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Let X be any subset of the interval [−1,1]. A subset I of the unit sphere in R
n will be

called X-avoiding if 〈u, v〉 /∈ X for any u, v ∈ I . The problem of determining the maximum

surface measure of a {0}-avoiding set was first stated in a 1974 note by Witsenhausen;

there the upper bound of 1/n times the surface measure of the sphere is derived from

a simple averaging argument. A consequence of the Frankl–Wilson theorem is that this

fraction decreases exponentially, but until now the 1/3 upper bound for the case n= 3

has not moved. We improve this bound to 0.313 using an approach inspired by Delsarte’s

linear programming bounds for codes, combined with some combinatorial reasoning. In

the second part of the paper, we use harmonic analysis to show that, for n≥ 3, there

always exists an X-avoiding set of maximum measure. We also show with an example

that a maximizer need not exist when n= 2.

1 Introduction

Witsenhausen [19] presented the following problem: let Sn−1 be the unit sphere in R
n and

suppose I ⊂ Sn−1 is a Lebesgue measurable set such that no two vectors in I are orthog-

onal. What is the largest possible Lebesgue surface measure of I? Let α(n) denote the

supremum of the measures of such sets I , divided by the total measure of Sn−1. The first
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upper bounds for α(n) appeared in [19], where Witsenhausen deduced that α(n)≤ 1/n.

Frankl and Wilson [10] proved their powerful combinatorial result on intersecting set

systems, and as an application they gave the first exponentially decreasing upper bound

α(n)≤ (1 + o(1))(1.13)−n. Raigorodskii [15] improved the bound to (1 + o(1))(1.225)−n

using a refinement of the Frankl–Wilson method. Gil Kalai conjectured in his weblog

[11] that an extremal example is to take two opposite caps, each of geodesic radius π/4;

if true, this implies that α(n)= (
√

2 + o(1))−n.

Besides being of independent interest, the above Double Cap Conjecture is also

important because, if true, it would imply new lower bounds for the measurable chro-

matic number of Euclidean space, which we now discuss.

Let c(n) be the smallest integer k such that R
n can be partitioned into sets

X1, . . . , Xk, with ‖x − y‖2 �= 1 for each x, y∈ Xi, 1 ≤ i ≤ k. The number c(n) is called the

chromatic number of R
n, since the sets X1, . . . , Xk can be thought of as color classes

for a proper coloring of the graph on the vertex set R
n, in which we join two points

with an edge when they have distance 1. Frankl and Wilson [10, Theorem 3] showed

that c(n)≥ (1 + o(1))(1.2)n, proving a conjecture of Erdős that c(n) grows exponentially.

Raigorodskii [16] improved the lower bound to (1 + o(1))(1.239)n. Requiring the classes

X1, . . . , Xk to be Lebesgue measurable yields the measurable chromatic number cm(n).

Clearly, cm(n)≥ c(n). Remarkably, it is still open if the inequality is strict for at least

one n, although one can prove better lower bounds on cm(n). In particular, the expo-

nent in Raigorodskii’s bound was recently beaten by Bachoc et al. [3], who showed that

cm(n)≥ (1.268 + o(1))n. If the Double Cap Conjecture is true, then cm(n)≥ (
√

2 + o(1))n

because, as it is not hard to show, cm(n)≥ 1/α(n) for every n≥ 2. Note that the best

known asymptotic upper bound on cm(n) (as well as on c(n)) is (3 + o(1))n, by Larman

and Rogers [13].

Despite progress on the asymptotics of α(n), the upper bound of 1/3 for α(3)

has not been improved since the original statement of the problem in [19]. Note that

the two-cap construction gives α(3)≥ 1 − 1/
√

2 = 0.2928 · · · . Our first main result is that

α(3) < 0.313. The proof involves tightening a Delsarte-type linear programming upper

bound (see [2, 5, 7, 8]) by adding combinatorial constraints.

Let L be the σ -algebra of Lebesgue surface measurable subsets of Sn−1, and let λ

be the surface measure, for simplicity normalized so that λ
(
Sn−1

)= 1. For X ⊂ [−1,1], a

subset I ⊂ Sn−1 will be called X-avoiding if 〈ξ, η〉 /∈ X for all ξ, η ∈ I , where 〈ξ, η〉 denotes

the standard inner product of the vectors ξ, η. The corresponding extremal problem is

to determine

αX (n) := sup
{
λ (I ) : I ∈L, I is X-avoiding

}
. (1)
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For example, if t ∈ (−1,1) and X = [−1, t), then I ⊂ Sn−1 is X-avoiding if and only

if its geodesic diameter is at most arccos(t). Thus Levy’s isodiametric inequality [14]

shows that αX is given by a spherical cap of the appropriate size.

A priori, it is not clear that the value of αX(n) is actually attained by some mea-

surable X-avoiding set I (so Witsenhausen [19] had to use supremum to define α(n)).

We prove in Theorem 8.6 that the supremum is attained as a maximum whenever n≥ 3.

Remarkably, this result holds under no additional assumptions whatsoever on the set X.

However, in a sense, only closed sets X matter: our Theorem 9.1 shows that αX(n) does

not change if we replace X by its closure. When n= 2, the conclusion of Theorem 8.6 fails;

that is, the supremum in (1) need not be a maximum: an example is given in Theorem 3.2.

Besides also answering a natural question, the importance of the attainment

result can also be seen through the historical lens: in 1838, Jakob Steiner tried to prove

that a circle maximizes the area among all plane figures having some given perimeter.

He showed that any non-circle could be improved, but he was not able to rule out the

possibility that a sequence of ever-improving plane shapes of equal perimeter could

have areas approaching some supremum which is not achieved as a maximum. Only 40

years later in 1879 was the proof completed, when Weierstrass showed that a maximizer

must indeed exist.

The layout of the paper will be as follows. In Section 2, we make some general

definitions and fix notation. In Section 3, we prove a simple and general proposition

giving combinatorial upper bounds for αX(n); this is basically a formalization of the

method used by Witsenhausen [19] to obtain the α(n)≤ 1/n bound. We then apply the

proposition to calculate αX(2) when |X| = 1. In Section 5, we deduce linear programming

upper bounds for α(n), in the spirit of the Delsarte bounds for binary [7] and spherical [8]

codes. We then strengthen the linear programming bound in the n= 3 case in Section 6

to obtain the first main result. In Section 8, we prove that the supremum αX(n) is a max-

imum when n≥ 3, and in Section 9, we show that αX(n) remains unchanged when X is

replaced with its topological closure. In Section 10, we formulate a conjecture general-

izing the Double Cap Conjecture for the sphere in R
3, in which other forbidden inner

products are considered.

2 Preliminaries

If u, v ∈ R
n are two vectors, their standard inner product will be denoted by 〈u, v〉. All

vectors will be assumed to be column vectors. The transpose of a matrix A will be

denoted At. We denote by SO(n) the group of n× nmatrices A over R having determinant
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1, for which At A is equal to the identity matrix. We will think of SO(n) as a compact

topological group, and we will always assume its Haar measure is normalized so that

SO(n) has measure 1. We denote by Sn−1 the set of unit vectors in R
n,

Sn−1 = {x ∈ R
n : 〈x, x〉 = 1

}
,

equipped with its usual topology. The Lebesgue measure λ on Sn−1 is always taken to be

normalized so that λ(Sn−1)= 1. Recall that the standard surface measure of Sn−1 is

ωn = 2πn/2

Γ (n/2)
, (2)

where Γ denotes Euler’s gamma-function. The Lebesgue σ -algebra on Sn−1 will be

denoted by L. When (X,M, μ) is a measure space and 1 ≤ p<∞, we use

L p (X)=
{

f : f is an R-valued M-measurable function and
∫

| f |p dμ<∞
}
.

For f ∈ L p(X), we define ‖ f‖p := (∫ | f |p dμ
)1/p

. Identifying two functions when

they agree μ-almost everywhere, we make L p(X) a Banach space with the norm ‖ · ‖p.

The expectation of a function f of a random variable X will be denoted by

EX[ f(X)], or just E[ f(X)]. The probability of an event E will be denoted by P[E ].

When X is a set, we use 1X to denote its characteristic function; that is 1X(x)= 1

if x ∈ X, and 1X(x)= 0, otherwise.

If G = (V, E) is a graph, a set I is called independent if {u, v} /∈ E for any u, v ∈ I .

The independence number α(G) of G is the cardinality of a largest independent set in G.

We define αX(n) as in (1), and for brevity, we let α(n)= α{0}(n).

3 Combinatorial Upper Bound

Let us begin by deriving a simple “combinatorial” upper bound for the quantity αX(n).

Proposition 3.1. Let n≥ 2 and X ⊂ [−1,1]. For a finite subset V ⊂ Sn−1, we let H = (V, E)

be the graph on the vertex set V with edge set defined by putting {ξ, η} ∈ E if and only if

〈ξ, η〉 ∈ X. Then αX(n)≤ α(H)/|V |. �

Proof. Let I ⊂ Sn−1 be an X-avoiding set, and take a uniform O ∈ SO(n). Let the random

variable Y be the number of ξ ∈ V with Oξ ∈ I . Since Oξ ∈ Sn−1 is uniformly distributed

for every ξ ∈ V , we have by the linearity of expectation that E(Y)= |V |λ(I ). On the other

hand, Y ≤ α(H) for every outcome O. Thus λ(I )≤ α(H)/|V |. �
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We next use Proposition 3.1 to find the largest possible Lebesgue measure of a

subset of the unit circle in R
2 in which no two points lie at some fixed forbidden angle.

Theorem 3.2. Let X = {t} and put γ = arccos t
2π . If γ is rational and γ = p/q with p and q

coprime integers, then

αX (2)=
⎧⎨
⎩1/2, if q is even,

(q − 1) / (2q) , if q is odd.

In this case, αX(2) is attained as a maximum. If γ is irrational, then αX(2)= 1/2, but

there exists no measurable X-avoiding set I ⊂ S1 with λ(I )= 1/2. �

Proof. Write α = αX(2), and identify S1 with the interval [0,1) via the map

(cos x, sin x) 
→ x/2π . We regard [0,1) as a group with the operation of addition modulo 1.

Note that I ⊂ [0,1) is X-avoiding if and only if I ∩ (γ + I )= ∅. This implies immediately

that α ≤ 1/2 for all values of t.

Now suppose γ = p/q with p and q coprime integers, and suppose that q is even.

Let S be any open subinterval of [0,1) of length 1/q, and define T : [0,1)→ [0,1) by

Tx = x + γ mod 1. Using the fact that p and q are coprime, one easily verifies that

I = S ∪ T2S ∪ · · · ∪ Tq−4S ∪ Tq−2S has measure 1/2. Also I is X-avoiding since T I = T S ∪
T3S ∪ · · · ∪ Tq−3S ∪ Tq−1S is disjoint from I . Therefore α = 1/2.

Next suppose that q is odd. With notation as before, a similar argument shows

that I ∪ T2 I ∪ · · · ∪ Tq−3 I is an X-avoiding set of measure (q − 1)/(2q), and Proposi-

tion 3.1 shows that this is largest possible, since the points x, Tx, T2x, . . . , Tq−1x induce

a q-cycle.

Finally, suppose that γ is irrational. By Dirichlet’s approximation theorem, there

exist infinitely many pairs of coprime integers p and q such that |γ − p/q|< 1/q2. For

each such pair, let ε= ε(q)= |γ − p/q|. Using an open interval S of length 1
q − ε and

applying the same construction as above with T defined by Tx = x + p/q, one obtains

an X-avoiding set of measure at least ((q − 1)/2)(1/q − ε)= 1/2 − o(1). Alternatively, the

lower bound α ≥ 1/2 follows from Rohlin’s tower theorem [12, Theorem 169] applied to

the ergodic transformation Tx = x + γ . Therefore α = 1/2.

However, this supremum can never be attained. Indeed, if I ⊂ [0,1) is an

X-avoiding set with λ(I )= 1/2 and T is defined by Tx = x + γ , then I ∩ T I = ∅ and

T I ∩ T2 I = ∅. Since λ(I )= 1/2, this implies that I and T2 I differ only on a nullset,

contradicting the ergodicity of the irrational rotation T2. �
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4 Gegenbauer Polynomials and Schoenberg’s Theorem

Before proving the first main result, we recall the Gegenbauer polynomials and Schoen-

berg’s theorem from the theory of spherical harmonics. For ν >−1/2, define the

Gegenbauer weight function

rν (t) := (1 − t2)ν−1/2
, −1< t< 1.

To motivate this definition, observe that if we take a uniformly distributed vector ξ ∈
Sn−1, n≥ 2, and project it to any given axis, then the density of the obtained random vari-

able X ∈ [−1,1] is proportional to r(n−2)/2, with the coefficient
(∫1

−1 r(n−2)/2(x)dx
)−1

= ωn−1

ωn
,

where ωn is as in (2). (In particular, X is uniformly distributed in [−1,1] if n= 3.)

Applying the Gram–Schmidt process to the polynomials 1, t, t2, . . .with respect to

the inner product 〈 f, g〉ν = ∫1
−1 f(t)g(t)rν(t)dt, one obtains the Gegenbauer polynomials

C ν
i (t), i = 0,1,2, . . ., where C ν

i is of degree i. For a concise overview of these polynomials,

see, for example, [4, Section B.2]. Here, we always use the normalization C ν
i (1)= 1.

For a fixed n≥ 2, a continuous function f : [−1,1] → R is called positive definite,

if for every set of distinct points ξ1, . . . , ξs ∈ Sn−1, the matrix ( f(〈ξi, ξ j〉))si, j=1 is positive

semidefinite. We will need the following result of Schoenberg [17]. For a modern presen-

tation, see e.g. [4, Theorem 14.3.3].

Theorem 4.1 (Schoenberg’s theorem). For n≥ 2, a continuous function f : [−1,1] → R is

positive definite if and only if there exist coefficients ai ≥ 0, for i ≥ 0, such that

f (t)=
∞∑

i=0

aiC
(n−2)/2
i (t) , for all t ∈ [−1,1].

Moreover, the convergence on the right-hand side is absolute and uniform for every

positive definite function f . �

For a given positive definite function f , the coefficients ai in Theorem 4.1 are

unique and can be computed explicitly; a formula is given in [4, Equation (14.3.3)].

We are especially interested in the case n= 3. Then ν = 1/2, and the first few

Gegenbauer polynomials C 1/2
i (x) are

C 1/2
0 (x)= 1, C 1/2

1 (x)= x, C 1/2
2 (x)= 1

2

(
3x2 − 1

)
,

C 1/2
3 (x)= 1

2

(
5x3 − 3x

)
, C 1/2

4 (x)= 1
8

(
35x4 − 30x2 + 3

)
.
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5 Linear Programming Relaxation

Schoenberg’s theorem allows us to set up a linear program whose value upper bounds

α(n) for n≥ 3. The same result appears in [2, 5]; we present a self-contained (and slightly

simpler) proof for the reader’s convenience. In the next section, we strengthen the linear

program, obtaining a better bound for α(3).

Lemma 5.1. Suppose f, g ∈ L2
(
Sn−1

)
and define k : [−1,1] → R by

k (t) := E[ f (Oξ) g (Oη)], (3)

where the expectation is taken over randomly chosen O ∈ SO(n), and ξ, η ∈ Sn−1 are any

two points satisfying 〈ξ, η〉 = t. Then, k(t) exists for every −1 ≤ t ≤ 1, and k is continuous.

If f = g, then k is positive definite. �

Proof. The expectation in (3) clearly does not depend on the particular choice of

ξ, η ∈ Sn−1. Fix any point ξ0 ∈ Sn−1 and let P : [−1,1] → SO(n) be any continuous function

satisfying 〈ξ0, P (t)ξ0〉 = t for each −1 ≤ t ≤ 1. We have

k (t)= E[ f (Oξ0) g (O P (t) ξ0)]. (4)

The functions O 
→ f(Oξ0) and O 
→ g(O P (t)ξ0) on SO(n) belong to L2(SO(n)); being

an inner product in L2(SO(n)), the expectation (4), therefore, exists for every

t ∈ [−1,1].

We next show that k is continuous. For each O ∈ SO(n), let RO : L2(SO(n))→
L2(SO(n)) be the right translation operator defined by (RO F )(O ′)= F (O ′O) for

F ∈ L2(SO(n)). For fixed F , the map O 
→ RO F is continuous from L2(SO(n)) to L2(SO(n));

see e.g. [6, Lemma 1.4.2]. Therefore the function t 
→ RP (t)F is continuous from [−1,1] to

L2(SO(n)). Using F (O)= g(Oξ0), the continuity of k follows.

Now suppose f = g; we show that k is positive definite. Let ξ1, . . . , ξs ∈ Sn−1.

We need to show that the s × s matrix K = (k(ξi, ξ j))
s
i, j=1 is positive semidefinite. But if

v = (v1, . . . , vs)
T ∈ R

s is any column vector, then

vTKv=
s∑

i=1

s∑
j=1

E[ f (Oξi) f
(
Oξ j
)
]viv j = E

⎡
⎣( s∑

i=1

f (Oξi) vi

)2
⎤
⎦≥ 0. �
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Theorem 5.2. α(n) is no more than the value of the following infinite-dimensional linear

program:

max x0

∞∑
i=0

xi = 1

∞∑
i=0

xiC
(n−2)/2
i (0)= 0

xi ≥ 0, for all i = 0,1,2, . . ..

(5)

�

Proof. Let I ∈L be a {0}-avoiding subset of Sn−1 with λ(I ) > 0. We construct a feasible

solution to the linear program (5) having value λ(I ). Let k : [−1,1] → R be defined as in (3),

with f = g = 1I . Then k is a positive definite function satisfying k(1)= λ(I ) and k(0)= 0.

By Theorem 4.1, k has an expansion in terms of the Gegenbauer polynomials:

k (t)=
∞∑

i=0

aiC
(n−2)/2
i (t) , (6)

where each ai ≥ 0 and the convergence of the right-hand side is uniform on [−1,1]. More-

over, for each fixed ξ0 ∈ Sn−1, we have by Fubini’s theorem and (3) that

∫
Sn−1

k (〈ξ0, η〉)dη=
∫

Sn−1

∫
Sn−1

k (〈ξ, η〉)dξ dη

= E

[(∫
Sn−1

1I (Oξ)dξ
)2
]

= λ (I )2 . (7)

Note that

∫
Sn−1

C (n−2)/2
i (〈ξ0, η〉)dη= ωn−1

ωn

∫1

−1
C (n−2)/2

i (t)
(
1 − t2)(n−3)/2

dt = 0

whenever i ≥ 1 by the definition of the Gegenbauer polynomials. Putting (6) and (7)

together and using that C (n−2)/2
0 ≡ 1, we conclude that a0 = λ(I )2.

Recalling that C (n−2)/2
i (1)= 1 for i ≥ 0, we find that setting xi = ai/λ(I ) for

i = 0,1,2, . . . gives a feasible solution of value λ(I ) to the linear program (5). �

6102 E. DeCorte and O. Pikhurko

http://imrn.oxfordjournals.org/


Unfortunately, in the case n= 3, the value of (5) is at least 1/3, which is the same

bound obtained when the problem was first stated in [19]. This can be seen from the

feasible solution x0 = 1/3, x2 = 2/3 and xi = 0 for all i �= 0,2.

6 Adding Combinatorial Constraints

For each ξ ∈ Sn−1 and −1< t< 1, let σξ,t be the unique probability measure on the Borel

subsets of Sn−1 whose support is equal to the set

ξ t := {η ∈ Sn−1 : 〈η, ξ 〉 = t
}
,

and which is invariant under all rotations fixing ξ .

Now let n= 3. As before, let I ∈L be a {0}-avoiding subset of S2 and define

k : [−1,1] → R as in (3) with f = g = 1I ; that is,

k (t)= E[1I (Oξ)1I (Oη)],

where ξ, η ∈ S2 satisfy 〈ξ, η〉 = t.

Our aim now is to strengthen (5) for the case n= 3 by adding combinatorial

inequalities coming from Proposition 3.1 applied to the sections of S2 by affine planes.

We proceed as follows. Let p and q be coprime integers with 1/4 ≤ p/q ≤ 1/2, and let

tp,q =
√

− cos (2πp/q)
1 − cos (2πp/q)

.

Let ξ ∈ S2 be arbitrary. If we take two orthogonal unit vectors with endpoints in ξ tp,q and

the center ξ0 = tp,qξ of this circle, then we get an isosceles triangle with side lengths(
1 − t2

p,q

)1/2
and base

√
2; by the Cosine Theorem, the angle at ξ0 is 2πp/q.

Let ξ0, η0 ∈ S2 be arbitrary points satisfying 〈ξ0, η0〉 = tp,q. By Fubini’s theorem,

we have

k
(
tp,q
)= E[1I (Oξ0)1I (Oη0)] =

∫
ξ

tp,q
0

E[1I (Oξ0)1I (Oη)]dσξ0,tp,q (η)

= E

[
1I (Oξ0)

∫
ξ

tp,q
0

1I (Oη)dσξ0,tp,q (η)

]
.

But if q is odd, then
∫
ξ

tp,q
0

1I (Oη)dσξ0,tp,q(η)≤ q−1
2q for all O ∈ SO(n) by Proposition 3.1

applied to the circle (Oξ0)
tp,q ∼= S1, since the subgraph it induces contains a cycle of

length q. Therefore k(tp,q)≤ λ(I )q−1
2q .
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It follows that the inequalities

∞∑
i=0

xiC
1/2
i

(
tp,q
)≤ (q − 1) /2q, (8)

are valid for the relaxation and can be added to (5). The same holds for the inequalities∑∞
i=0 xiC

1/2
i (−tp,q)≤ (q − 1)/2q.

So we have just proved the following result.

Theorem 6.1. α(3) is no more than the value of the following infinite-dimensional linear

program.

max x0

∞∑
i=0

xi = 1

∞∑
i=0

xiC
1/2
i (0)= 0

∞∑
i=0

xiC
1/2
i

(±tp,q
)≤ (q − 1) /2q, for q odd, p,q coprime

xi ≥ 0, for all i = 0,1,2, . . ..

(9)

�

Rather than attempting to find the exact value of the linear program (9), the idea

will be to discard all but finitely many of the combinatorial constraints, and then to

apply the weak duality theorem of linear programming. The dual linear program has

only finitely many variables, and any feasible solution gives an upper bound for the

value of program (9), and therefore also for α(3). At the heart of the proof is the veri-

fication of the feasibility of a particular dual solution which we give explicitly. While

part of the verification has been carried out by computer in order to deal with the large

numbers that appear, it can be done using only rational arithmetic and can therefore be

considered rigorous.

Theorem 6.2. α(3) < 0.313. �
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Proof. Consider the following linear program:

max

{
x0 :

∞∑
i=0

xi = 1,
∞∑

i=0

xiC
1/2
i (0)= 0,

∞∑
i=0

xiC
1/2
i

(
t1,3
)≤ 1/3,

∞∑
i=0

xiC
1/2
i

(
t2,5
)≤ 2/5,

∞∑
i=0

xiC
1/2
i

(−t2,5
)≤ 2/5, xi ≥ 0, for all i = 0,1,2, . . .

}
. (10)

The linear programming dual of (10) is the following.

min b1 + 1

3
b1,3 + 2

5
b2,5 + 2

5
b2,5−

b1 + b0 + b1,3 + b2,5 + b2,5− ≥ 1

b1 + C 1/2
i (0) b0 + C 1/2

i

(
t1,3
)

b1,3 + C 1/2
i

(
t2,5
)

b2,5 + C 1/2
i

(−t2,5
)

b2,5− ≥ 0 for i = 1,2, . . .

b1,b0 ∈ R, b1,3,b2,5,b2,5− ≥ 0. (11)

By linear programming duality, any feasible solution for program (6) gives

an upper bound for (10), and therefore also for α(3). So in order to prove the claim

α(3) < 0.313, it suffices to give a feasible solution to (6) having objective value no more

than 0.313. Let

b = (b1,b0,b1,3,b2,5,b2,5−
)= 1

106 (128614,404413,36149,103647,327177) .

It is easily verified that b satisfies the first constraint of (6) and that its objective value

is less than 0.313. To verify the infinite family of constraints

b1 + C 1/2
i (0) b0 + C 1/2

i

(
t1,3
)

b1,3 + C 1/2
i

(
t2,5
)

b2,5 + C 1/2
i

(−t2,5
)

b2,5− ≥ 0 (12)

for i = 1,2, . . ., we apply [18, Theorem 8.21.11] (where C λ
i is denoted as P (λ)

i ), which

implies

|C 1/2
i (cos θ) | ≤

√
2√

π
√

sin θ

Γ (i + 1)
Γ (i + 3/2)

+ 1√
π23/2 (sin θ)3/2

Γ (i + 1)
Γ (i + 5/2)

(13)

for each 0< θ < π . Note that t1,3 = 1/
√

3 and t2,5 = 5−1/4. When θ ∈ A :=
{π/2,arccos t1,3,arccos t2,5,arccos (−t2,5)}, we have sin θ ∈

{
1,
√

2
3 , γ

}
, where γ = 2√

5+√
5
.

The right-hand side of Equation (13) is maximized over θ ∈ A at sin θ = γ for each fixed i,

and since the right-hand side is decreasing in i, one can verify using rational arithmetic

only that it is no greater than 128614/871386 = b1/(b0 + b1,3 + b2,5 + b2,5−) when i ≥ 40,
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by evaluating at i = 40. Therefore,

b1 + C 1/2
i (0) b0 + C 1/2

i

(
t1,3
)

b1,3 + C 1/2
i

(
t2,5
)

b2,5 + C 1/2
i

(−t2,5
)

b2,5−

≥ b1 − (b0 + b1,3 + b2,5 + b2,5−
)

max
θ∈A

{∣∣∣C 1/2
i (cos θ)

∣∣∣}

≥ 0

when i ≥ 40. It now suffices to check that b satisfies the constraints (12) for

i = 0,1, . . . ,39. This can also be accomplished using rational arithmetic only. �

The rational arithmetic calculations required in the above proof were carried out

with Mathematica. When verifying the upper bound for the right-hand side of (13), it is

helpful to recall the identity Γ (i + 1/2)= (i − 1/2)(i − 3/2) · · · (1/2)√π . When verifying

the constraints (12) for i = 0,1, . . . ,39, it can be helpful to observe that t1,3 and ±t2,5 are

roots of the polynomials x2 − 1/3 and x4 − 1/5, respectively; this can be used to cut down

the degree of the polynomials C 1/2
i (x) to at most 3 before evaluating them. The ancillary

folder of the arxiv.org version of this paper contains a Mathematica notebook that

verifies all calculations.

The combinatorial inequalities of the form (8) we chose to include in the

strengthened linear program (10) were found as follows: let L0 denote the linear pro-

gram (5). We first find an optimal solution σ0 to L0. We then proceed recursively; having

defined the linear program Li−1 and found an optimal solution σi−1, we search through

the inequalities (8) until one is found which is violated by σi−1, and we strengthen Li−1

with that inequality to produce Li. At each stage, an optimal solution to Li is found

by first solving the dual minimization problem, and then applying the complementary

slackness theorem from linear programming to reduce Li to a linear programming max-

imization problem with just a finite number of variables.

Adding more inequalities of the form (8) appears to give no improvement on the

upper bound. Also adding the constraints
∑∞

i=0 xiC
1/2
i (t)≥ 0 for −1 ≤ t ≤ 1 appears to

give no improvement. A small (basically insignificant) improvement can be achieved by

allowing the odd cycles to embed into S2 in more general ways, for instance with the

points lying on two different latitudes rather than just one.
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7 Adjacency Operator

Let n≥ 3. For ξ ∈ Sn−1 and −1< t< 1, we use the notations ξ t and σξ,t from Section 6. For

f ∈ L2(Sn−1) define At f : Sn−1 → R by

(At f) (ξ) :=
∫
ξ t

f (η)dσξ,t (η) , ξ ∈ Sn−1. (14)

Here we establish some basic properties of At which will be helpful later. The

operator At can be thought of as an adjacency operator for the graph with vertex set

Sn−1, in which we join two points with an edge when their inner product is t. Adjacency

operators for infinite graphs are explored in greater detail and generality in [1].

Lemma 7.1. For every t ∈ (−1,1), At is a bounded linear operator from L2(Sn−1) to

L2(Sn−1) having operator norm equal to 1. �

Proof. The right-hand side of (14) involves integration over nullsets of a function

f ∈ L2(Sn−1) which is only defined almost everywhere, and so strictly speaking one

should argue that (14) really makes sense. In other words, given a particular representa-

tive f from its L2-equivalence class, we need to check that the integral on the right-hand

side of (14) is defined for almost all ξ ∈ Sn−1, and that the L2-equivalence class of At f

does not depend on the particular choice of representative f .

Our main tool will be Minkowski’s integral inequality; see e.g. [9, Theorem 6.19].

Let en = (0, . . . ,0,1) be the nth basis vector in R
n and let

S = {(x1, x2, . . . , xn) : xn = 0, x2
1 + · · · + x2

n−1 = 1
}

be a copy of Sn−2 inside R
n. Considering f as a particular measurable function (not an

L2-equivalence class), we define F : SO(n)× S → R by

F (ρ, η)= f
(
ρ
(
ten +

√
1 − t2η

))
, ρ ∈ SO (n) , η ∈ S.

Let us formally check all the hypotheses of Minkowski’s integral inequality applied to

F , where SO(n) is equipped with the Haar measure, and where S is equipped with the

normalized Lebesgue measure; this will show that the function F̃ : SO(n)→ R defined by

F̃ (ρ)= ∫
S F (ρ, η)dη belongs to L2(SO(n)).

Clearly, the function F is measurable. To see that the function ρ 
→ F (ρ, η)

belongs to L2(SO(n)) for each fixed η ∈ S, simply note that
∫

SO(n)
|F (ρ, η)|2 dρ =

∫
SO(n)

∣∣∣ f (ρ (ten +
√

1 − t2η
))∣∣∣2 dρ = ‖ f‖2

2.
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That the function η 
→ ‖F (·, η)‖2 belongs to L1(S) then also follows easily (in fact, this

function is constant):

∫
S

(∫
SO(n)

|F (ρ, η)|2 dρ
)1/2

dη=
∫

S
‖ f‖2 dη= ‖ f‖2.

Minkowski’s integral inequality now gives that the function η 
→ F (ρ, η) is in L1(S)

for a.e. ρ, the function F̃ is in L2(SO(n)), and its norm can be bounded as

follows:

‖F̃‖2 =
(∫

SO(n)

∣∣∣∣
∫

S
F (ρ, η)dη

∣∣∣∣
2

dρ

)1/2

≤
∫

S

(∫
SO(n)

|F (ρ, η) |2dρ
)1/2

dη= ‖ f‖2. (15)

Applying (15) to f − g, where g is a.e. equal to f , we conclude that the L2-equivalence

class of F̃ does not depend on the particular choice of representative f from its equiva-

lence class.

Now (At f)(ξ) is simply F̃ (ρ), where ρ ∈ SO(n) can be any rotation such that

ρen = ξ . This shows that the integral in (14) makes sense for almost all ξ ∈ Sn−1.

We have ‖At‖ ≤ 1 since, for any f ∈ L2(Sn−1),

‖At f‖2 =
(∫

Sn−1

|(At f) (ξ)|2 dξ
)1/2

=
(∫

SO(n)
|(At f) (ρen)|2 dρ

)1/2

=
(∫

SO(n)

∣∣∣F̃ (ρ)∣∣∣2 dρ
)1/2

≤ ‖ f‖2,

by (15).

Finally, applying At to the constant function 1 shows that ‖At‖ = 1. �

Lemma 7.2. Let f and g be functions in L2
(
Sn−1

)
, let ξ, η ∈ Sn−1 be arbitrary points,

and write t = 〈ξ, η〉. If O ∈ SO(n) is chosen uniformly at random with respect to the Haar

measure on SO(n), then

∫
Sn−1

f (ζ ) (Atg) (ζ )dζ = E[ f (Oξ) g (Oη)], (16)

which is exactly the definition of k(t) from (3). �
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Proof. We have
∫

Sn−1
f (ζ ) (Atg) (ζ ) dζ =

∫
SO(n)

f (Oξ) (Atg) (Oξ)dO

=
∫

SO(n)
f (Oξ)

∫
(Oξ)t

g (ψ)dσOξ,t (ψ)dO,

If H is the subgroup of all elements in SO(n) which fix ξ , then the above integral can be

rewritten as ∫
SO(n)

f (Oξ)
∫

H
g (Ohη)dhdO.

By Fubini’s theorem, this integral is equal to∫
H

∫
SO(n)

f (Oξ) g (Ohη)dO dh=
∫

H

∫
SO(n)

f
(
Oh−1ξ

)
g (Oη)dO dh

=
∫

SO(n)
f (Oξ) g (Oη)dO,

where we use the right-translation invariance of the Haar integral on SO(n) at the first

equality, and the second equality follows by noting that the integrand is constant with

respect to h. �

Lemma 7.3. For every t ∈ (−1,1), the operator At : L2
(
Sn−1

)→ L2
(
Sn−1

)
is self-

adjoint. �

Proof. Fix ξ, η ∈ Sn−1 that satisfy 〈ξ, η〉 = t. Lemma 7.2 implies that, for any f,

g ∈ L2
(
Sn−1

)
, we have

〈At f, g〉 = EO∈SO(n)[ f (Oξ) g (Oη)] = 〈 f, Atg〉,

giving the required. �

8 Existence of a Measurable Maximum Independent Set

Let n≥ 2 and X ⊂ [−1,1]. From Theorem 3.2, we know that the supremum αX(n) is some-

times attained as a maximum, and sometimes not. It is therefore interesting to ask when

a maximizer exists. The main positive result in this direction is Theorem 8.6, which

says that a largest measurable X-avoiding set always exists when n≥ 3. Remarkably,

this result holds under no additional restrictions (not even Lebesgue measurability)

on the set X of forbidden inner products. Before arriving at this theorem, we shall

need to establish a number of technical results. For the remainder of this section, we

suppose n≥ 3.
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For d≥ 0, let H n
d be the vector space of homogeneous polynomials p(x1, . . . , xn)

of degree d in n variables belonging to the kernel of the Laplace operator; that is,

∂2 p

∂x2
1

+ · · · + ∂2 p

∂x2
n

= 0.

Note that each H n
d is finite-dimensional. The restrictions of the elements of H n

d to the

surface of the unit sphere are called the spherical harmonics. For fixed n, we have

L2(Sn−1)=⊕∞
d=0 H n

d [4, Theorem 2.2.2]; that is, each function in L2
(
Sn−1

)
can be writ-

ten uniquely as an infinite sum of elements from H n
d , d= 0,1,2, . . ., with convergence in

the L2-norm.

Recall the definition (14) of the adjacency operator from Section 7:

(At f) (ξ) :=
∫
ξ t

f (η)dσξ,t (η) , f ∈ L2 (Sn−1) .
The next lemma states that each spherical harmonic is an eigenfunction of the

operator At. It extends the Funk–Hecke formula [4, Theorem 1.2.9] to the Dirac measures,

obtaining the eigenvalues of At explicitly. The proof relies on the fact that integral kernel

operators K having the form (K f)(ξ)= ∫
f(ζ )k(〈ζ, ξ 〉)dζ for some function k : [−1,1] → R

are diagonalized by the spherical harmonics, and moreover that the eigenvalue of a spe-

cific spherical harmonic depends only on its degree.

Proposition 8.1. Let t ∈ (−1,1). Then, for every spherical harmonic Yd of degree d,

(AtYd) (ξ)=
∫
ξ t

Yd (η)dσξ,t (η)=μd (t)Yd (ξ) , ξ ∈ Sn−1,

where μd(t) is the constant

μd (t)= C (n−2)/2
d (t)

(
1 − t2)(n−3)/2

. �

Proof. Let ds be the Lebesgue measure on [−1,1] and let { fα}α be a net of functions

in L1([−1,1]) such that { fα ds} converges to the Dirac point mass δt at t in the weak-*

topology on the set of Borel measures on [−1,1]. By [4, Theorem 1.2.9], we have
∫

Sn−1
Yd (η) fα (〈ξ, η〉)dη=μd,αYd (ξ) ,

where

μd,α =
∫1

−1
C (n−2)/2

d (s)
(
1 − s2)(n−3)/2

fα (s)ds.

By taking limits, we complete the proof. �
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Lemma 8.2 is a general fact about weakly convergent sequences in a Hilbert

space.

Lemma 8.2. Let H be a Hilbert space and let K : H→H be a compact operator. Suppose

{xi}∞i=1 is a sequence in H converging weakly to x ∈H. Then

lim
i→∞

〈Kxi, xi〉 = 〈Kx, x〉. �

Proof. Let C be the maximum of ‖x‖ and supi≥1 ‖xi‖, which is finite by the Principle

of Uniform Boundedness. Let {Km}∞m=1 be a sequence of finite rank operators such that

Km → K in the operator norm as m → ∞. Clearly,

lim
i→∞

〈Kmxi, xi〉 = 〈Kmx, x〉

for each, m = 1,2, . . .. Let ε > 0 be given and choose m0 so that ‖K − Km0‖< ε/(3C 2).

Choosing i0 so that |〈Km0 xi, xi〉 − 〈Km0 x, x〉|< ε/3 whenever i ≥ i0, we have

|〈Kxi, xi〉 − 〈Kx, x〉|

≤ |〈Kxi, xi〉 − 〈Km0 xi, xi〉| + |〈Km0 xi, xi〉 − 〈Km0 x, x〉| + |〈Km0 x, x〉 − 〈Kx, x〉|

≤ ‖K − Km0‖C 2 + ε/3 + ‖K − Km0‖C 2 < ε,

and the lemma follows. �

Corollary 8.3, which is also a result stated in [1], says that the adjacency opera-

tors At are compact when n≥ 3.

Corollary 8.3. If n≥ 3 and t ∈ (−1,1), then At is compact. �

Proof. The operator At is diagonalizable by Proposition 8.1, since the spherical har-

monics form an orthonormal basis for L2
(
Sn−1

)
. It therefore suffices to show that its

eigenvalues cluster only at 0.

By [18, Theorem 8.21.8] and Proposition 8.1, the eigenvalues μd(t) tend to zero

as d→ ∞. The eigenspace corresponding to the eigenvalue μd(t) is precisely the vector

space of spherical harmonics of degree d, which is finite-dimensional. Therefore At is

compact. �

For each ξ ∈ Sn−1, let Ch(ξ) be the open spherical cap of height h in Sn−1 centered

at ξ . Recall that Ch(ξ) has volume proportional to
∫1

1−h(1 − t2)(n−3)/2 dt.
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Lemma 8.4. For each ξ ∈ Sn−1, we have λ(Ch(ξ))=Θ(h(n−1)/2) and λ(Ch/2(ξ))≥
λ(Ch(ξ))/2(n−1)/2 − o(h(n−1)/2) as h→ 0+. �

Proof. If f(h)= ∫1
1−h

(
1 − t2

)(n−3)/2
dt, then we have df

dh(h)=
(
2h − h2

)(n−3)/2
. Since

f(0)= 0, the smallest power of h occurring in f(h) is of order (n− 1)/2. This gives the

first result. For the second, note that the coefficient of the lowest order term in f(h) is

2(n−1)/2 times that of f(h/2). �

Lemma 8.5. Suppose n≥ 3 and let I ⊂ Sn−1 be a Lebesgue measurable set with λ(I ) > 0.

Define k : [−1,1] → R by

k (t) :=
∫

Sn−1
1I (ζ ) (At1I ) (ζ )dζ,

which, by Lemma 7.2, is the same as Definition (3) applied with f = g = 1I . If ξ1, ξ2 ∈ Sn−1

are Lebesgue density points of I , then k(〈ξ1, ξ2〉) > 0. �

Proof. Let t = 〈ξ1, ξ2〉. If t = 1, then the conclusion holds since k(1)= λ(I ) > 0. If t = −1,

then ξ2 = −ξ1, and by the Lebesgue density theorem we can choose h> 0 small enough

that λ(Ch(ξi) ∩ I ) > 2
3λ(Ch(ξi)) for i = 1,2. By Lemma 7.2, we have

k (−1)= E[1I (Oξ1) 1I (O (−ξ1))]

≥ E[1I∩Ch(ξ1) (Oξ1) 1I∩Ch(ξ2) (O (−ξ1))] ≥ 1
3λ (Ch (ξ1)) .

From now on, we may therefore assume −1< t< 1. Let h> 0 be a small num-

ber that will be determined later. Suppose x ∈ Ch(ξ1). The intersection xt ∩ Ch(ξ2) is a

spherical cap in the (n− 2)-dimensional sphere xt having height proportional to h;

this is because Ch(ξ2) is the intersection of Sn−1 with a certain half-space H , and

xt ∩ Ch(ξ2)= xt ∩ H . We have σx,t
(
xt ∩ Ch(ξ2)

)=Θ
(
h(n−2)/2

)
by Lemma 8.4, and it follows

that there exists D > 0 such that σx,t
(
xt ∩ Ch(ξ2)

)≤ Dh(n−2)/2 for sufficiently small h> 0.

If x ∈ Ch/2(ξ1), then xt ∩ Ch/2(ξ2) �= ∅ since xt is just a rotation of the hyperplane ξ t
1

through an angle equal to the angle between x and ξ1. Therefore xt ∩ Ch(ξ2) is a spherical

cap in xt having height at least h/2.

Thus there exists D′ > 0 such that σx,t
(
xt ∩ Ch(ξ2)

)≥ D′h(n−2)/2 for all x ∈ Ch/2(ξ1),

by Lemma 8.4.

Now choose h> 0 small enough that λ(Ch(ξi) ∩ I )≥
(
1 − D′

2nD

)
λ(Ch(ξi)) for i = 1,2;

this is possible by the Lebesgue density theorem since ξ1 and ξ2 are density points. We
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have by Lemma 7.2 that

k (t)= P[η1 ∈ I, η2 ∈ I ],

if η1 is chosen uniformly at random from Sn−1, and if η2 is chosen uniformly at random

from ηt
1. Then

k (t)≥ P[η1 ∈ I ∩ Ch (ξ1) , η2 ∈ I ∩ Ch (ξ2)]

≥ P[η1 ∈ Ch (ξ1) , η2 ∈ Ch (ξ2)] − P[η1 ∈ Ch (ξ1) \ I, η2 ∈ Ch (ξ2)]

− P[η1 ∈ Ch (ξ1) , η2 ∈ Ch (ξ2) \ I ].

The first probability is at least

D′h(n−2)/2λ
(
Ch/2 (ξ1)

)≥ D′

2(n−1)/2
h(n−2)/2λ (Ch (ξ1))− o

(
h(2n−3)/2

)
by Lemma 8.4. The second and third probabilities are each no more than

D′

2nD
λ (Ch (ξ1)) Dh(n−2)/2 = D′

2n
λ (Ch (ξ1))h(n−2)/2

for sufficiently small h> 0, and therefore, by the first part of Lemma 8.4,

k (t)≥ D′

2(n−1)/2
λ (Ch (ξ1))h(n−2)/2 − o

(
h(2n−3)/2

)− D′

2n−1
λ (Ch (ξ1))h(n−2)/2,

and this is strictly positive for sufficiently small h> 0. �

We are now in a position to prove the second main result of this paper.

Theorem 8.6. Suppose n≥ 3 and let X be any subset of [−1,1]. Then there exists an

X-avoiding set I ∈L such that λ(I )= αX(n). �

Proof. We may suppose that 1 �∈ X for otherwise every X-avoiding set is empty and the

theorem holds with I = ∅.

Let {Ii}∞i=1 be a sequence of measurable X-avoiding sets such that

limi→∞ λ(Ii)= αX(n). Passing to a subsequence if necessary, we may suppose that the

sequence {1Ii } of characteristic functions converges weakly in L2
(
Sn−1

)
; let h be its limit.

Then 0 ≤ h≤ 1 almost everywhere since 0 ≤ 1Ii ≤ 1 for every i.

Denote by I ′ the set h−1((0,1]), and let I be the set of Lebesgue density points of

I ′. We claim that I is X-avoiding.

For all t ∈ X \ {−1}, the operator At : L2(Sn−1)→ L2(Sn−1) is self-adjoint and com-

pact by Lemma 7.3 and Corollary 8.3. Since 〈At1Ii ,1Ii 〉 = 0 for each i, Lemma 8.2 implies
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〈Ath,h〉 = 0. Since h≥ 0, it follows from the definition of At that 〈At1I ′ ,1I ′ 〉 = 0, and there-

fore also that 〈At1I ,1I 〉 = 0. But if there exist points ξ, η ∈ I with t0 = 〈ξ, η〉 ∈ X \ {−1}, then

〈At01I ,1I 〉> 0 by Lemma 8.5.

Thus, in order to show that I is X-avoiding, it remains to derive a contradiction

from assuming that −1 ∈ X and −ξ, ξ ∈ I for some ξ ∈ Sn−1. Since ξ and −ξ are Lebesgue

density points of I , there is a spherical cap C centered at ξ such that λ(I ∩ C ) > 2
3λ(C )

and λ(I ∩ (−C )) > 2
3λ(C ). The same applies to Ii for all large i (since a cap is a continuity

set). But this contradicts the fact that Ii and its reflection −Ii are disjoint for every i.

Thus I is X-avoiding.

Finally, we have

λ (I )= λ
(
I ′)≥ 〈1Sn−1 ,h〉 = lim

i→∞
〈1Sn−1 ,1Ii 〉 = lim

i→∞
λ (Ii)= αX (n) ,

whence λ(I )= αX(n) since λ(I )≤ αX(n). �

Note that the proof of Theorem 8.6 would fail for n= 2, because the adjacency

operators At need not be compact; the reason for this is that the eigenvalues μd(t) of

Proposition 8.1 do not tend to zero as d→ ∞.

9 Invariance of αX(n) Under Taking the Closure of X

Again let n≥ 2 and X ⊂ [−1,1]. We will use X̄ to denote the topological closure of X in

[−1,1]. In general it is false that X-avoiding sets are X̄-avoiding. In spite of this, we have

the following result.

Theorem 9.1. Let X be an arbitrary subset of [−1,1]. Then αX(n)= αX̄(n). In particular

αX(n)= 0 if 1 ∈ X̄. �

Proof. Clearly αX(n)≥ αX̄(n). For the reverse inequality, let I ′ ⊂ Sn−1 be any measur-

able X-avoiding set. Let I ⊂ I ′ be the set of Lebesgue density points of I ′, and define

k : [−1,1] → R by k(t)= ∫
Sn−1 1I (ζ )(At1I )(ζ )dζ . Then k is continuous by Lemmas 5.1 and

7.2, and since k(t)= 0 for every t ∈ X, it follows that k(t)= 0 for every t ∈ X̄. Lemma 8.5

now implies that I is X̄-avoiding. The theorem now follows since I ′ was arbitrary, and

λ(I )= λ(I ′) by the Lebesgue density theorem. �
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Fig. 1. {t}-Avoiding set for t = − 1
2 , 0 and cos 2π

5 .

10 Single Forbidden Inner Product

An interesting case to consider is when |X| = 1, motivated by the fact that 1/α{t}(n) is

a lower bound on the measurable chromatic number of Rn for any t ∈ (−1,1) and this

freedom of choosing t may lead to better bounds.

Let us restrict ourselves to the special case when n= 3 (that is, we look at the

two-dimensional sphere). For a range of t ∈ [−1, cos 2π
5 ], the best construction that we

could find consists of one or two spherical caps as follows. Given t, let h be the maximum

height of an open spherical cap that is {t}-avoiding. A simple calculation shows that

h= 1 − √
(t + 1)/2. If t ≤ −1/2, then we just take a single cap C of height h, which gives

that α{t}(3)≥ h/2 then. When −1/2< t ≤ 0, we can add another cap C ′ whose center is

opposite to that of C . When t reaches 0, the caps C and C ′ have the same height (and

we get the two-cap construction from Kalai’s conjecture). When 0< t ≤ 2π
5 , we can form a

{t}-avoiding set by taking two caps of the same height h. (Note that the last construction

cannot be optimal for t> 2π
5 , as then the two caps can be arranged, so that a set of

positive measure can be added; see the third picture of Figure 1.)

Calculations show that the above construction gives the following lower bound

(where h= 1 − √
(t + 1)/2):

α{t} (3)≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h

2
, −1 ≤ t ≤ −1

2
,

h + t − ht, −1

2
≤ t ≤ 0,

h, 0 ≤ t ≤ cos
2π

5
.

(17)
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We conjecture that the bounds in (17) are all equalities. In particular, our con-

jecture states that, for t ≤ −1/2, we can strengthen Levy’s isodiametric inequality by

forbidding a single inner product t instead of the whole interval [−1, t].

As in Section 6, one can write an infinite linear program that gives an

upper bound on α{t}(3). Although our numerical experiments indicate that the upper

bound given by the LP exceeds the lower bound in (17) by at most 0.062 for all

−1 ≤ t ≤ 0.3, we were not able to determine the exact value of α{t}(3) for any single

t ∈ (−1, cos 2π
5 ].
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