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Abstract. The k-sample G(k,W ) from a graphon W : [0, 1]2 → [0, 1]
is the random graph on {1, . . . , k}, where we sample x1, . . . , xk ∈ [0, 1]
uniformly at random and make each pair {i, j} ⊆ {1, . . . , k} an edge with
probability W (xi, xj), with all these choices being mutually independent.
Let the random variable Xk(W ) be the number of edges in G(k,W ).

Vera T. Sós asked in 2012 whether two graphons U,W are necessarily
weakly isomorphic provided the random variables Xk(U) and Xk(W )
have the same distribution for every integer k � 2. This question when
one of the graphons W is a constant function was answered positively by
Endre Csóka and independently by Jacob Fox, Tomasz �Luczak and Vera
T. Sós. Here we investigate the question when W is a 2-step graphon
and prove that the answer is positive for a 3-dimensional family of such
graphons.

We also present some related results.
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1 Introduction

The k-sample G(k,W ) from a graphon W (i.e. a measurable symmetric function
[0, 1]2 → [0, 1]) is the random graph on [k] := {1, . . . , k} obtained by sampling
x1, . . . , xk ∈ [0, 1] uniformly at random and making each pair {i, j} ⊆ [k] an edge
with probability W (xi, xj), with all these choices being mutually independent.
The (homomorphism) density t(F,W ) of a graph F on [k] in W is the probabil-
ity that E(F ) ⊆ E(G(k,W )), that is, every adjacent pair in F is also adjacent
in G(k,W ). Equivalently, t(F,W ) :=

∫
[0,1]k

∏
{i,j}∈E(F ) W (xi, xj) dx1 . . . dxk.

Let us call two graphons U and W weakly isomorphic if the random graphs
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G(k, U) and G(k,W ) have the same distribution for every k ∈ N. This is equiv-
alent to t(H,U) = t(H,W ) for every connected graph H. Borgs, Chayes and
Lovász [1] showed that all graphons in the weak isomorphism class of W can,
roughly speaking, be obtained from W by applying measure-preserving trans-
formations of the variables.

A graphon parameter f is a function that assigns to each graphon W a
real number or a real vector f(W ) such that f(W ) = f(U) whenever U and
W are weakly isomorphic. We say that a family (fi)i∈I of graphon parameters
forces a graphon W if every graphon U with fi(U) = fi(W ) for every i ∈ I is
weakly isomorphic to W . For example, the famous result of Chung, Graham and
Wilson [2] on p-quasirandom graphs states, in this language, that the constant-p
graphon is forced by t(K2, ·) and t(C4, ·), i.e. by the edge and 4-cycle densities.

Call a family (fi)i∈I of graphon parameters forcing if it forces every
graphon W . For example, the densities t(F, ·), where F ranges over all con-
nected graphs, form a forcing family. The authors are not aware of any results
where a substantially smaller set of parameters than the densities of all con-
nected graphs is shown to be forcing. Vera T. Sós [9] posed some questions in
this direction, and in particular considered the following problem. For a graphon
W and an integer k ∈ N, let Xk(W ) := |E(G(k,W ))| be the size of, i.e. number
of edges in, the k-sample G(k,W ) from W . We identify the random variable
Xk(W ) with the vector of probabilities P(Xk(W ) = i) for 0 � i �

(
k
2

)
, viewing

it as a graphon parameter. Let WS be the family of graphons W that are forced
by the sequence (Xk(W ))k∈N, i.e. by the distributions of sizes of samples from
W .

Question 1 (Size Forcing Question (Sós [9])). Is every graphon in WS?

Alon (unpublished, see [4]) and independently Sliacan [8] proved that the
constant- 12 graphon is in the family WS . Then Csóka [4] and independently Fox,
�Luczak and Sós [5] proved that constant-p graphon is in the family WS for any
p ∈ (0, 1). A natural next step would be to try to determine whether W ∈ WS

when W is a 2-step graphon, i.e. we have a partition of [0, 1] into measurable sets
A and B such that W is constant on each of the sets A2, B2 and (A×B)∪(B×A).
We need four parameters to describe a 2-step graphon: the measure of A as well
as the three possible values of W . We can prove that W ∈ WS for the following
3-dimensional subset of 2-step graphons.

Theorem 1. Let W be the 2-step graphon with parts A := [0, a) and B := [a, 1]
such that its values on A2, (A×B)∪(B×A) and B2 are respectively 0, p ∈ (0, 1]
and q ∈ (0, 1]. If (1 − a)q � (1 − 2a)p, then W ∈ WS.

We can also answer Question 1 for some other families of 2-step graphons.
We present two further examples (Theorems 2 and 3) where a finite set of some
natural real-valued parameters suffices. The first is motivated by the result of
Csóka [4] who in fact proved that the constant-p graphon is forced by X4 alone.

Theorem 2. Let p ∈ [0, 1] and let W be the graphon which is 0 on [0, 1/2)2 ∪
[1/2, 1]2 and p everywhere else. Then W is forced by X5 alone.
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Let the independence ratio α(W ) of a graphon W be the supremum of the
measure of A ⊆ [0, 1] such that W (x, y) = 0 for a.e. (x, y) ∈ A2. As was observed
by Hladký, Hu and Piguet [6, Lemma 2.4], the supremum is in fact a maximum
(that is, it is attained by some A). Also, the clique ratio ω(W ) := α(1 − W ) is
the maximum measure of A ⊆ [0, 1] with W being 1 a.e. on A2.

Theorem 3. Given a, p ∈ [0, 1], set A := [0, a) and B := [a, 1], and let W be
the graphon which is 0 on A2, 1 on B2, and p everywhere else. Then W is forced
by (α, ω,X4).

By using a basic version of the container method, we show that the value of
α (and thus of ω) is determined by any infinite subsequence of (Xk)k∈N. More
precisely, the following holds.

Theorem 4. α(W ) = limk→∞
(
P(Xk(W ) = 0)

)1/k for every graphon W .

We note that Theorem 4, by relating α(W ) to graph densities, fills one missing
entry in [7, Table 1].

By combining Theorems 3 and 4, we directly obtain the following result.

Corollary 1. Let W be a graphon as in Theorem3 (that is, W is 0 on [0, a)2,
1 on [a, 1]2, and p everywhere else). Then W ∈ WS. ��

Call a family F of graphs forcing if the corresponding family of parameters
(t(F, ·))F∈F is forcing. Sós [9] also asked if one can find substantially smaller
forcing families than taking all connected graphs. We show that two natural
examples, namely the family of all cycles and the family of all complete bipartite
graphs, do not suffice.

Proposition 1. (i) The family of all connected graphs with at most one cycle is
not forcing. In particular, the family of all cycles is not forcing.

(ii) For every integer d, the family of all graphs of diameter at most d is not
forcing. In particular, the family of all complete bipartite graphs is not forc-
ing.

Full proofs of all the results stated in this extended abstract can be found
in [3].

2 Some Auxiliary Results

We first present some known or easy auxiliary results that we need for the proofs
of the main results. For graphs H1,H2, let H1 � H2 denote their disjoint union.
Let Gk,m consist of isomorphism classes of all graphs with at most k vertices
and exactly m edges that do not contain any isolated vertices. For example,
G5,3 = {K3, P4, P3 � K2,K1,3}.

Lemma 1. (i) For any graphon W and for any graphs H1 and H2, we have
t(H1 � H2,W ) = t(H1,W ) t(H2,W ).

(ii) If W is a p-regular graphon and F ′ is obtained from a graph F by attaching
a pendant edge then t(F ′,W ) = p t(F,W ).

The following result implicitly appears in Csóka [4] (see also [3, Lemma 12]).
Let (r)k := r(r − 1) . . . (r − k + 1) denote the falling factorial.
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Lemma 2. Let integers k and m satisfy 1 � m �
(
k
2

)
. Then for every graphon

W we have
E ((Xk(W ))m) =

∑

F∈Gk,m

ck,F t(F,W ),

where ck,F > 0 is the number of graphs on [k] that, after discarding isolated
vertices, are isomorphic to F .

A useful consequence, which we will apply frequently, is that if two graphons
U,W have k-samples Xk(U),Xk(W ) with identical distributions, and if t(F,U) =
t(F,W ) for all F ∈ Gk,m except for some F0, then the F0-densities are also equal.

We will also need the following bipartite analogue of the Chung-Graham-
Wilson Theorem, which can be proved either by passing to finite graphs converg-
ing to U (and adapting the original proof of Chung, Graham and Wilson [2]) or,
using analytic methods, by dealing directly with graphons (see [3, Lemma 14]).

Lemma 3. Let A and B be sets of measure a and b respectively that parti-
tion [0, 1]. (Thus a + b = 1.) Let p ∈ [0, 1]. Let U be a graphon taking value 0 on
A2 ∪ B2 such that t(K2, U) = 2abp and t(C4, U) = 2a2b2p4. Then U(x, y) = p
for a.e. (x, y) ∈ (A × B) ∪ (B × A).

The following result can be proved using the container method (see [3, The-
orem 15]). Let I(G) denote the family of all independent sets in a graph G and
let Ik(G) := {I ∈ I(G) : |I| = k} consist of all independent sets of size k.

Theorem 5. For every δ > 0 there exists ε > 0 such that for any k � 1/ε there
exists n0 such that for every graph G on n � n0 vertices and every real α, if
|Ik(G)| � (α − ε)k

(
n
k

)
, then there exists A ⊆ V (G) with |A| � (α − δ)n and

e(G[A]) � δn2.

3 Proof Outlines of Main Results

Proof of Theorem 2. Let U be an arbitrary graphon such that the distribution
of X5(U) is the same as the distribution of X5(W ). Let us denote this common
distribution by X5. The aim is to successively prove the following properties of
U ; each step is individually relatively easy to prove given the previous properties.

• U is (p/2)-regular, i.e. degU (x) :=
∫ 1

0
U(x, y) dy = p/2 for a.e. x ∈ [0, 1].

• If t(H,U) = t(H,W ) for some graph H, then t(H ′, U) = t(H ′,W ) for any
graph H ′ that is obtained from H by adding a pendant edge.

• t(H,U) = t(H,W ), where H is any one of K1,3, P4, P2 � K2,K3, C4, C4 with
a pendant edge, C5,K2,3.

• Let the random variable Z be codegU (x, y) :=
∫ 1

0
U(x, z)U(z, y) dz, the den-

sity of copies of P2 which have x, y as endpoints, where x and y are chosen
uniformly and independently from [0, 1]. Then P(Z = 0) = P(Z = p2/2) = 1

2 .
• Let C consist of those (x, y) ∈ [0, 1]2 for which codegU (x, y) = p2/4 and let

degC(x) denote the measure of NC(x) := {y : (x, y) ∈ C}, for x ∈ [0, 1]. Then
degC(x) = 1/2 for a.e. x ∈ [0, 1].

• For a.e. x ∈ [0, 1], the set NC(x) is independent in U .
• U is weakly isomorphic to W .
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Proof of Theorem 4. For k ∈ N, let αk(W ) := P(Xk(W ) = 0). It is easy to see
that the limit α∞(W ) := limk→∞(αk(W ))1/k exists. Clearly, α∞(W ) remains
the same if we replace W by any weakly isomorphic graphon.

The inequality α∞(W ) � α(W ) is easy to prove by picking an independent
set A ⊆ [0, 1] in W of measure λ(A) = α(W ) (which exists by [6, Lemma 2.4])
and observing that Pr(Xk(W ) = 0) � λ(A)k.

To show the converse inequality, we pick sufficiently large k � n (so in
particular αk(W ) ≈ α∞(W )) and let G ∼ G(n,W ) be the n-sample from W .
We consider the step graphon WG encoding the adjacency relation in G. In an
appropriate sense, a typical outcome WG is “close” to W , and therefore it suffices
to show that G contains an almost independent set of size close to αk(W ) · n,
which will then transfer to an independent set in W of size close to αk(W ). The
existence of this almost independent set can be proved by applying Theorem5.

Proof of Theorem 1. Let U be an arbitrary graphon such that for every k ∈ N
the distributions of Xk(U) and Xk(W ) are the same; let us denote this random
variable by Xk.

By Theorem 4, U contains an independent set of measure a, which we may
assume is A = [0, a).

We next claim that for almost every x ∈ B, we have degUA(x) � ap. This can
be proved by contradiction: if there is a set B′ ⊂ B of measure at least ε such
that each point in B′ has A-degree at most ap− ε, then some careful calculation
shows that αk(U) � αk(W ) for sufficiently large k, which is a contradiction.

Let U ′ be the graphon obtained from U by averaging it over (A×B)∪(B×A)
and over B2. A further averaging argument considering the density of P3 and
applying the Cauchy-Schwarz inequality shows that in fact U ′ = W .

Next, we show that for almost every (x, y) ∈ B2, we have that codegUA(x, y) =
ap2 where we denote codegUA(x, y) :=

∫
A

U(x, z)U(y, z) dz. If this were not true,
then some careful calculation shows that P(Xk(U) � 1) > P(Xk(W ) � 1) for
sufficiently large k, which is a contradiction.

We next deduce that the triangle densities in U,W are identical even if we
specify which vertices are in A and B, and that the same is true for triangles with
a pendant edge. It follows from Lemma 2 that U and W have the same density of
4-cycles. Since due to codegree considerations U and W have the same densities
of ABAB-cycles, Lemma 3 implies that U is constant p on A×B. Finally, since
we know the densities of all types of 4-cycles except those lying inside B, we also
know the density of these 4-cycles, and the Chung-Graham-Wilson Theorem
implies that U is also constant on B, so U = W .

Proof of Theorem 3. There are subsets C,D ⊆ [0, 1] of measures a and 1 − a
respectively such that U is 0 on C2 a.e. and U is 1 on D2 a.e., and we may
assume that C = A and D = B.

We first show that degUB(x) = (1−a)p for a.e. x ∈ A by showing that, viewed
as a random variable when x is chosen uniformly at random from A, the first and
third moments are (1−a)p and ((1−a)p)3 respectively, which is only possible if
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the random variable is constant (1 − a)p a.e. on A. Similarly we can show that
degUA(x) = ap for a.e. x ∈ B.

Let K−
4 be the 4-clique minus an edge, the unique graph on 4 vertices with

5 edges. A 4-sample from U can only form a K−
4 if it has either two or three

vertices in B. Since we know the density of the second type, and the densities
of K−

4 in U and W are identical, we can also deduce the density of the second
type, which exactly matches the density of ABAB-cycles in both U and W . It
follows that U is constant a.e. on A×B, and therefore weakly isomorphic to W .

Proof of Proposition 1. To prove (i), take the unit vectors

x1 :=
1√
3

⎛

⎝
1
1
1

⎞

⎠ , x2 :=
1√
2

⎛

⎝
1

−1
0

⎞

⎠ , and x3 :=
1√
6

⎛

⎝
2

−1
−1

⎞

⎠ ,

let ε := 1/4 and set

A := x1x
T
1 + εx2x

T
2 and A′ := x1x

T
1 + εx3x

T
3 .

Let W and W ′ be the 3-step graphons, with steps of measure 1/3, whose
values are given by the symmetric matrices A,A′ ∈ [0, 1]3×3. It is simple to
calculate that W,W ′ have the same densities of k-cycles for every k, and indeed
the same densities of all unicyclic graphs, but are not weakly isomorphic since
their limiting density of Kk as k → ∞ is different.

To prove (ii), let G := Pd+2 � Pd+2 and G′ := Pd+3 � Pd+1, and let W,W ′ be
the step graphons with 2d + 4 steps of equal measure encoding their adjacency
relations. They are not weakly isomorphic because the induced density of Pd+3

is zero in W but not in W ′, but their densities of any graph of diameter at most
d are identical, so this family is not forcing.
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