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Abstract. The k-sample (k,W ) from a graphon W : [0, 1]2 → [0, 1] is the
random graph on {1, . . . , k}, where we sample x1, . . . , xk ∈ [0, 1] uniformly at ran-
dom and make each pair {i, j} ⊆ {1, . . . , k} an edge with probability W (xi, xj),
with all these choices being mutually independent. Let the random variable
Xk(W ) be the number of edges in (k,W ).

Vera T. Sós asked in 2012 whether two graphons U , W are necessarily weakly
isomorphic if the random variables Xk(U) and Xk(W ) have the same distribution
for every integer k ≥ 2. This question when one of the graphons W is a constant
function was answered positively by Endre Csóka and independently by Jacob
Fox, Tomasz �Luczak and Vera T. Sós. Here we investigate the question when
W is a 2-step graphon and prove that the answer is positive for a 3-dimensional
family of such graphons.

We also present some related results.

1. Introduction

Graphons (that is, measurable symmetric functions [0, 1]2 → [0, 1]) have
recently found many important applications in other areas, such as the limit
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theory of dense graphs (Lovász et al. [4,20,21]), large deviation principles for
random graphs (Chatterjee and Varadhan [5]), property testing in computer
science (Lovász and Szegedy [22]), etc. We refer the reader to the monograph
by Lovász [18] for an introduction.

The k-sample (k,W ) from a graphon W is the random graph on
[k] := {1, . . . , k} obtained by sampling x1, . . . , xk ∈ [0,1] uniformly at random
and making each pair {i, j} ⊆ [k] an edge with probability W (xi, xj), with
all these choices being mutually independent. The (homomorphism) density
t(F,W ) of a graph F on [k] inW is the probability that E(F ) ⊆ E( (k,W )),
that is, every adjacent pair in F is also adjacent in (k,W ). Equivalently,
we can define

(1) t(F,W ) :=
∫

[0,1]k

∏
{i,j}∈E(F )

W (xi, xj) dx1 · · · dxk.

Let us call two graphons U and W weakly isomorphic if the random graphs
(k,U) and (k,W ) have the same distribution for every k ∈ . This

is equivalent to t(H,U) = t(H,W ) for every connected graph H , because
we can recover the distribution of (k,W ) using the following inclusion-
exclusion formula

(2) ( (k,W ) = G) =
∑
F⊇G

V (F )=[k]

(−1)|E(F )\E(G)| t(F,W ),

for every graph G on [k], and replacing each t(F,W ) by the product of the
densities of the components of F (see Lemma 10 later).

Borgs, Chayes and Lovász [3] showed that all graphons in the weak iso-
morphism class ofW can, roughly speaking, be obtained fromW by applying
measure-preserving transformations of the variables. (See also Diaconis and
Janson [8] who derived this result from the Aldous–Hoover Theorem [1,14]
by noting a connection to exchangeable arrays.) This gives an analogue of
the classical moment problem, where each t(F,W ) can be thought of as the
“F -th moment” of W .

A graphon parameter f is a function that assigns to each graphon W
a real number or a real vector f(W ) such that f(W ) = f(U) whenever U
and W are weakly isomorphic. We say that a family (fi)i∈I of graphon
parameters forces a graphon W if every graphon U with fi(U) = fi(W ) for
every i ∈ I is weakly isomorphic to W . For example, the famous result of
Chung, Graham and Wilson [6] on p-quasirandom graphs can be stated in
this language as follows.

Theorem 1 (Chung, Graham and Wilson [6]). The constant-p graphon
is forced by t(K2, ·) and t(C4, ·), that is, by the edge and 4-cycle densities.
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Call a family (fi)i∈I of graphon parameters forcing if it forces every
graphon W . For example, the densities t(F, ·), where F ranges over all con-
nected graphs, form a forcing family (by (2) and Lemma 10).

A lot of effort has gone into investigating whether a graphon W is forced
by much less information than the densities of all graphs. Graphons that
are forced by a finite set of graph densities are called finitely forcible and
their systematic study was initiated by Lovász, Sós and Szegedy [19,23], mo-
tivated by quasirandom graphs and extremal graph theory. As one would
expect, finitely forcible graphons are “rare”: they form a meagre subset of
the space of all graphons ([23, Theorem 7.12]).

The authors are not aware of any results where a substantially smaller
set of parameters than the densities of all connected graphs is shown to be
forcing. Vera T. Sós [29] posed some questions in this direction, and in par-
ticular considered the following problem. For a graphon W and an integer
k ∈ , let Xk(W ) := |E( (k,W ))| be the size of, i.e. number of edges in,
the k-sample (k,W ) from W . We identify the random variable Xk(W )
with the vector of probabilities (Xk(W ) = i) for 0 ≤ i ≤ (k

2

)
, viewing it as

a graphon parameter. Let WS be the family of graphons W that are forced
by the sequence (Xk(W ))k∈ , i.e. by the distributions of sizes of samples
from W .

Question 2 (Size Forcing Question (Sós [29])). Is every graphon in WS?

Noga Alon (unpublished, see [7]) and independently Jakub Sliacan [28]
proved that the constant graphon is in the family WS . Then Endre
Csóka [7] and independently Jacob Fox, Tomasz �Luczak and Vera T. Sós [10]
proved that the constant-p graphon is in the family WS for any p ∈ (0, 1).
A natural next step would be to try to determine whether W ∈ WS when
W is a 2-step graphon, that is, we have a partition of [0, 1] into two measur-
able sets A and B such that W is constant on each of the sets A2, B2 and
(A×B) ∪ (B × A). By replacing W by a weakly isomorphic graphon, we
can assume that A = [0, a) and B = [a, 1] are intervals. Thus we need four
parameters to describe a 2-step graphon: the measure of A as well as the
three possible values of W .

Unfortunately, we were not able to prove that W ∈ WS for every 2-step
graphon W . However, we could prove this for the following 3-dimensional
set of graphons.

Theorem 3. Let W be the 2-step graphon with parts A := [0, a) and
B := [a, 1] such that its values on A2, (A×B)∪ (B ×A) and B2 are respec-
tively 0, p ∈ (0, 1] and q ∈ (0, 1]. If (1− a)q ≤ (1− 2a)p, then W ∈ WS .

Let us mention here that since Xk(1−W ) has the same distribution as(k
2

)−Xk(W ) (by taking complements), if W is forced by some sub-family of
(Xk)k∈ , then so is 1−W . Thus if W lies in WS , then so does 1−W .

1
2
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We can answer Question 2 for some other families of 2-step graphons W .
Here we present two further examples (Theorems 4 and 5) where a finite set
of some natural real-valued parameters suffices.

The first is motivated by the result of Csóka [7] who in fact proved that
the constant-p graphon is forced by X4 alone. The following theorem proves
a similar claim to that of Csóka [7] for the limit of balanced quasirandom
bipartite graphs, namely that it is forced by the edge distribution of its 5-
sample.

Theorem 4. Let p ∈ [0, 1] and let W be the graphon which is 0 on
[0, 1/2)2 ∪ [1/2, 1]2 and p everywhere else. Then W is forced by X5 alone.

Let the independence ratio α(W ) of a graphon W be the supremum of
the measure of A ⊆ [0, 1] such that W (x, y) = 0 for a.e. (x, y) ∈ A2. As eas-
ily follows from the results of Hladký, Hu and Piguet [12, Lemma 2.4], the
supremum is in fact a maximum (that is, it is attained by some A). Also,
the clique ratio ω(W ) := α(1−W ) is defined as the maximum measure of
A ⊆ [0, 1] with W being 1 a.e. on A2.

Theorem 5. Given a, p ∈ [0,1], set A := [0, a) and B := [a,1], and let W
be the graphon which is 0 on A2, 1 on B2, and p everywhere else. Then W
is forced by (α,ω,X4).

By using a basic version of the container method, we show that the value
of α (and thus of ω) is determined by any infinite subsequence of (Xk)k∈ .
More precisely, the following holds.

Theorem 6. For every graphon W , it holds that

α(W ) = lim
k→∞

(
(Xk(W ) = 0)

)1/k
.

Hladký and Rocha [13] defined and studied graphon versions of various
graph parameters, including the independence ratio α(W ). In particular,
they investigated how these parameters can be related to graph densities.
Our Theorem 6, by relating α(W ) to graph densities, fills one missing entry
in [13, Table 1].

By combining Theorems 5 and 6, we directly obtain the following result.

Corollary 7. Let W be a graphon as in Theorem 5 (that is, W is 0 on
[0, a)2, 1 on [a, 1]2, and p everywhere else). Then W ∈ WS .

Call a family F of graphs forcing if the corresponding family of param-
eters (t(F, ·))F∈F is forcing. Sós [29] also asked if one can find substantially
smaller forcing families than taking all connected graphs. We show that
two natural examples, namely the family of all cycles and the family of all
complete bipartite graphs, do not suffice.

O. COOLEY, M. KANG and O. PIKHURKO        4
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Proposition 8. The family of all connected graphs with at most one
cycle is not forcing. In particular, the family of all cycles is not forcing.

Proposition 9. For every integer d, the family of all graphs of diameter
at most d is not forcing. In particular, the family of all complete bipartite
graphs is not forcing.

Also, let us mention here the somewhat related result of Shapira and
Tyomkin [27] that the constant-p graphon is not forced by (t(Kk, ·))k∈ ,
that is, by clique densities.

Paper overview. The paper is arranged as follows. In Section 2 we
recall various standard notation that we will use, in particular notation re-
lated to graphons. In Section 3 we collect some easy preliminary results
which we will apply later. Theorem 4 is then proved in Section 4.

In Section 5, we first present an auxiliary graph result (Theorem 15)
which relates small independent sets to large almost independent sets, and
prove this result using the container method. We subsequently use this result
to prove Theorem 6.

Sections 6 and 7 contain the proofs of Theorems 3 and 5, respectively.
Finally, Propositions 8 and 9 are proved in Section 8. Section 9 contains
concluding remarks.

2. Notation

Here we present some notation that is used in this paper.
Let k be a non-negative integer. We denote the k-th falling factorial of

a real number r by

(r)k := r(r − 1) · · · (r − k + 1).

For a set X , let (
X

k

)
:=

{
Y ⊆ X : |Y | = k

}

consist of all subsets of X of size k. The characteristic function X of X as-
sumes value 1 on X and 0 everywhere else. We may abbreviate an unordered
pair {x, y} to xy.

We will use the following notation related to graphs. Let G = (V,E) be
a graph. Its complement is G :=

(
V,

(V
2

) \E)
. For A ⊆ V (G), its neighbour-

hood

N(A) :=
{
x : ∃ y ∈ A with xy ∈ E

}
consists of vertices that send at least one edge to A. For graphs H1 and H2,
their disjoint union H1�H2 is obtained by taking the union of vertex-disjoint
copies of these graphs (with no edges across).

ON A QUESTION OF VERA T. SÓS 5
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We will also be using the following special graphs. The k-clique Kk is
the graph on [k] in which every two vertices are adjacent. The k-path Pk is
the path on [k] that visits vertices 1, . . . , k in this order. The k-cycle Ck is
the cycle on [k] that visits vertices 1, . . . , k in this cyclic order. Also, Kk,�

denotes the complete bipartite graph with parts of sizes k and �.
Let Gk,m consist of isomorphism classes of all graphs with at most k

vertices and exactly m edges that do not contain any isolated vertices. For
example, G5,3 = {K3, P4, P3 �K2,K1,3}.

Let us also collect some definitions related to graphons.
The unit interval [0, 1] is by default equipped with the Lebesgue mea-

sure, denoted by λ. When making any statements about subsets of [0, 1],
we usually mean that they hold up to a set of measure 0. We will of-
ten use (Fubini–)Tonelli’s theorem (see e.g. [9, Theorem 14.2]) whose main
part states, informally speaking, that non-negative measurable functions can
be integrated in any order of variables. In particular, when working with
t(F,W ) as the value of the integral in (1), we can integrate the variables
x1, . . . , xk in any order. We will therefore often change the order of integra-
tion without mentioning this theorem explicitly.

Let W be a graphon and let A ⊆ [0, 1] be a measurable subset. The
degree (resp. A-degree) of x ∈ [0, 1] is

degW (x) :=
∫ 1

0
W (x, y) dy

(resp. degWA (x) :=
∫
A W (x, y) dy). The degree is defined for a.e. x ∈ [0, 1]

by a part of Tonelli’s theorem. We call W p-regular if degW (x) = p for
a.e. x ∈ [0, 1]. The codegree (resp. A-codegree) of (x, y) ∈ [0, 1]2 is

codegW (x, y) :=
∫ 1

0
W (x, z)W (z, y) dz

(resp. codegWA (x, y) :=
∫
AW (x, z)W (z, y) dz). One can view codegW (x, y)

as the density of 2-edge paths that connect x and y.
When discussing (k,W ), it will often be convenient to view it as a graph

whose vertex set consists of the sampled points x1, . . . , xk ∈ [0, 1] (which are
pairwise distinct with probability 1). Thus a phrase like “xi is adjacent to
xj” will be a shorthand for “i is adjacent to j in (k,W )”, etc.

For a graph G on [k], its graphon WG is the graphon which is 1 on[
i−1
k , i

k

) × [ j−1
k , jk

)
for each edge ij ∈ E(G), and 0 everywhere else. In other

words, we partition [0, 1) into k intervals of length 1/k and let WG be the
k-step {0, 1}-valued graphon that naturally encodes the adjacency relation
of G.

O. COOLEY, M. KANG and O. PIKHURKO        6
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3. Some auxiliary results

Let us present here some known or easy auxiliary results that we need
in this paper.

Lemma 10. For any graphon W and for any graphs H1 and H2, we have

t(H1 �H2,W ) = t(H1,W ) t(H2,W ).

Proof. Assume that V (H1�H2) = [k] and let A1 ∪A2 = [k] be the par-
tition into the vertex sets of H1 and H2. The lemma follows by observing
that the subgraphs induced by A1 and A2 in (k,W ) are independent of
each other and, up to a relabelling of vertices, are distributed as (|A1|,W )
and (|A2|,W ). �

Lemma 11. If W is a p-regular graphon and F ′ is obtained from a
graph F by attaching a pendant edge then

t(F ′,W ) = p t(F,W ).

Proof. We can assume that V (F ) = [k] and that the added edge is
{k, k + 1}. When computing t(F ′,W ) as the integral over (x1, . . . , xk+1)
∈ [0, 1]k+1 as in (1), we can first integrate over xk+1. The only factor that
depends on xk+1 is W (xk, xk+1). Its integral is p for a.e. xk, so integrat-
ing out xk+1 amounts to multiplying by p (and replacing F ′ by F in (1)),
proving the lemma. �

The following result implicitly appears in Csóka [7]. For completeness,
we present its proof.

Lemma 12. Let integers k and m satisfy 1 ≤ m ≤ (
k
2

)
. Then for every

graphon W we have

(3) ((Xk(W ))m) =
∑

F∈Gk,m

ck,F t(F,W ),

where ck,F > 0 is m! times the number of graphs on [k] that, after discarding
isolated vertices, are isomorphic to F .

Proof. Let X consist of all ordered m-tuples ({si, ti})mi=1 of pairwise
distinct pairs from

([k]
2

)
. Thus, for example, its size |X | is the falling facto-

rial
((k

2

))
m
. For F ∈ Gk,m, let XF consist of those sequences in X that give

a graph isomorphic to F after we discard all isolated vertices. Clearly, the
sets XF when F ranges over Gk,m partition X .

The left-hand side of (3) is the expectation of the number of sequences
in X all of whose m pairs are edges when we take the k-sample (k,W ).

ON A QUESTION OF VERA T. SÓS 7
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This expectation can be written as the sum over all ({si, ti})mi=1 ∈ X of the
probability that each {si, ti} is an edge. The last probability is exactly
t(F,W ) where F is the unique graph of Gk,m with ({si, ti})mi=1 ∈ XF . The
lemma follows by observing that each F ∈ Gk,m appears exactly |XF | = ck,F
times this way. �

Here is a useful consequence of this lemma.

Lemma 13. Let U and W be graphons such that Xk(U) and Xk(W ) have
the same distributions for some k ≥ 3. Then t(K2, U) = t(K2,W ), t(K2 �
K2, U) = t(K2 �K2,W ) and t(P3, U) = t(P3,W ).

Proof. By applying Lemma 12 with m = 1 to U and W , we get that(
k

2

)
t(K2, U) = (Xk(U)) = (Xk(W )) =

(
k

2

)
t(K2,W ).

Thus U and W have the same density of K2 and, by Lemma 10, of K2 �K2.
If k ≥ 4, then Lemma 12 with m = 2 gives that

2!
(k)3
2

· t(P3, U) = ((Xk(U))2)− 2!
(k)4
8

· t(K2 �K2, U)

= ((Xk(W ))2)− 2!
(k)4
8

· t(K2 �K2,W ) = 2!
(k)3
2

· t(P3,W ),

finishing the proof (since (k)3 
= 0). The same calculation applies for k = 3
except that the K2 �K2 term is absent. �

We will also need the following bipartite analogue of Theorem 1. While
a rather elementary proof by passing to finite graphs that converge to U is
possible (along the same lines as the original proof of Chung, Graham and
Wilson [6], see also e.g. [18, Theorem 11.62]), we present a proof that, while
requiring some analytic background, deals directly with graphons.

Lemma 14. Let A and B be sets of measure a and b respectively that
partition [0, 1]. (Thus a+ b = 1.) Let p ∈ [0, 1]. Let U be a graphon taking
value 0 on A2 ∪B2 such that t(K2, U) = 2abp and t(C4, U) = 2a2b2p4. Then
U(x, y) = p for a.e. (x, y) ∈ (A×B) ∪ (B ×A).

Proof. Assume that a, b ∈ (0, 1) as otherwise there is nothing to do.
Using that U is 0 on A2 ∪B2, we have that t(C4, U) (that is, the density

of the 4-cycle in U ) is 2
∫
A2 codegUB(x, y)

2 dxdy, where the factor 2 comes
from having a partition into two equiprobable events, namely that x1, x3 ∈ A
and that x2, x4 ∈ A. On the other hand, by applying the Cauchy–Schwarz
inequality twice, we get that

2a2b2p4 = 2
∫
A2

(
codegUB(x, y)

)2
dxdy ≥ 2

a2

(∫
A2

codegUB(x, y) dxdy
)2

O. COOLEY, M. KANG and O. PIKHURKO        8
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=
2
a2

(∫
B
(degUA(z))

2 dz
)2

≥ 2
a2b2

(∫
B
degUA(z) dz

)4

= 2a2b2p4.

Thus we have equality. This implies that codegUB(x, y) = bp2 for a.e. (x, y)
∈ A2 and that degUA(x) = ap for a.e. x ∈ B. The same argument applies
when we count C4 from the other side, giving that codegUA(x, y) = ap2 for
a.e. (x, y) ∈ B2 and degUB(x) = bp for a.e. x ∈ A.

View U as the integral kernel operator defined by

(Uf)(x) :=
∫ 1

0
U(x, y)f(y) dy, for f ∈ L2([0, 1]) and x ∈ [0, 1].

The Cauchy–Schwarz (or Hölder’s) inequality gives that Uf ∈ L2([0, 1]), so
U is an operator on L2([0, 1]). This operator is self-adjoint (since the func-
tion U is symmetric) and compact (as an integral operator with its kernel U
being a bounded and thus square-integrable function on [0, 1]2, see e.g. [11,
Example 3 of Section 2.16]). The Spectral Decomposition Theorem (see e.g.
[11, Theorem 5.1 of Section 4.5]) gives that L2([0, 1]) has an orthonormal
basis of eigenfunctions (fi)i∈ with the corresponding eigenvalues (λi)i∈
such that λi → 0 as i → ∞. Then it follows that

(4) U(x, y) =
∞∑
i=1

λifi(x)fi(y) for a.e. (x, y) ∈ [0, 1]2.

Consider the composition of U with itself. This is again an integral ker-
nel operator and we identify it with its kernel

(U ◦ U)(x, y) :=
∫

U(x, z)U(z, y) dz = codegU (x, y), x, y ∈ [0, 1].

By above, U ◦U is a.e. the two-step graphon of value 0 on (A×B)∪ (B × A),
value bp2 on A2 and value ap2 on B2. (Recall that U is 0 on A2 ∪B2.) Thus,
for every f ∈ L2([0, 1]), its image (U ◦ U)(f) is a function which is constant
on A and on B. Thus, as an operator, U ◦ U has rank at most 2. On the
other hand, each of the characteristic functions A and B is an eigenvec-
tor of U ◦U with eigenvalue abp2. We conclude that the operator U ◦U has
exactly one non-zero eigenvalue abp2 of multiplicity 2.

Clearly, the same functions (fi)i∈ and the squares (λ2
i )i∈ give a spec-

tral decomposition of U ◦ U . Thus the rank of U is also 2 and its non-zero
eigenvalues are in

{ − p
√
ab, p

√
ab

}
. Using the established values for the

(constant) degrees in U across the partition A ∪B, we have that U A =
ap B and U B = bp A. Consider the functions h1 :=

√
b A −√

a B and

ON A QUESTION OF VERA T. SÓS 9
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h2 :=
√
b A +

√
a B that are orthogonal to each other and have L2-norm√

2ab. We have

Uh1 =
√
b U A −√

aU B = ap
√
b B − bp

√
a A = −p

√
ab h1,

and similarly Uh2 = p
√
ab h2. Thus, up to relabelling, we have λ1 = −p

√
ab

and λ2 = p
√
ab (and λi = 0 for all i ≥ 3). Moreover, by the 1-dimensionality

of the eigenspaces for λ1 
= λ2, it holds that fi = ±hi/
√
2ab for i = 1, 2.

By (4), we have that

U(x, y) = λ1f1(x)f1(y) + λ2f2(x)f2(y)

=
−p

√
ab h1(x)h1(y) + p

√
ab h2(x)h2(y)

2ab
.

Thus U is constant on A×B and its value there can be shown to be p by
using the definition of h1 and h2 (or by our assumption that t(K2, U) =
2abp), giving the lemma. �

4. Proof of Theorem 4

Recall that W is the 2-step graphon which is the limit of balanced bi-
partite p-quasirandom graphs. Let U be an arbitrary graphon such that
the distribution of X5(U) is the same as the distribution of X5(W ). Let us
denote this common distribution by X5. We will be iteratively proving a
sequence of claims about U , until the derived information is enough to con-
clude that U must be weakly isomorphic to W . Assume that p 
= 0, as the
constant-0 graphon is clearly forced by X5 being 0 with probability 1.

Claim 4.1. The graphon U is (p/2)-regular, that is, the degree function

degU (x) =
∫ 1
0 U(x, y) dy is equal to p/2 for a.e. x ∈ [0, 1].

Proof. Consider the random variable D := degU (x), where x ∈ [0, 1]
is uniformly random. Lemma 13 shows that (D) = t(K2, U) equals
t(K2,W ) = p/2 and (D2) = t(P3, U) equals t(P3,W ) = p2/4. This shows
that

0 ≤ (
(D − p/2)2

)
= (D2)− p (D) + p2/4 = 0,

and therefore D = p/2 with probability 1. �

Thus, by Lemma 11, we have the following.

Claim 4.2. If t(H,U) = t(H,W ) for some graph H , then t(H ′, U) =
t(H ′,W ) for any graph H ′ that is obtained from H by adding a pendant edge.
In particular, t(F,U) = t(F,W ) for any forest F . �
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We therefore obtain the following.

Claim 4.3. It holds that t(H,U) = t(H,W ) for each H in G5,3 =
{K1,3, P4, P2 �K2,K3}. In particular, t(K3, U) = t(K3,W ) = 0 and thus
t(H,U) = 0 for every graph H that contains a triangle.

Proof. For the first three graphs of G5,3, this follows immediately from
Claim 4.2.

Lemma 12, when applied with m = 3 to each of U and W , gives the same
linear relation (with all coefficients non-zero) relating the densities of the four
graphs in G5,3. Since we have already established that t(H,U) = t(H,W ) for
every H ∈ G5,3 \ {K3}, we must also have that t(K3, U) = t(K3,W ). �

Thus by Claims 4.2 and 4.3, for each m ∈ [10], any graph in G5,m that
has different densities in U and W must belong to Hm, which we define
to consist of H ∈ G5,m such that H is triangle-free and H is not a forest.
Clearly, every such H must have an induced cycle of length 4 or 5, which
makes it easy to enumerate all graphs in Hm.

We have that H4 = {C4} consists only of the 4-cycle and thus Lemma 12
gives that

(5) t(C4, U) = t(C4,W ).

Next, H5 consists only of the 5-cycle C5 and C ′
4, a 4-cycle with a leaf

attached to one of its vertices. By (5) and Claim 4.2, we have that t(C ′
4,U) =

t(C ′
4,W ). Thus, by Lemma 12, the other graph in H5, namely the 5-cycle,

must also have the same density in U as in W .
Since H6 contains only the complete bipartite graph K2,3, Lemma 12

gives that t(K2,3, U) = t(K2,3,W ).
We now consider the random variable

Z := codegU (x, y) =
∫ 1

0
U(x, z)U(z, y) dz,

the density of copies of P2 which have x, y as endpoints, where x and y
are chosen uniformly and independently from [0, 1]. The following identities
show that the first three moments of Z remain the same if we replace U
by W :

(Z) = t(P3, U) = t(P3,W ) = p2/4,

(Z2) = t(C4, U) = t(C4,W ) = p4/8,

(Z3) = t(K2,3, U) = t(K2,3,W ) = p6/16.

We now observe that

(
Z(Z − p2/2)2

)
= (Z3)−p2 (Z2)+

p4

4
(Z) =

p6

16
−p2 p4

8
+

p2

4
· p

2

4
= 0.
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Since Z(Z − p2/2)2 ≥ 0 deterministically, we have that Z ∈ {0, p2/2} with
probability 1. By (Z) = p2/4, we conclude that

P(Z = 0) = P(Z = p2/2) =
1
2
.

Thus almost all pairs come in two types. Let C consist of those (x, y)
∈ [0, 1]2 for which codegU (x, y) = p2/2. Its complement consists a.e. of
pairs with zero codegree. Since the measure of C ⊆ [0, 1]2 is 1/2, we have∫ 1
0 degC(x) dx = 1/2, where degC(x) denotes the measure of

NC(x) :=
{
y : (x, y) ∈ C

}
, for x ∈ [0, 1].

We know from Claim 4.2 that t(P5, U) = t(P5,W ) where P5 is the path
with 5 vertices. One can compute t(P5, U) as follows. Recall that P5 vis-
its vertices 1, . . . , 5 in this order. First sample x1, x3, x5 ∈ [0, 1] and then
pick common neighbours x2 and x4 of x1x3 and x3x5 respectively. The
measure of choices of (x2, x4) ∈ [0, 1]2 is (p2/4)2 if x1x3, x3x5 ∈ C and 0 oth-
erwise (apart from a null set of (x1, x3, x5)). The same argument applies
to t(P5,W ). Since p 
= 0, the measure of (x1, x3, x5) ∈ [0, 1]3 with x1x3 and
x3x5 in C must be the same as the analogous quantity for W , that is, 1/4.
Thus, by the Cauchy–Schwarz inequality, we have

1
4
=

∫ 1

0
(degC(x3))2 dx3 ≥

(∫ 1

0
degC(x3) dx3

)2

=
1
4
.

We conclude that degC is the constant-1/2 function a.e.
For a.e. x ∈ [0, 1], the set NC(x) is independent in U . Indeed, the den-

sity of C5 in U can be written as the integral over x3 ∈ [0, 1] and then over
x1, x5 ∈ NC(x3) of U(x1, x5)(p2/2)2. On the other hand, we know that
t(C5, U) = t(C5,W ) = 0, giving the claim.

Pick a typical x ∈ [0, 1], that is, with A′ := NC(x) being measurable,
independent and of measure 1/2. By above and the (p/2)-regularity of U ,
each vertex of A′ has degree p/2 in U and almost all these edges connect A′

to its complement B′ := [0, 1] \A′. Thus

p

4
=

∫
A′

degUB′(x) dx =
∫
A′×B′

U(x, y) dxdy ≤ 1
2
t(K2, U),

where the factor 1/2 arises because integrating over B′ × A′ would give ex-
actly the same result, since U is symmetric. But t(K2, U) = t(K2,W ) = p/2,
so these are all the edges, that is, B′ is an independent set.

By applying a measure-preserving transformation to U , we can assume
that A′ = A and B′ = B. These sets are independent in both U and W .
Since W takes constant value p on A×B, Lemma 14 gives that U is also p
a.e. on A×B, finishing the proof of Theorem 4.

O. COOLEY, M. KANG and O. PIKHURKO        12
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5. Graphons with large density of independent k-sets

We will need the following auxiliary result which, informally speaking,
states that if a graph has many independent sets of large but fixed size k
then the graph has a large almost independent set. Let I(G) denote the
family of all independent sets in a graph G and let

Ik(G) := {I ∈ I(G) : |I| = k}
consist of all independent sets of size k.

Theorem 15. For every δ > 0 there exists ε > 0 such that for any
k ≥ 1/ε there exists n0 such that for every graph G on n ≥ n0 vertices
and every real α, if |Ik(G)| ≥ (α− ε)k

(
n
k

)
, then there exists A ⊆ V (G) with

|A| ≥ (α− δ)n and e(G[A]) ≤ δn2.

Proof. Given δ > 0, choose sufficiently small ε > 0; in particular, as-
sume that ε < δ/2. Given any k ≥ 1/ε, let n be sufficiently large. Let a
graph G = (V,E) and a real α satisfy the assumptions of the lemma. As-
sume that α > δ as otherwise we can trivially let A be the empty set.

We use a basic version of the container method that was introduced in
high generality independently by Balogh, Morris and Samotij [2] and by
Saxton and Thomason [26], and whose roots go back to Kleitman and Win-
ston [16,17] and Sapozhenko [24,25]. Roughly speaking, we will encode each
independent set I of G by a very small set T ⊆ I together with a decoding
procedure that produces a container C = C(T ) that necessarily contains I
and spans few edges. Then we take for A a container C(T (I)) of the maximal
size over all choices of I ∈ Ik(G).

Formally, we proceed as follows. Assume that V = [n] with the natural
order.

Take any I ∈ I(G). Enumerate I = {i1 < · · · < im} using the natural
order on V = [n]. The encoding procedure produces T = T (I) as follows.
Initially, let T := ∅ and j := 1. Iterate the following step. Given the current
values of j ≤ m and T ⊆ {i1, . . . , ij−1}, add ij into T if and only if

(6) |N(T ∪ {ij})| ≥ |N(T )|+ δn/2,

that is, ij has at least δn/2 neighbours outside of N(T ). Then increase j
by 1 and, if the new j is still at most m, repeat the iteration step.

Let T = T (I) be the final set T . Since only the vertices of I were con-
sidered for inclusion into T , we have that T ⊆ I . Also, every time we add a
vertex to T , the size of the neighbourhood N(T ) increases by at least δn/2.
Thus

(7) |T | ≤ 2/δ.

ON A QUESTION OF VERA T. SÓS 13
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Now, let us describe the decoding procedure which constructs the con-
tainer C(T ) for any independent set T ⊆ V of the graph G. Let t := |T |.
Enumerate V \ T = {v1 < · · · < vn−t}, again using the natural order on [n].
Initially, let C := T and j := 1. Repeat the following step given the current
values of j ≤ n− t and C ⊆ T ∪ {v1, . . . , vj−1}: include vj into C if and only
if vj 
∈ N(T ) and

(8) |N(Tj ∪ {vj})| < |N(Tj)|+ δn/2, where Tj := {v ∈ T : v < vj}.
Then increase j by 1 and, if j ≤ n− t, repeat the iteration step.

By construction, the final set C = C(T ) contains T and is disjoint from
N(T ). Also, in the notation of (8), each vertex vj of C \ T has fewer than
δn/2 neighbours in V \N(Tj). Note that the last set contains V \N(T ) ⊇ C
(since Tj ⊆ T and C ∩N(T ) = ∅). Thus C spans at most |T |n+ |C|δn/2
edges. This is at most 2n/δ + δn2/2 < δn2 if T satisfies (7).

Let us also show that

(9) I ⊆ C(T (I)), for every independent set I of G.

Let T := T (I). Since T ⊆ C(T ), it remains to show that every is ∈ I \ T be-
longs to C(T ), where i1 < i2 < · · · enumerate all elements of I . The reason
why is was not included into T when it was considered at the appropriate en-
coding step must be that (6) fails for j = s, that is, is adds fewer than δn/2
new neighbours when added to {v ∈ T : v < is}. This is exactly the state-
ment in (8). Also, since I ⊇ T is an independent set, we have that is 
∈ N(T ).
Thus is ∈ C(T ) by the definition of the decoding procedure, proving (9) as
desired.

By (7) and (9), we get the following upper bound on the number of
independent sets of size exactly k:

|Ik(G)| ≤
�2/δ	∑
t=0

∑
T∈It(G)

(|C(T ) \ T |
k − t

)
.

Fix an index t, between 0 and �2/δ�, such that the t-th summand is at least
the average value, which is at least 1/(2/δ + 1) times |Ik(G)|. Given this t,
let A be a maximum-size container C(T ) over all independent t-sets T ⊆ V .
Then

(10)
1

2/δ + 1
(α− ε)k

(
n

k

)
≤

(
n

t

)(|A| − t

k − t

)
.

The set A, as some container C(T ) for a set T with |T | ≤ 2/δ, spans
at most δn2 edges in G. Thus, in order to finish the proof of the theorem,

O. COOLEY, M. KANG and O. PIKHURKO        14
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we have to show that |A| ≥ (α− δ)n. When n tends to infinity (with δ � ε
≥ 1/k fixed and t ≤ 2/δ bounded), the inequality in (10) gives that |A| → ∞
and, in fact, |A| ≥ ((δ/3)1/k + o(1))ctn, where ct :=

(
(α− ε)k/

(
k
t

)) 1

k−t . It is
enough to show that e.g. ct ≥ (α− δ/2). The last inequality is equivalent to

( α− ε

α− δ/2

)k ≥
(
k

t

)
(α− δ/2)−t,

which holds for all large k because the left-hand side grows exponentially
in k, while the right-hand side grows at most polynomially. (Recall that
t ≤ 2/δ is bounded.)

Thus the set A has all required properties. �

For k ∈ , let

αk(W ) := (Xk(W ) = 0)

be the probability that the k-sample (k,W ) has no edges. We have

αk+m(W ) ≤ αk(W )αm(W ), for all k,m ∈ ,

because the subgraphs of (k+m,W ) spanned by the first k and the last m
vertices are independent and distributed as (k,W ) and (m,W ) respec-
tively. Thus, by the Fekete Lemma, the limit

(11) α∞(W ) := lim
k→∞

(αk(W ))1/k

exists. Clearly, α∞(W ) remains the same if we replace W by any weakly
isomorphic graphon.

In order to prove Theorem 6, which states in the above notation that
α(W ) = α∞(W ), we need to present some definitions and results related to
measure theoretic aspects of graphons from [18, Chapters 8 and 13]. Let U
and W be graphons. We define the cut-norm

‖U −W‖� := sup
A,B⊆[0,1]

∣∣∣∣
∫
A×B

(U(x, y)−W (x, y)) dxdy
∣∣∣∣,

where the supremum is taken over all pairs of measurable subsets of [0, 1].
For a measure-preserving function φ : [0, 1] → [0, 1], the pull-back Uφ of U
along φ is defined by

Uφ(x, y) := U(φ(x), φ(y)), x, y ∈ [0, 1].

It is routine to see that Uφ is a graphon which is weakly isomorphic to U .
The cut-distance is defined as

(12) δ�(U,W ) := inf
φ

‖Uφ −W‖�,

ON A QUESTION OF VERA T. SÓS 15
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where the infimum is taken over all invertible measure-preserving maps
φ : [0, 1] → [0, 1]. See [18, Section 8.2] for more details and, in particular,
[18, Theorem 8.13] for some alternative definitions that give the same dis-
tance. It can be easily verified that δ� is a pseudo-metric on the space of
graphons. Moreover, two graphons are weakly isomorphic if and only if they
are at cut-distance 0, see e.g. [18, Theorem 13.10].

Proof of Theorem 6. The inequality α∞(W ) ≥ α(W ) is easy. Indeed,
pick an independent set A ⊆ [0, 1] in W of measure λ(A) = α(W ) (which ex-
ists by [12, Lemma 2.4]) and observe that the probability of seeing no edges
in the k-sample (k,W ) is at least λ(A)k, the probability that all vertices
land in A.

Let us show the converse inequality α∞(W ) ≤ α(W ). Let α := α∞(W )
and assume that α > 0 as otherwise there is nothing to prove. Do the fol-
lowing for every m ∈ . Let ε > 0 be sufficiently small, in particular to
satisfy Theorem 15 for δ := 1/m. By (11), pick k ≥ 1/ε such that αk(W )
≥ 4(α− ε)k. Let n be sufficiently large and take the n-sample G ∼ (n,W ).
Let WG be its graphon, that is, WG is the n-step {0, 1}-valued graphon that
encodes the adjacency relation of G.

It is easy to see that the mean of αk(WG) over G ∼ (n,W ) is exactly
αk(W ). We claim that in fact αk(WG) is concentrated around this mean, for
which we apply Azuma’s inequality (see e.g. [15, Theorem 2.25]). Observe
that αk(WG) can only change by at most k/n if a vertex of G is altered, i.e.
the vertex-exposure martingale revealing G and tracking αk(WG) is (k/n)-
Lipschitz. Setting t := 2(α− ε)k, Azuma’s inequality states that

P(αk(WG) ≤ 2(α− ε)k) ≤ P(αk(WG) ≤ (αk(WG))− t)

≤ exp
( −t2

2n(k/n)2
)
= o(1),

where asymptotics are as n → ∞.
It is also known that, as n → ∞, the probability that the cut-distance

between WG and W is more than o(1) is at most o(1), specifically (see e.g.
[18, Lemma 10.16])

(δ�(WG,W ) > 22/
√
logn ) ≤ exp(−n/(2 logn)).

Thus, for large enough n, there is a graph G on [n] with αk(WG) ≥ 2(α− ε)k
and δ�(W,WG) ≤ δ/2 because (n,W ) satisfies each of these properties
with probability 1− o(1) as n → ∞. Since |Ik(G)|/(nk) = αk(WG) + o(1),
Theorem 15 applies to the graph G for large enough n and returns a
set A′ of vertices of size at least (α− δ)n spanning at most δn2 edges.
Let A :=

⋃
i∈A′

[
i−1
n , i

n

)
be the subset of [0, 1] corresponding to A′ when
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we pass from G to its graphon WG. Take an invertible measure-preserving
map φ : [0, 1] → [0, 1] such that ‖W φ −WG‖� < δ. Defining Sm := φ(A) to
be the image of the set A, we obtain that

∫
S2

m

W (x, y) dxdy =
∫
A2

W φ(x, y) dxdy

≤
∫
A2

WG(x, y) dxdy + ‖W φ −WG‖� ≤ 2δ = 2/m.

We now proceed as in [12]. Recall that a sequence of functions f1,
f2, . . . in L∞([0, 1], λ), the dual space of L1([0, 1], λ), weak-∗ converges to
f ∈ L∞([0, 1], λ) if

(13) lim
n→∞

∫ 1

0
fn(x)g(x) dx =

∫ 1

0
f(x)g(x) dx, for every g ∈ L1([0, 1], λ).

By the Sequential Banach–Alaoglu Theorem (see e.g. [30, Theorem 1.9.14]),
the sequence of the characteristic functions of the sets Sm viewed as el-
ements of L∞([0, 1], λ) has a subsequence that weak-∗ converges to some
function f ∈ L∞([0, 1], λ). Note that f(x) ≥ 0 for λ-a.e. x ∈ [0, 1]. In-
deed, letting g := X be the characteristic function of the measurable set
X := {x ∈ [0, 1] : f(x) < 0}, we get from (13) that

0 ≥
∫
X
f dλ =

∫ 1

0
fg dλ = lim

m→∞

∫ 1

0
Sm

g dλ ≥ 0,

from which it follows that λ(X) = 0. Likewise, we obtain that f ≤ 1 a.e.
on [0, 1].

Let the support of a function g : [0, 1] → be the set

supp(g) := {x ∈ [0, 1] : g(x) 
= 0}.
In fact, [12, Lemma 2.4] states that, for any graphon W , the support of the
weak-∗ limit of the characteristic functions of W -independent sets is W -inde-
pendent. Thus S := supp(f), the support of f , is an independent set in W .
By the definition of weak-∗ convergence and the fact that ‖f‖∞ ≤ 1, we have
that

α(W ) ≥ λ(S) ≥
∫ 1

0
f(x) dx = lim

m→∞

∫ 1

0
Sm

(x) dx

= lim
m→∞

λ(Sm) = α∞(W ).

This shows that α(W ) = α∞(W ), proving Theorem 6. �

ON A QUESTION OF VERA T. SÓS 17



Acta Mathematica Hungarica

18 O. COOLEY, M. KANG and O. PIKHURKO

6. Proof of Theorem 3

Recall that W is the 2-step graphon with steps A and B which is 0
on A2, p on A×B and q on B2, and where A = [0, a). Let U be an arbitrary
graphon such that for every k ∈ the distributions of Xk(U) and Xk(W )
are the same; let us denote this random variable by Xk. We have to show
that U is weakly isomorphic to W . Assume that a ∈ (0, 1) as otherwise W is
weakly isomorphic to a 1-step graphon and the conclusion follows from the
results in [7].

By Theorem 6 we conclude that α(U) = limk→∞( (Xk = 0))1/k = α(W ).
Thus, by [12, Lemma 2.4], there is a set A′ of measure a with U be-
ing 0 on A′ × A′ a.e. By taking a measure-preserving Borel isomorphism
φ : [0, 1] → [0, 1] with φ(A′) = A and replacing U with Uφ (which is weakly
isomorphic to U ), we can assume that A′ = A. Recall that degUA(x) :=∫
A U(x, y) dy for x ∈ [0, 1].

Claim 6.1. For almost every x ∈ B, we have degUA(x) ≥ ap.

Proof of Claim. If the claim is false, then by the continuity of mea-
sure, there is ε > 0 such that the measure of B′ := {x ∈ B : degUA(x) ≤ ap−ε}
is at least ε. Take k sufficiently large. Let us lower bound αk(U), the prob-
ability that the k-sample (k,U) spans no edges. Recall that we sample
uniform x1, . . . , xk ∈ [0, 1] and then make each pair ij an edge with proba-
bility U(xi, xj), with all choices being mutually independent. With proba-
bility ak, all elements xi belong to A (when almost surely (k,U) has no
edges). A disjoint event is that x1 belongs to B′ ⊆ B, which has probabil-
ity is at least ε > 0. Conditioned on this event, the probability of having no
edges is at least

(∫
A
(1− U(x1, y)) dy

)k−1

= (a− degUA(x1))k−1 ≥ (
a(1− p) + ε

)k−1
,

since, when ignoring null sets, it is enough that all other k−1 vertices belong
to A and are all non-adjacent to x1.

Thus αk(U) ≥ ak + ε(a(1− p) + ε)k−1. For W , it is easy to write an
explicit formula, where i denotes the number of sampled vertices that belong
to B:

αk(W ) =
k∑

i=0

(
k

i

)
(1− a)iak−i(1− p)(k−i)i(1− q)(

i

2
)

= ak + k(1− a)ak−1(1− p)k−1 + · · · .
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Note that the first term ak matches that for U . Of course, we have αk(U) =
(Xk = 0) = αk(W ). Thus a desired contradiction, namely that αk(U) >

αk(W ), will follow if we show that for every i ∈ [k],

(14) ε(a(1− p) + ε)k−1 > k ·
(
k

i

)
(1− a)iak−i(1− p)(k−i)i(1− q)(

i

2
) .

Informally speaking, if i is small, then the main terms are (a(1− p) + ε)k

versus (a(1− p)i)k; otherwise either (1− p)(k−i)i or (1− q)(
i

2
) (and thus the

right-hand side of (14)) is very small. Formally, given ε > 0 as above, fix a
large constant M � 1/ε and then let k → ∞. If 1 ≤ i ≤ M then the ratio
of the right-hand side to the left-hand side of (14) is at most

O

(( a(1− p)
a(1− p) + ε

)k · kM+1
)

= o(1).

If M < i ≤ k, then since (slightly crudely) max
(
(k − i)i,

(
i
2

)) ≥ ki/4 the
ratio is at most

max(1− p, 1− q)ik/4 · ki+1

ε(a(1− p) + ε)k
= o(1),

where the last estimate holds since p, q 
= 0 by assumption. This proves (14)
for all large k and finishes the proof of the claim. �

Let U ′ be the graphon obtained from U by averaging it over (A× B)
∪ (B×A) and over B2. That is, U ′ is the 2-step graphon with parts A and B
which assumes value 0 on A2, value q′ := 1

(1−a)2
∫
B2 U(x, y) dxdy on B2, and

value

(15) p′ :=
1

a(1− a)

∫
A×B

U(x, y) dxdy =
1

a(1− a)

∫
B
degUA(y) dy ≥ p

on (A× B) ∪ (B × A), where we applied Claim 6.1 in (15). Consider the
density of P3, the path visiting vertices 1, 2, 3 in this order. Its density, say
in U , can be written as t(P3, U) =

∫
(degU (x2))2 dx2. Clearly, when we pass

from U to U ′ then the degrees inside A (resp. degrees inside B) are all re-
placed by their average value. Thus the average of (deg(x))2 over x in A
(resp. B) does not increase by the Cauchy–Schwarz inequality. By adding
up these two averages weighted by a and 1− a respectively, we get the av-
erage of (deg(x))2 over x ∈ [0, 1], which is the density of P3. Thus t(P3, U)
≥ t(P3, U

′). The W -degrees of x in A and B are the constants (1− a)p
and ap+ (1− a)q respectively. These constants for U ′ are (1− a)p′ and
ap′ + (1− a)q′ respectively. Since p′ ≥ p by (15), we have that (1− a)p′
≥ (1−a)p. Furthermore, since U ′ and W have the same edge density (which
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can be computed as the convex combination of the average degrees in A and
B weighted by a and 1− a), we have that ap′ + (1− a)q′ ≤ ap+ (1− a)q.
Thus,

(1− a)p′ ≥ (1− a)p ≥ ap+ (1− a)q ≥ ap′ + (1− a)q′,

where the middle inequality is an assumption of the theorem. We see that
when we pass from U ′ to W , the degrees get more even (with the average
staying the same) and so the density of P3, the average of (deg(x))2, does
not increase. However, the density of P3 is determined by X3 by Lemma 13.
Thus the degree functions of U , U ′ and W coincide a.e. Thus p′ = p, q′ = q,

degUA(x) = ap, degUB(x) = (1− a)q for a.e. x ∈ B,(16)

degUB(y) = (1− a)p for a.e. y ∈ A.

Claim 6.2. For almost every (x, y) ∈ B2, we have that codegUA(x, y) =
ap2. (Recall that we denote codegUA(x, y) :=

∫
A U(x, z)U(y, z) dz.)

Proof of Claim. Suppose first that codegUA(x, y) > ap2 for some set
of (x, y) ∈ B2 of positive measure. Then by the continuity of measure there
exists ε > 0 such that the measure of

B′ := {(x, y) ∈ B2 : codegUA(x, y) ≥ ap2 + ε}
is at least ε.

When we compute (Xk ≤ 1) using U or W , the k-tuples of vertices
that have at most one point in B contribute the same amount. For example,
let us condition on xi being the unique sampled vertex that belongs to B.
Then each other x� ∈ A is adjacent ot xi with probability 1

a deg
U
A(xi) which

is equal to 1
a deg

W
A (xi) by (16). Moreover, these choices for different choices

of � are independent of each other, both in U and in W . Thus any particular
adjacency pattern of xi ∈ B to the other k− 1 vertices from A has the same
conditional probabilities in U and in W .

Consider the remaining contribution to (Xk ≤ 1), i.e. when at least two
sampled vertices belong to B. First, take U . With probability at least ε, the
pair (x1, x2) belongs to the set B′. Conditioned on this, each other vertex x�
is adjacent to neither x1 nor x2 with probability

∫
A
(1− U(x1, y))(1− U(x2, y)) dy = a− 2ap+ codegUA(x1, x2),

with these choices being mutually independent for different values of �. This
contributes at least ε(a(1− p)2 + ε)k−2 to (Xk ≤ 1). On the other hand,

O. COOLEY, M. KANG and O. PIKHURKO        20



Acta Mathematica Hungarica

ON A QUESTION OF VERA T. SÓS 21

an explicit summation formula can be written for W . First assuming that
p, q 
= 1, we have by above that

ε(a(1− p)2 + ε)k−2

≤
k∑

i=2

(
k

i

)
ak−i(1−a)i(1−p)(k−i)i(1−q)(

i

2
)
(
1+

(
i

2

)
q

1−q
+(k−i)i

p

1−p

)
.

As before by taking k → ∞ and looking at the cases i = O(1) and i � 1
separately, one can argue that ε(a(1− p)2 + ε)k−2 is strictly larger than k
times the maximum term in the sum, giving a contradiction. If either p or q
is 1, the inequality must be rewritten to avoid dividing by zero, and in fact
the only non-zero terms come from i = 2 (if q = 1) or i = k (if p = 1). It is
then easy to obtain the necessary contradiction directly.

Thus codegUA(x, y) ≤ ap2 for a.e. (x, y) ∈ B2. The integral of codegA(x, y)
over all (x, y) ∈ B2 can be written as the integral over z ∈ A of (degB(z))2.
By (16), the latter integral is the same for U as for W . Thus

(1−a)2ap2 ≥
∫
B2

codegUA(x, y) dxdy =
∫
B2

codegWA (x, y) dxdy = (1−a)2ap2,

and the first integrand must be ap2 a.e. on B2, proving the claim. �

It follows that the density of triangles with one vertex in A and two
vertices in B is the same in U as in W . Indeed, first sample two vertices x, y
in B, which are adjacent in U and in W with the same probability q by (16),
and observe that the probability of a vertex from A being adjacent to both
is exactly 1

a codegA(x, y). Also, U and W have zero density of triangles with
at least two vertices in A. Since U and W have the same triangle density,
namely (X3 = 3), they must have the same density of triangles that lie
inside B.

Thus the density of triangles with any given partition of their vertices
between A and B is the same for U as for W . Since the degrees in U are the
same as the degrees in W by (16), this allows us to conclude by a version of
Lemma 11 that the density of K ′

3, the triangle with a pendant edge, is the
same in U as in W . (Indeed, this is true even if we specify, relative to A
and B, where the vertices of the triangle in K ′

3 lie.) Lemma 12 applied to
G4,4 = {C4,K

′
3} gives that U and W have the same density of 4-cycles.

Claim 6.2 implies that the density of the 4-cycle (which we assume to visit
the vertices 1, 2, 3, 4 in this order) conditioned on x1, x3 ∈ A and x2, x4 ∈ B
is p4, the fourth power of edge density p between A and B. (Indeed, to
sample such a 4-cycle, we can first sample uniform (x2, x4) ∈ B2; then we
independently sample two vertices of A, each being adjacent to both x2 and
x4 with probability ( 1

a codegA(x2, x4))2.) Thus if we let U ′ be obtained
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from U by letting it be 0 on B2, then all assumptions of Lemma 14 are sat-
isfied. The lemma gives that U ′ (and thus U ) assumes the constant value p
between A and B.

Thus we know all about U except its values on B2. Our knowledge
about U is enough to compute the density of all types of 4-cycles except
those entirely inside B. For example, if the sampled 4-cycle is to visit parts
B,B,B,A in this order, then we can first sample a 3-vertex path x1, x2,
x3 in B (knowing its density since degUB(x) = degWB (x) = (1− a)q for almost
every x ∈ B) and then use Claim 6.2 to see that, conditioned on x4 ∈ A,
the probability of x4 being adjacent to both x1 and x3 is exactly p2 (same
as in W ). Since the graphons U and W have the same overall density of
4-cycles, they have the same density of 4-cycles inside B. This relative den-
sity of 4-cycles is the fourth power of the relative edge density since W is
constant on B. By the Chung–Graham–Wilson Theorem (Theorem 1), the
graphon U assumes the constant value q on B2. We conclude that U = W
a.e., proving Theorem 3.

7. Proof of Theorem 5

Recall that W is the 2-step graphon with the first step A = [0, a) be-
ing an independent set, while W assumes value 1 on B2 for B := [a, 1] and
value p on A×B. We have to show that if a graphon U satisfies α(U) = a,
ω(U) = 1−a andX4(U) = X4(W ) =: X4, then U is weakly isomorphic toW .

By Theorem 6 (and [12, Lemma 2.4]), there are subsets C,D ⊆ [0, 1] of
measures a and 1− a respectively such that U is 0 on C2 a.e. and U is 1
on D2 a.e. The intersection C ∩D must have measure 0, so we can assume
that C and D partition [0, 1]. By applying a measure-preserving transfor-
mation to U , assume that C = A and D = B.

Claim 7.1. Almost every x ∈ A satisfies degUB(x) = (1− a)p.

Proof of Claim. The graphon U has the same K4-density as W by
t(K4, U) = (X4 = 6). Since A is an independent set, there are only two
types of K4 in U : those inside B (and their contribution to the overall den-
sity is (1− a)4, the same as the analogous quantity for W ) and those that
have three vertices in B and one vertex in A. Since U = 1 on B2, the lat-
ter type of 4-cliques determines 1

a

∫
A(deg

U
B(x))

3 dx, the third moment of the
random variable Y := degUB(x), where x is a uniform element of A. This
third moment is the same as for W , which is ((1− a)p)3 as degWB (x) is the
constant function (1− a)p. Also, we have by Lemma 13 that

(17) (Y ) =
1
a

∫
A
degB(x) dx =

1
2 (X2 = 1)− (1− a)2

a
= (1− a)p.
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Thus ( (Y ))3 = (Y 3) which for a non-negative variable Y is possible only
if Y is constant a.e. Of course, the constant value of Y must be (Y ) =
(1− a)p, proving the claim. �

Consider the random variable Z := degUA(x) for uniform x ∈ B. A cal-
culation analogous to that in (17) shows that (Z) = ap. Our knowledge
about U directly gives the density of all possible copies of P3, except ABA-
paths (that is, copies of P3 that have the middle vertex in B and the other
two in A). For example, the density of BAB-paths can be computed by
sampling x2 ∈ A first and then using Claim 7.1. Since the total P3-density
in U is the same as that for W by Lemma 13, we conclude that the den-
sity of ABA-paths in U is also the same as in W , which is (1− b)(ap)2.
Thus (Z2) = (ap)2 = ( (Z))2. This implies that for a.e. x ∈ B we have
degUA(x) = ap. (Alternatively, this conclusion can be reached by applying
the argument of Claim 7.1 to the complementary graphon 1− U .)

Let K−
4 be the 4-clique minus an edge, the unique graph on 4 ver-

tices with 5 edges. Clearly, we have t(K−
4 , U) = 1

6 (X4 = 5)+ (X4 = 6) =
t(K−

4 ,W ). The graphon U has 2 types of K−
4 of positive density. The first

type consists of those copies of K−
4 that have exactly 3 vertices in B (and

since U is 1 a.e. on B2, the corresponding density is determined by the de-
gree distribution on A, which we know by Claim 7.1). Thus we know the
density in U of the other copies of K−

4 which have 2 points in A and 2 points
in B (and this matches that for W ). Thus U has the same density of ABAB-
cycles as W . Also, their densities of AB-edges coincide, e.g. by Claim 7.1.
Since W is constant-p on A×B, the same must hold for U by Lemma 14.
Thus U and W are weakly isomorphic.

8. Proofs of Propositions 8 and 9

Proof of Proposition 8. We have to show that the family of graphs
with at most one cycle is not forcing. Here we use the observation that if W
is an n-step graphon with parts of measure 1/n and its values are encoded
by a symmetric n× n matrix A ∈ [0, 1]n×n, then

(18) t(Ck,W ) =
1
nk

n∑
i=1

λk
i , for every k ≥ 3,

where λ1, . . . , λn are the eigenvalues of A, repeated with their multiplicities.
Indeed, t(Ck,W ) is the sum over all ordered k-tuples (v0, . . . , vk−1) ∈ [n]k

of 1
nk

∏k−1
i=0 Avi,vi+1

, (where vk := v0). On the other hand, the j-th diagonal
entry of Ak is the sum of

∏k−1
i=0 Avi,vi+1

taken over all (v0, . . . , vk−1) ∈ [n]k
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with v0 = j. Summing this over all j ∈ [n], we get that t(Ck,W ) is the trace
of 1

nk A
k, giving the identity in (18).

Take, for example, the following unit vectors:

x1 :=
1√
3

⎛
⎝1
1
1

⎞
⎠ , x2 :=

1√
2

⎛
⎝ 1
−1
0

⎞
⎠ , and x3 :=

1√
6

⎛
⎝ 2
−1
−1

⎞
⎠ ,

and let e.g. ε := 1/4. Note that x2 and x3 are orthogonal to x1. It routinely
follows that the symmetric 3× 3 matrices

(19) A := x1x
T
1 + εx2x

T
2 and A′ := x1x

T
1 + εx3x

T
3

have the same eigenvalues (namely 1, ε and 0), all entries in [0, 1] and all
row sums equal (namely, to 1, which is the row sum of x1x

T
1 ).

Let W and W ′ be the 3-step graphons, with steps of measure 1/3, whose
values are given by the symmetric matrices A,A′ ∈ [0, 1]3×3. The maximum
entry of A′ is 1/3 + 2ε/3, which is strictly larger than the maximum entry
1/3+ ε/2 of A, so the graphons W and W ′ are are not weakly isomorphic by
e.g. considering the density of Kk as k → ∞ (and noting that the maximum
entry of A′ is on the diagonal).

On the other hand, W and W ′ have the same cycle densities by (18).
Since they are both (1/3)-regular, they have the same homomorphism den-
sity for every graph with at most one cycle by Lemma 11. This proves
Proposition 8. �

Proof of Proposition 9. We have to show that the family of graphs
of diameter at most d is not forcing. Let W (resp. W ′) be the graphon of
the disjoint union G := Pd+2 � Pd+2 (resp. G′ := Pd+3 � Pd+1). (Recall that
Pn denotes the path with n vertices.) In other words, each of W and W ′

is the {0, 1}-valued step graphon with 2d+ 4 steps of equal measure that
encodes the adjacency relation of the corresponding graph. They are not
weakly isomorphic because the induced density of Pd+3 is zero in W but not
in W ′.

On the other hand, t(F,W ) = t(F,W ′) for every graph F of diameter
at most d. Indeed, if V (F ) = [k], then for each choice of x = (x1, . . . , xk)
∈ [0, 1]k for which the integrand in (1) is positive, the union of the corre-
sponding vertices of G or G′ must induce a subgraph of diameter at most d,
that is, a sub-path with i ≤ d+ 1 vertices. The number of sub-paths of any
given order i ≤ d+ 1 is the same for G and G′ (namely, 2d+ 4− 2i). Thus
t(F,W ) = t(F,W ′).

We conclude that the family of graphs of diameter at most d is not forc-
ing. �

Remark 16. One can view the construction in the proof of Proposition 9
as first taking the graphon WCm

of the m-cycle Cm for m := 2d+4 and then
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decreasing density to zero on some two edges. Instead, we could have first
multiplied the whole m-cycle graphon WCm

by some real p ∈ (0, 1) and then
defined W and W ′ by modifying pWCm

on the the same pairs of edges of Cm

as before but in a way such that the new graphons are still (2p/m)-regular
but not weakly isomorphic. This modified construction shows by Lemma 11
that we can increase the family in Proposition 9 by taking all graphs of
diameter at most d and then attaching any number of pendant trees.

9. Concluding remarks

The only information that our results on Question 2 used was the con-
clusions about the densities for graphs on at most 5 vertices that follow from
the distribution of X2, . . . , X5, and the probabilities that Xk is 0, 1,

(k
2

)− 1,
or

(k
2

)
as k → ∞. It would be interesting to find new types of arguments

that use much more substantial information about the random variables Xk.
An intriguing open question (which is a considerable weakening of Ques-

tion 2) is whether the sequence (Xk(W ))k∈ determines the essential supre-
mum ‖W‖∞ of an arbitrary graphon W . If true, this would greatly enlarge
the set of 2-step graphons W for which we can prove that W ∈ WS .
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