountable. So for some t0 ∈ T2 there is an uncountable set � ⊆ ω1

such that (t0, λ) ∈ T for all λ ∈ �. Pick λ0 ∈ �, and let (t1, λ1) and (t2, λ2)

be distinct successors of (t0, λ0) in T . As these successors must be incomparable,
we cannot have t1 = t0 = t2; we assume that t1 > t0. Now pick λ3 ∈ � with
λ3 > λ1. Then (t0, λ3) and (t1, λ1) are incomparable points in T that have the
common upper bound (t1, λ3) in P , which lies below some (t∗, λ∗) ∈ T because
T is cofinal in P . But then (t0, λ3) and (t1, λ1) lie below (t∗, λ∗) in T and should
therefore be comparable, a contradiction. ✷

The problem of how to characterize the posets of uncountable cofinality that
admit a partition into essential directed or indivisible subsets thus remains open. It
may be helped however by the following observation, which is more of a reformu-
lation than a material characterization.

PROPOSITION 4.9. A poset P admits a partition into essential directed subsets
if and only if P has an up-closed cofinal subset Q on which compatibility in P is
an equivalence relation.

Proof. Suppose first that P has an up-closed cofinal subset Q on which com-
patibility in P is an equivalence relation. Then the equivalence classes of Q are
essential directed subsets of P whose union is cofinal in P . Applying Corollary 4.4
to their down-closures (which are again essential and directed), we deduce that P
decomposes into essential directed subsets.

Conversely, suppose that P = ⋃
i∈I Ai where the Ai are disjoint essential

directed subsets of P . By Lemma 2.7, there are points ai ∈ Ai such that Ai �
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�ai�P ⊆ Ai for all i. Then the union Q = ⋃
i∈I �ai� of these sets is cofinal in P ,

and compatibility in P is an equivalence relation on Q with classes �ai�, because
�ai� ∩ �aj� ⊆ Ai ∩ Aj = ∅ for distinct i, j ∈ I . ✷

5. Decomposing Directed Posets

Having decomposed a given poset into essential directed subsets, one will ask next
what can be said about the internal structure of those subsets.

As we observed earlier, directed posets of countable cofinality are indivisible
(and equivalent to chains) by Theorem 3.5. A directed poset P of uncountable
cofinality, however, may be divisible. (The poset from [1] cited in the Introduction
is one example, the direct product ω × ω1 is another.) If we wish to decompose
P further into indivisible subsets but rule out trivial decompositions (e.g., into
singletons), we have to impose some restrictions; compare the opening paragraphs
of Section 4. Requiring the parts to be essential subsets is not an option this time:
since our directed poset P cannot contain disjoint subsets �a� and �b�, it cannot
contain disjoint essential sets.

One reasonable restriction one might impose on the desired decompositions of
P is that the number of parts should be strictly smaller than cf(P ). If P has no
infinite antichain, then such a decomposition is indeed possible. As a lemma, we
need the following structure theorem of Pouzet [6] for such posets; a proof can be
found in [4, Ch. 7].

LEMMA 5.1. Every directed poset P without infinite antichains has a cofinal
subset that is isomorphic to the direct product of finitely many distinct regular
cardinals, the largest of which is cf(P ). (In particular, cf(P ) is regular.)

The requirement that P contain no infinite antichain even enables us to drop our
assumption that P be directed:

THEOREM 5.2. Let P be a poset of infinite cofinality.

(i) If every antichain in P is finite, then P admits a partition into fewer than cf(P )

indivisible subsets.
(ii) If every antichain in P is countable (but not necessarily finite) then P need

not have such a partition, even if P is directed.

Proof. (i) By another result of Pouzet (proved in [4, Ch. 4], and independently
in [1]), every poset with no infinite antichain can be partitioned into finitely many
essential directed subsets. Any part in this decomposition that has finite cofinality
has a greatest element, and is therefore indivisible. Replacing our poset P with
each of the other parts in turn, we may therefore assume that P is directed.

By Pouzet’s theorem (Lemma 5.1), P has a cofinal subset

Q = κ1 × · · · × κn



THE COFINALITY OF INFINITE PARTIALLY ORDERED SETS 65

with suitable cardinals κ1 > · · · > κn. If n = 1, then P is indivisible by Theo-
rem 3.5. If n � 2, then Q admits a partition into κ2 < κ1 = cf(Q) chains:

Q =
⋃

x∈κ2×···×κn

κ1 × {x}.

Omitting overlaps inductively, we can make the down-closures in P of these
chains disjoint. Since Q is cofinal in P , the sets thus obtained (which need no
longer be down-closed) partition P . Moreover, each still contains a chain that is
cofinal in it, which makes it indivisible by Theorem 3.5.

(ii) Let P be a subset of R of cardinality ℵ1 in which every point has an
uncountable up-closure (in the natural ordering on R). Let � be the Sierpinski
ordering [7] on P , in which x � y if and only if x � y both in the natural ordering
of R and in some fixed well-ordering of P of order type ω1. It is well known and
easy to see that every antichain in this ordering is countable, and similarly our
assumption on the choice of P ensures that P is directed. Now every chain in P

has countable cofinality (consider the natural ordering) and, hence, has a countable
down-closure in P (consider the well-ordering). So P is not contained in the down-
closure of any countable union of chains in P . (In particular, cf(P ) = ℵ1.) Hence,
by Theorem 3.5, P cannot be partitioned into countably many indivisible sets. ✷

Milner and Prikry [5] showed that directed posets with no antichain of arbitrary
given cardinality cannot be described as in Pouzet’s theorem, i.e. in terms of just a
few types of subset one of which would necessarily occur cofinally in every such
poset. (But they do obtain such results under stronger set-theoretic assumptions.)
Todorcevic [8] studies such ‘cofinality types’ for posets of cofinality ℵ1; it turns
out that, depending on the axioms of set theory assumed, there can be as few as
three or as many as 2ℵ1 such types.
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