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Martin Gardner’s
Minimum No-3-in-a-Line Problem

Alec S. Cooper, Oleg Pikhurko,
John R. Schmitt, and Gregory S. Warrington

Abstract. In Martin Gardner’s October 1976 Mathematical Games column in Scientific Amer-
ican, he posed the following problem: “What is the smallest number of [queens] you can put
on an [n × n chessboard] such that no [queen] can be added without creating three in a row, a
column, or, except in the case when n is congruent to 3 modulo 4, in which case one less may
suffice.” We use the Combinatorial Nullstellensatz to prove that this number is at least n. A
second, more elementary proof is also offered in the case that n is even.

1. INTRODUCTION. In Martin Gardner’s October 1976 Mathematical Games col-
umn in Scientific American, he introduced this combinatorial chessboard problem:
What is the minimum number of counters that can be placed on an n × n chessboard,
no three in a line, such that adding one more counter on any vacant square will produce
three in a line? He dubbed the problem the minimum no-3-in-a-line problem.

Figure 1 shows an 8 × 8 chessboard with an initial placement of 9 black queens
with no three in a line. This placement is maximal, that is, any additional queen will
create three in a line. The figure illustrates the corresponding ‘three-in-a-line’ created
when an additional queen, shown in a distinct shading, is placed in the fourth column
and eighth row. This particular placement is also of minimum size (where size of a
placement is the number of queens in the placement), that is, there is no placement
with eight or fewer queens meeting the requirements.
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Figure 1. Maximal 8× 8 placement

Gardner makes the following observation [8, Ch. 5, p. 71]:

If ‘line’ is taken in the broadest sense—a straight line of any orientation—
the problem is difficult. . . The problem is also unsolved if ‘line’ is restricted to
orthogonals and diagonals.
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In this paper we provide a lower bound for this latter queens version of the problem.

Theorem 1. For n ≥ 1, the answer to Gardner’s no-3-in-a-line problem is at least
n, except in the case when n is congruent to 3 modulo 4, in which case one less may
suffice.

We offer an elementary, ad hoc proof in the case of n even (the approach yields
a lower bound of only n − 1 when n is odd). This proof, similar to an incomplete
argument of John Harris [11], is provided in Section 4.

The proof of Theorem 1 for arbitrary n ultimately relies on the Nullstellensatz.
Hilbert’s “zero-locus theorem” [12] is a foundational result that connects geometry
and algebra. In [2], Alon leverages a special case of Hilbert’s theorem to prove a
Combinatorial Nullstellensatz (reproduced here as Theorem 2) that is ideally suited
for obtaining lower bounds on restricted-sum sets and other similar objects (see [14,
Chapter 9]).

The proof we present in Section 3 using the Combinatorial Nullstellensatz is in-
spired by a similar proof of Alon and Füredi [3]; their proof gives a result about the
number of hyperplanes needed to cover all but one of the vertices of the hypercube [2,
Theorem 6.3]. We believe that our proof serves as a nice illustrative application of the
Combinatorial Nullstellensatz.

We may arrive at lower bounds that are weaker than those promised by Theorem 1
quite quickly. If we make the observation that each of the q queens ‘covers’ at most
4n − 4 squares and each of the n2 squares requires either two queens to ‘cover’ it or
one queen to occupy it, a lower bound of n

2 follows [1]. This last observation can be
strengthened by noting that only a few queens can cover 4n − 4 squares. However,
any queen covers at ‘worst’ 3n − 3 squares, though we still could not push this line of
argument to get us to n.

Prior to our proof of Theorem 1, we discuss in Section 2 some history of the prob-
lem drawn from Gardner’s notes and correspondence pertaining to his writing of the
Scientific American column [7]. Section 3, as mentioned above, presents a proof of
Theorem 1 using the Combinatorial Nullstellensatz. We also offer a more elementary
proof in Section 4.

2. HISTORY. Gardner and some of his readers found good placements —a place-
ment is good if it does not contain three queens in a line and loses this property upon
the addition of a queen to an unoccupied square—via pencil and paper; others con-
ducted computer searches. We also conducted computer searches, though with com-
puting power that is better than it was 35 years ago. Collectively, these results are
contained in Table 1; m3(n) denotes the answer to Gardner’s no-3-in-a-line problem
on an n × n chessboard. A bold-faced entry in the second row indicates that an im-
provement was made to previous knowledge.

Theorem 1 is not “tight” for small values of n. The data suggest for n odd and
n ≥ 3 that we should have m3(n) ≥ n + 1. Our search for good placements was done

Table 1. m3(n) for small values of n. Brackets indicate lower and upper bounds.

n 1 2 3 4 5 6 7 8 9
m3(n) 1 4 4 4 6 6 8 9 10

n 10 11 12 13 14 15 16 17 18
m3(n) 10 12 12 [13, 14] [14, 16] [15, 16] [16, 18] [17, 20] [18, 20]
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via brute-force search.1 As such, and to illustrate the computational challenges in-
volved, our program took around 900 3GHz-CPU hours to confirm that there is no
good placement of 11 queens on an 11× 11 chessboard. We estimate that the corre-
sponding search for a 13× 13 chessboard using our program would require at least 70
thousand 3GHz-CPU hours.

In that October column (and in an addendum [8] to it), Gardner gave a few results
on the queens version. These included placements of queens on 3× 3 through 12× 12
chessboards, which provided upper bounds on this number. His archives also contain
a good placement of 52 queens on a 48× 48 chessboard [7]. Gardner also stated that
John Harris of Santa Barbara, CA (who, we later learned, was a frequent correspon-
dent of Gardner’s) was able to show that the minimum number of queens needed for
an n × n chessboard is at least n, except when n is congruent to 3 modulo 4, in which
case it could be one less. Gardner did not supply Harris’ argument. These results were
the “jumping off” point of our investigations—mostly, we wondered what Harris’ ar-
gument was.

Subsequent to obtaining our results that confirm and improve upon those of Harris,
we were able to obtain copies of Gardner’s notes and correspondence concerning this
problem [7]. These are a small fraction of the 60 linear feet(!) of notes and correspon-
dence archived at Stanford University that pertain to his writing of the Mathematical
Games column. (These materials were a gift to Stanford by Gardner in 2002.) There
are numerous carbon-copies of letters that Gardner wrote to other mathematicians, as
well as readers, and copies of letters they wrote to him about the problem. Chronolog-
ically first is a letter, dated June 2, 1975, that Gardner wrote to the world-renowned
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Figure 2. Maximal placements: 14 queens for n = 13; 16 queens for n ∈ {14, 15}.
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Figure 3. Maximal placements: 18 queens for n = 16; 20 queens for n ∈ {17, 18}.

1The C code that performed this search is available in the source package for [5] at http://arXiv.org.
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John H. Conway. In it, he states that the problem occurred to him while considering
a game of the mathematician Stanislaw Ulam (though not the game that commonly
goes by the name Ulam’s game)—the game had appeared in an earlier column. The
game consists of taking turns “putting a counter on an n × n [chessboard] until one
person wins by getting 3 in line, orthogonally or diagonally.” In the weeks that fol-
lowed were letters to and from Bill Sands (then a Ph.D. student at U. Manitoba, now
at U. Calgary), who independently suggested the problem, and John Harris, including
one that sketches some ideas for the above-mentioned claim. Subsequent letters from
readers (that appeared after the October 1976 column) contained their best solutions
to the problem for small chessboards; some of Gardner’s notes do the same.

Of course, the reader may be more aware of some related or similarly worded prob-
lems. Gardner mentioned one of them in that month’s column, the maximum no-3-in-
a-line problem, that is, what is the maximum number of counters (or queens) one can
place on an n × n chessboard so that there are no three in a line. Here, an easy upper
bound of 2n follows from the pigeonhole principle, as each of the n columns may con-
tain at most 2 counters—Guy and Kelly [10] showed that one is ‘unlikely’ to find any
with more than ∼ 1.87n queens—but this was later corrected to ∼ 1.81n queens (see
[13, A000769]). Another related problem is the queens domination problem. In this
problem, one asks for the minimum number of queens needed so that each square of
the chessboard is either occupied or attacked. There are two versions of this problem,
one where the queens are non-attacking and the other where this restriction is lifted;
see [4] and [6] for some results.

3. PROOF OF THEOREM 1 VIA THE COMBINATORIAL NULLSTELLEN-
SATZ. In this section, we prove Theorem 1 using the Combinatorial Nullstellensatz.
To begin, we give a brief discussion of the theorem to be applied and its statement.

The Fundamental Theorem of Algebra tells us that a degree-t polynomial f (x)
contained in a polynomial ring F[x] has at most t zeros. Said another way, for any
set S contained in F of cardinality greater than t , there is an element s ∈ S such that
f (s) is nonzero. Think of this as saying, either a polynomial is zero everywhere, or
it is zero in very few places. The following theorem, known as the Combinatorial
Nullstellensatz, generalizes this fact to polynomials of several variables, and is due to
Alon [2, Theorem 1.2]. We may think of it as saying that a multivariable polynomial
that isn’t zero everywhere has a non-root in a box of large enough volume.

Theorem 2 (Combinatorial Nullstellensatz, Theorem 1.2 [2]). Let F be an arbitrary
field, and let f = f (x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose that the
degree deg( f ) of f is

∑n
i=1 ti , where each ti is a nonnegative integer, and suppose that

the coefficient of
∏n

i=1 x ti
i in f is nonzero. Then if S1, . . . , Sn are subsets of F with

|Si | > ti , there are s1 ∈ S1, . . . , sn ∈ Sn so that f (s1, . . . , sn) 6= 0.

So that we might precisely state our results, we introduce some definitions and
notation. We consider the infinite square Z-lattice as a chessboard and its vertices as
squares of the chessboard. A board B is a finite subset of the chessboard. Let Bn denote
the board [1, n] × [1, n]. As we are interested in the queens version of the problem, the
lines that we concern ourselves with have slope 0,+1,−1, or∞ and contain vertices
of the lattice—so throughout, we use line to refer to a line of this type. Any subset S of
the infinite square lattice may be considered a placement of queens, or placement for
short, by imagining a queen on each corresponding square of the chessboard. The size
of a placement S is its cardinality |S|. We say that two queens of a placement Q define
a line if they lie on the same row, column, or diagonal. In such a way, the placement
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Q defines a set of lines, the set of lines defined by the pairs of Q. Lastly, we call a
placement good if does not contain three queens in a line, and loses this property upon
the addition of a queen to an unoccupied square.

Let mk(n) denote the minimum size of a placement on Bn such that there are no k
queens in a line; and the placement loses this property upon the addition of a queen to
an unoccupied square of Bn . As indicated by our title, our focus is on k = 3.

We warn the reader that the placements we seek need not have each queen of a
placement on a line with another queen. See Figure 4 for an example with n = 4.
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Figure 4. Good placement with one queen not collinear with any other.

We first prove the result for n = 4k + 1, where k is a nonnegative integer, as in this
case the presentation is cleanest. We next establish the result for n = 4k, and we omit
the details for the other two cases, as these are similar.

Proof of Theorem 1. Let n = 4k + 1, where k is a positive integer. (The result is obvi-
ous for k = 0, i.e., n = 1.) Let Q be a good placement on Bn with size q = |Q| ≤ 4k.
Our proof will proceed by constructing a polynomial f (x, y) of total degree 8k that
vanishes on each square (x, y) ∈ Bn . We will then obtain a contradiction through a
suitable application of the Combinatorial Nullstellensatz.

We shall construct f as a product of linear factors of three different types. The first
type consists of the set of lines defined by Q. Since the placement Q is good, every
unoccupied square of Bn is in the zero locus of at least one line of the first type.

As shown in Figure 4, there may be some queens in Q not on any defining line.
Let Q′ = {Q1, . . . , Qq ′} denote the (possibly empty) subset of queens not collinear
with any other queen in Q. For each Qi ∈ Q′ we define a new line that passes through
the square occupied by Qi . While we are free to choose any one of the four possible
slopes for each line, it is most convenient to distribute the slopes as evenly as possible.
Hence, we choose the slope of the i th line to be the j th element of (0,+1,−1,∞),
where j ≡ i mod 4. Every occupied square is in the zero locus of at least one line of
either of the first two types.

For each of the four possible slopes, there are at most
⌊ 4k−q ′

2

⌋
lines of that slope

of the first type, and at most
⌈ q ′

4

⌉
lines of that slope of the second type. These quan-

tities sum to at most 2k. As necessary, define new, distinct lines of the third type in
each of the four directions so that there are exactly 2k lines of each slope among the
three types. (The lines of the third type serve only to facilitate the application of the
Combinatorial Nullstellensatz; it is immaterial on which squares they vanish.)

Let L = {L1, . . . , L8k} be our set of 8k lines and let li = 0 be the equation in vari-
ables x and y defining L i . We then define

f (x, y) =
8k∏

i=1

li ∈ R[x, y]. (1)
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As desired, the polynomial f (x, y) = 0 for every (x, y) ∈ Bn , as every unoccupied
square is on a line of the first type and every occupied square is on a line of either
the first or second type. By construction, the total degree of f is 8k. If we group the
factors in f according to slope, we see that f can be rewritten as

f (x, y) =
2k∏
j=1

(x − α j )(y − β j )(x − y − γ j )(x + y − δ j ), (2)

for suitable constants α j , β j , γ j , δ j . From equation (2) and the binomial theorem, we
conclude that the coefficient of the top-degree term x4k y4k is ±

(2k
k

)
, that is, nonzero.

We now apply Theorem 2 to f (x, y), where t1 = t2 = 4k and S1 = S2 = {1, . . . ,
4k + 1}, to obtain that there are s1 ∈ S1, s2 ∈ S2 such that f (s1, s2) 6= 0. We have
reached a contradiction. Therefore, the result holds when n is congruent to 1 modulo 4.

Now consider n = 4k, where k is a positive integer. We proceed in a similar manner
to the above. Again, we consider a good placement on Bn , this time of size q ≤ 4k − 1.
Similarly, let q ′ = 4r + s denote the size of Q′, where r and s are integers with 0 ≤
s ≤ 3. As before, we define lines of the first type and the second type, distributing
those of the second type as evenly as possible. For each possible slope, the number of
lines is at most

g(r, s) =

⌊
4k − 1− 4r − s

2

⌋
+

⌈
4r + s

4

⌉
. (3)

For s 6= 1, we have g(r, s) ≤ 2k − 1. Likewise, for s = 1 and r > 0, we have g(r, s) ≤
2k − 1. For these values, we proceed as before, adding more lines so that there are
2k − 1 of each possible slope. We may now construct a polynomial of degree 8k − 4
and see that the coefficient of the x4k−1 y4k−3 term is nonzero. Applying Theorem 2
as before, we reach a contradiction with t1 = 4k − 1, t2 = 4k − 3, and S1 = S2 =

{1, . . . , 4k}.
We are left to consider the case where s = 1 and r = 0, i.e., q ′ = 1. In the pro-

cess of defining lines of the first type, since q ≤ 4k − 1 and q ′ = 1, we may have
2k − 1 lines of each possible slope. We define one new line of the second type for
the single queen in Q′, giving it slope ∞. Finally, we add more lines as necessary
so that there are precisely 2k with slope ∞ and 2k − 1 for each of the other three
slopes. Our polynomial has degree 8k − 3 and we consider the following leading term
with nonzero coefficient:

(2k−1
k

)
x2k y2k−1(x2)k−1(−y2)k = (−1)k

(2k−1
k

)
x4k−2 y4k−1. As

before, by applying Theorem 2 we reach a contradiction with t1 = 4k − 2, t2 = 4k − 1
and S1 = S2 = {1, . . . , 4k}. This completes the proof in this case.

The cases of n = 4k + 2 and n = 4k + 3 follow in a similar manner and are left to
the reader. This completes the proof.

4. A SECOND PROOF. We now present a second proof to Theorem 1 for the case n
even, and obtain a slightly weaker result when n is odd by showing that we need at least
n − 1 queens; this proof is more elementary than the one given in Section 3. While we
arrived at it independently, many of the ideas are to be found in a June 7, 1975 letter
of John Harris to Martin Gardner [11]. In the case when n ≡ 3 mod 4, Harris only
claimed n − 1 queens are required. A similar proof for the no-two-in-a-line problem
can be found in [15, Chapter 8].

We may refer to a square of Bn by the coordinates (x, y) of its corresponding vertex.
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Proof. The claim is easily checked for n = 1, so we assume n ≥ 2. Let Q be a good
placement of size q on Bn . We distinguish between the lines of slope 0 or∞ defined by
Q and those of slope±1. To this end, set U ⊆ Bn to be the set of squares left uncovered
by a line of slope 0 or∞, and set Q′′ ⊆ Q to be those queens not involved in defining
a line of slope 0 or ∞. (Note that squares in U may still be occupied by a queen in
Q′′.) Write q ′′ = |Q′′|. For any index i ∈ {1, . . . , n} (respectively j ∈ {1, . . . , n}), let
Ci = {(i, k) ∈ U : 1 ≤ k ≤ n} (respectively R j = {(k, j) ∈ U : 1 ≤ k ≤ n}).

The sets Ci and R j keep track of the squares in U for each column and row. Let
a < b be the minimum and maximum indices, respectively, for which Ci 6= ∅. Set c to
be the number of the Ci that are nonempty. Define a′ < b′ and r analogously for the
sets R j . Note that c, r ≥ n − q−q ′′

2 . In particular, c ≤ 1 or r ≤ 1 requires q ≥ 2(n − 1).
We therefore assume for the rest of the proof that r, c ≥ 2. Without loss of generality,
we may assume b − a ≥ b′ − a′ as otherwise we may rotate the placement by 90◦.
Figure 5 illustrates the various definitions of a 13-queen good placement on a 10× 10
chessboard.
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Figure 5. q = 13, q ′′ = 1, c = r = 4. Squares of U are shaded. Dark shading indicates those that are also in
C3 ∪ C9. The pale-shaded queen indicates the single queen in Q′′.

As Q is good, the squares of Ca ∪ Cb are either occupied or ‘attacked’ via a pair
of queens that would define a line of slope ±1. By definition, |Q ∩ Ca| ≤ 1, |Q ∩
Cb| ≤ 1, and so |Q ∩ (Ca ∪ Cb)| ≤ min{q ′′, 2}. There is at most one line of slope +1
that attacks two squares of Ca ∪ Cb (the line would be a diagonal of the ‘rectangle’
formed by Ca ∪ Cb ∪ Ra′ ∪ Rb′). Likewise, there is at most one line of slope −1 that
attacks two squares of Ca ∪ Cb. Each of the other lines of slope ±1 defined by Q
attack at most one square of Ca ∪ Cb. The placement Q must therefore define at least
2r − 2−min{q ′′, 2} lines of slope ±1. Furthermore,

2r − 2−min{q ′′, 2} ≥ 2

(
n −

q − q ′′

2

)
− 2− q ′′ = 2n − q − 2. (4)

Note that the q queens of Q can define at most q lines of slope ±1. Thus, q ≥
2n − q − 2, and so q ≥ n − 1.
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We now restrict n to be even and we will reach a contradiction by assuming that
q ≤ n − 1. As n − 1 is odd, there are at most n−2

2 lines of each possible slope defined
by the placement Q. In particular, there are a total of at most n − 2 lines of slopes ±1.

If q ′′ = 0, then r ≥ n − n−2
2 =

n
2 + 1, and so 2r − 2 ≥ n. So, we need at least n

lines of slope ±1—a contradiction.
If q ′′ > 0, then r ≥ n − q−q ′′

2 ≥ n − (n−1)−q ′′

2 =
n
2 +

q ′′+1
2 . We have 2r − 2 −

min{q ′′, 2} ≥ 2( n
2 +

q ′′+1
2 ) − 2 − q ′′ = n − 1, and so we need at least n − 1 lines of

slopes ±1—again, a contradiction.
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