Available online at www.sciencedirect.com

SCIENCE@DIHECT® EuropeanJournal
of Combinatorics

European Journal of Combinatorics 26 (2005) 607-616
www.elsever.com/locate/ejc

Integer sets with prescribed pairwise differences
being distinct

Béla Bollokas® Oleg Pikhurké

3University of Memphis, Memphis, TN 38152-3240, USA
PTrinity College, Cambridge CB2 1TQ, UK
CDepartment of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Received 20 January 2004; received in revised form 25 April 2004; accepted 26 April 2004
Available online 10 June 2004

Abstract

We label he vertices of a given grap@ with positive integers so that the pairwise differences
over its edges arall distinct. LetD(G) be the smiest value that the lgest bbel can have.
For example, for the complete grapth, the labels must form a Sidon set. Hen@®(Kp) =

(1 + o(1))n?. Rather grprisingly, we demonstrate that there are graphs with or%rybo(l) edges
achieving this bound.

More generally, we studthe maximum value oD(G) that a graphG of the given orden and
sizem can have. We obtain bounds which are sharpaip lbgarithmic multigicative factor. The
analogous problem for pairwise sums is considered as well. Our results, in particular, disprove a
conjecture of Wood.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a graph. Alifference-magic labellingf G is an injective mappindj: V(G) —
N (into positive integers) such that teéG) numbers

are pairwise distinct.
It is trivial to see that every graph admits #fefrence-magic labelling, so a natural
question to ask is how economical it can be. More precisely, we should like to determine
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the difference-magic numbe&P(G) which is the smallesk such ttat a difference-magic
labelling of G into [k] := {1, ..., k} exids.

For example, it isasy to see that i is the complete @ph of ordem, thenD(G) is
preciselys,, the snallests suchthat[s] contains &Sidonsubset of sizen. (A setA C Z
is Sidonif all sumsa + b with a,b € A anda < b are distinct.) The latter problem is
well studied; the results of Singet§] and Erdis and Tuah [8] (see e.g. Hdderstam and
Roth [10, Chapter I1]) imply thats, = (1+ o(1))n?. Erdds [5] offered $500 for proving or
disproving that, = n? + O(n).

Here we deal with

D(n, m) := max{D(G) : v(G) =n, e(G) =mj},

the maximum value oD (G) for a graphG of ordern and sizem.
It turns out that

D(n, m) = (1+ o(1))n? if m/\/ n3lnn — oo . (1)

In fact, a random graph of ordarwith the appropriate edge probability demonstrafgs (

We find it suprising that graphs so sparse (with onlgﬂr °( edges) have th®-function
asymptotically the same as that of the complete graph.

What hgpens for smallem? The obvious choice is to consider random graphs of
suitable density. This, indeedgdds to interesting results. L& € G(n, p), that is,G
is a random graph on vertices where each edge is included3rindependently of others
and with probabilityp. If p= O((Inn/n)Y/2) andp > n~1*+¢, then

D(G) = O(n®p?/Inn). 2)

A lower bound onD(n, m) can be obtained by adding isolated vertices to a random
graph and figuring out the best parameters to choose. On the other hand, the simple
labelling procedure described iSection 4 gives an upper bound that is within an
O((In n)?/3)-factor of the lower bound. Roughly, we obtain

InlInm
D(n, m) = m4/3+o<w), ifm=0 (\/ n3In n) , (3)
unlessm = o(n®% whenD(n, m) = (1 + o(1))n. All details (with more precise

expressions for the error terms) can be found in the corresponding sections.

Let us define aum-magic labellingf a graphG as an injection : V(G) — N such
that alle(G) sumsl (x) + 1(y), {X, y} € E(G), are pairwisalistinct. We ask for theum-
magicnumberS(G), the smiest value that the largest label can have, and for

S(n,m) :=max{S(G) : v(G) = n,e(G) = m}.

It is not surprising that most of the methods on #dunction transfer taS, giving
similar bounds. (In particular3j holds forS(n, m) as well.) However, there is one peculiar
distinction. While Corollary 2 staes thatS(K,) = (1 + o(1))n?, Theorem 3shows that
there is aconstantt > 0 such thatS(n, m) < (1 — c)n? whenevem < cn?. Random
graphs are far worse in hittind. + o(1))n?: this happens only when the random graph is
almost complete.
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Wood [15] defines anedge-magic injectiorwith the magic &im s as an injection
| : V(G)U E(G) — N such ttat for any edgga, b} € E(G) we haves = |(a) +
I(b) + I({a,b}). Let £(G) be the smallest possible value ef Wood [15, Sedion 7]
conjectured that there is an absolute constantuch that for any graphG we have
E(G) < C(w(G) + e(G)). Clearly, the vertex labels of any edge-magic injection form
a sum-magitabelling, so€(G) > S(G) and random graphs disprove Wood'’s conjecture.
One can also ask what is the value of, for example,

Smin(n, M) := Min{S(G) : v(G) =n, &(G) = m}.

This is the inverse problem to maximising the number of distinct pairwise sums that a set
A C [s] of given sizen can have. This question is investigated by Pikhurk#.[

2. Some preliminary results

Let A e (™), meaning thaiA is ann-subset ofml.

Recall thatA is called aSidon seif the sumsa + b, a, b € Awith a > b, are pairwise
distinct, which is equivient to all differences — b, a, b € A with a > b, beingpairwise
distinct. Erdss and Tuah [8] proved that his property implies than > (1 + o(1))n2. The
following results show that, in a sense, it is the condition on differences (rather than that
on sums) which pushes maxupwards.

Fori € [m— 1] let g; be the number of representatians a — b with a, b € A. Thus,
if n2 > (1+¢)m (andn is large), tha theremust ba with g; > 2. Although the following
theorem strengthens this claim considdyaits proofgoes via an easy modification of the
original argument of Erd$ and Tuah [8]. A similar result (in a more precise form) was
independently obtained by Fara, Kohayakawa andd®ll'[9, Lemma 12].

Let f. = f if f > 0andf; = 0 otherwise.

Theorem 1. Lete > O be fixed and n— oo. Let A € ([';"‘]). If n2 > (14 ¢)m, then
g = 2(n?), where g:= Y Mg — 1)+
Proof. Lett := cn?, wherec = c(¢) > 0 is a smdlconstant. Assume e N. Define

A =ANTi,i +t—1] and a = |Ail, ie[2—-t,m],

where[i, j]={i,i+1,...,j}.
Let X consist of all quadruple®, b, i, x) suchthatx = a—b > 0anda, b € A;. Using
the identity} ", , & = nt and the quadratic-arithmetic mean inequality, we obtain

O (& 1 & (nt)2 nt
'Xl_i:;t(> Elgt 2—2(m+t—1)_7 ()

Eachx e [t — 1] isincluded ingyx - (t — X) < (t — X) +t(gx — 1)+ quadruples. Hence,

= tt—1
X< ) (t—x+tg—Dy) = D

x=1

+ gt. (5)
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By choosingc sufficiently small, wecan ensure that the right-hand side 4f is, for
exampe, at least1 + %)f, which togethemwith (5) implies the theorem. O

We will needTheorem lin Section 3 Here we denonstrate another application.
Corollary 2. S(Kp) = (1+ o(1))n?.

Proof. Let A be the label set of a sum-gia labelling. Notethat A need not be Sidon as
it may well happen thaa — ¢ = ¢ — bfora, b,c € A. However, ifa — b = ¢ — d with

a ¢ {b, c}, then éhera = d orb = c. It follows thatgy < 2 foranyx > 0 and, if gx = 2,
thenthere ara,b,c € Awitha—b=c—-a=x.Ifa—-b' =c —a# 0, then we have
b’ + ¢ = 2a = b+ candthugb’, ¢’} = {b, c}. Herce, noa can appear for more than one
X in the above mannewe conclude thag < |A|, implying the claim byTheorem 1 [

The natural analogue dfheorem lin terms of he number of solutions te = a + b,
a,b € A, isnottrue, as the following construction of Ersl&nd Freudd] dermonstrates. Let
Se ([;]) be a Sidon set with = (14 0(1))s?. (Such sets we constructed by Singet §].)
Let X =SUS’, where

S=3t+1-S={3t+1—a:aeS c[2t+1,3t].

Clearly,S+Sc [2,2t], S+S C [2t+2,4t]andS + S C [4t+2, 6t] are disjoint. Hence,
all sumsa + b, a,b € X with a < b, are pairwse distincexcept thoses sums which are
equal to 3 + 1. If the complement of an ordergraphG has a matching covering all but
r = o(n) vertices, then considering the finsielements of the seX constructed above for

s:= 1T, we mnclude

S(G) < (3/4+o(1)n%. (6)

By modifying the above construction, we can show one of the results claimed in the
Introduction.

Theorem 3. There is a onstant c> 0 such hat if m < cn?, then
S(n,m) < (1—c)n’. (7)

Proof. Leta = 0.9, for example. In the above construction¥f= SU S letY c X
consist of the firsh := [(1 + «)s| elements ofX. As it was slown by Erdds and
Freud B, Lemma 1], any asymptotically maximum Sidon subsditbfs almostuniformly
distributed. Thismplies that maxy = (2 + « + o(1))t.

Now, all sums inY + Y are distinct except those sums which equal-3. The number
of these exceptional sumsligs| = (ﬁ—a + o(1))n. So, ifthe complement of an order-
graphG has a matching of size bigger thad8n > (75 + o(1))n, then

24+a+01) , 2

It follows from the Tutte 1-factor theorenif] that a maching of size 048n in the
complemen®G is guaranteed i&(G) < §n? for some constant > 0. Now, the theorem
follows. O
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Remark. Random graphs do not provide good examples if we want to acli€¢®@ —
(140(1))n?: this hgopens onlywhen p = O('”T”). Indeed, Er@$ and Rnyi [7] (cf. Bol-
lobas and Thomasom]) showed thatifp < 1— (1+ e)'g—r’]‘ then with high probability the
complement of5 € G(n, p) has an almost perfect matching; so thénHolds.

3. Random graphs

Theorem 4. Fix anys > 0. Let Ge G(n, p), where n— oo and pe (0, 1) is a function
of n such that nplnn — oo. LetA := p+/n/Inn. Then almet surelyD(G) > d and
S(G) > s, where

2 t, 1 §)n?, if A
_ - — —
(1—&)n e : 0,
A2 )

5|2 22 ) |

1 n3p2

— )= 1 3p2 |

<16 > Inn (3—2—5) %, if 3 = o(1).

Proof. We prove the lower bound oP(G). Let[n] be the vertex set. Let> 0 be a small
constant depending an Assumed € N.

Fix an injectve magpingl : [n] — [d]. Now, let us choos& < G(n, p). We want to
bound the pobability p’ that all differences(i) —I(j), with {i, j} € (}) being an edge of
G(n, p) andl (i) > I(j), are pairwisaigtinct. If u is an upper bound op’ for anyl, then
the probability thaiG € G(n, p) satisfiesD(G) < d is at mosm!(g)u < d"u. Herce, if
we can show thap’ = o(d™"), then dmost surely D(G) > d.

Fork e [d], let gk be the number of representatidns- 1 (i) — I (j) with i, j € [n]. Let

t = (5) = Yf_; o. Clearly,
d
p=]] rx ©
k=1

wherepx = (1— p)%+gk p(1— p)% L is the probability of selecting at most one edge with
differencek. (Notethat the formula is also valid fagx = 0 andgx = 1, whenpy = 1.) It
is routine to see that

d
p=]]m <@ P+ (pt/d)a - p©DhHe, 9
k=1

Casel. p = o(4/Inn/n), thatis,» = o(1).
We havet/d — oo andpt/d = o(1). Using the inequality 8(1+X) < 1— (3 —&)x?
valid if x > 0 is smédl, we deduce from ) the required bound op’:
P < Q- @+ pt/d + 2p?t/d)? < (e PVU(L+ pt/d + 2p°t/d))°
< (- (/2 - e)(pt/d)? + 2p?t/d)¥ < & W2-2)PVYd — g nInd).
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Case2. p= O(/Inn/n), thatis,» = ©(1).
We havet/d = O(1) so we can simply take the Taylor expansion @fto obtain the
required bound:

d
. t  t? 1t _

Case 3. py/n/Inn — oo, thatis,A — oc.

By Theorem Iwe know thatg = Zﬁzl(gk — 1), = 2(n?). Itis routine to see that if
gi > gj + 2, thenthe right-hand side o] increases if we replaag andgj by gi — 1 and
gj + 1 resmctively. Hence,

P<(@-p?+2pL—p)d=1-pH9=od™,

as required.

Let us turn to the sum-magic number. Fix an injection[n] — [s]. Fork e [2s]
definegk as the number of representatidns= 1(i) +1(j) with1 < i < j < n. Let
t .= (2) = ﬁil gk. The remander of the proof goes via the obvious modification of the
argument forD(G) except that forh — oo weuse the result by Pikhurkd 2, Theorem 2]
which implies thatZEil(gk — 1), = 2(n?. (If we are content withs = (711 —5n?,
thenZEil(gk — 1), = 2(n?) follows by trivial counting) The reader should have little
difficulty in filling in all missing details. OJ

Remark. There is a jump in the lower bounds when we change from thecase9 (1)

to A — oo. It should be possible to ‘smoothen’ this by improving our bounds for large but
boundedr. However, the calculations seem to be rather unpleasant, so we do not go into
the detalils.

Remark. Asit was mentioned in the introductiof,heorem 4disproves the conjecture of
Wood in view of the inequality€(G) > S(G). Indeed, if we takeG € G(n, n~1/2) for
exampe, then almost surelg(G) = (3 + o(1))n¥2 while D(G) = 2(n?/Inn). With a

bit of extra work it is possible to show that under the assumptiorihebrem 4we have
almostsurely£(G) > 2s. To do this, prove that, almost surely, any sum-magic labelling
of G has2(n) labels which are greater thamand there is an edge connecting two such
labels. We leave the details to the interested reader.

Now let us turn to upper bounds.

Theorem 5. Let§ > O be fixed. Let Ge G(n, p), where n — oo and p € (0,1)
is a function of n such tham — oo and p= O((Inn/m1?). Then amost mirely
D(G) < 2mandS(G) < m, where

n3 p2

In(np)”
Proof. Let us estimat&S(G). (Thecase ofD(G) is dealt with almost identically.)

m:= (1 +9)

(10)

We can assume thatis sufficiently small andn € N. Letn be large and > 0 be a
small onstant depending oh Let V(G) = [n] be the vertex set. Chernoff’s bound] [
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implies that almost surely we have
|G+ NTil|—ip| <enp, foralli € [0,n— 1], (11)

wherel'(i + 1) isthe st of neighbours of + 1 € V(G).

Consider the conditional distribution & given (L1). We have gained the very useful
control over the edges while some important propertie&o& G(n, p) are preserved.
(That is, almost sure events stay so; the random’set 1) N [i] is independent from
GI[i]], etc.)

We choose vertex labels one by one, doing the label arithmeti¢ ia Z/mZ (that is,
modulom). Our labellingl : V(G) — [m] will have the propgy that the sumb(x) +1(y),
{X, y} € E(G), will be pairwise distinct modulm.

Suppose that we have already chosen labels for the vertidesdri].

Let
K:={X +I(y):{x,y} €e E(G),x,ye |} C M,
andk := |K|. By (11),

k=(%+¢e)inp. (12)
Clearly, we can find a suitable label fo# 1 if
M e | K=100). (13)
xelNI(i+1)

that is, if the translateK — [ (x), x € | N I'(i + 1), donot coverM\I(1).
This is obviously the case if

IM\(Uxer (K = I(X))] = n,
so let us assume othwise. Then we haven — ik < n, which implies by (12) that
i >ny/2p/In(np). (14)

Now, we have t@mvercomelie difficuty thati is large enough to potentially refutel@).
In outline, we fix the labelling of I and then choose the random $et I'(i + 1). The
labelsl (x), x € | N I'(i + 1), are random variables. If the translatks— | (x) cover the
whole of M\I (1), then br everyz € M\I(l) at least one elemehtx) € K — zis chosen.
We prove thatthis is unlikely.

Let S consist of those elements frolh\I (1) which are covered by at most

t:=[(1+¢e)kn/m]
of the translaesK — I (x), x € |. Clearly,
IM\(SUI(I))] x (14 e)kn/m < Kkn,
o)

m
s:=|S|zlgT—nzem/2.
&
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Lety’ = [ip + enp] andy = [ip + 2enp]. Let us choos&, ..., Y, € |, one by
one, independently and uniformly distribdteOf course, some of these might coincide.
LetY = {yi1,..., ¥y}, ignoring multiple occurrences oféreame vertex. The probability
that|Y| < y’ is at most

- ¥ ; ip+enp ip+2enp
[ v - el ¢ Ip—l—enp) ¢
y’ [ ~ \ip+enp i

— gPp+enp (p n s?_p)anp.

The last expression, as a function of a real-valued argumen®, is first decreasing and
then increasing in so it is maximised if either = n ori achieves the lower bound4). In
either case, the result can be boundeaby ). Thus, the seY has at least’ elements
with probability 1— o(n™1).

Let the random variable countthe number of € Swhich belong to none oK —I (y),
yeY.

We oonsiderthe martingaleUy, ..., U, ), whereUj is the expected value &f after
having exposed the firgt vetticesys, .. ., yj. Clearly, each new vertex changdsby at
mostk.

It is eay to estimatdJyp, the expectation olU:

()
EU) > |8~ = s(
()
(Note thatt = o(i) by the definition oft andy = o(i) by (14).)
By applying the Hoeffding—Azuma inequalit@,[11] (see e.g. Ala and Sencer [,
Theorem 7.2.1]) we obtain

i—t—y+1

v A
: ) > se~WHent/i 5 gnp)~3+4,
i—y+1

2
Pr{U =0} < Pr{lU — E(U)| > E(U)} < exp(_(E(U)) )

2k2y
3102 -1
= exp(—2((np)2/In“(np))) = o(n™ ).

Hence, the event tha¥| < y’ for somei or U = 0 has probabilityo(1). Of course,
when we select a randomsubset ofY, we obtain a uniformly distribute@-subset ofi .
Note that|I'(i + 1) N[i]] < y’ by (12). We can find a distribution foa € [0, i] suchthat
when we first choosa, thenY as above, then a randasubset ofY, we obtain precisely
the distribution ofl"(i 4+ 1) N [i], conditioned on {1).

Hence, almost surely for any condtion (13) holds; that is, we can always choose an
appropriate label. (J

4. General graphs

Let us prove upper bounds that apply to arbitrary graphs. The obvious greedy algorithm
gives the following (cf. Wood15, Theorem 4]).
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Lemma 6. For any graph G we have

D(G) = 2A(G)e&(G) +v(G),
S(G) < A(G)e(G) + v(G).

Proof. Let us boundS(G), for example. We choose vertex labels one by one. When we
consider a vertek € V (G), we ae forbidden to choose a previously used label as well as
any number of the form(u) + I (v) — | (w) where{u, v}, {w, i} € E(G) and the labels of

u, v andw have already been chosen. This forbids at m6&) — 1 + d(i)e(G) elements
sowe can always proceed ]

Remarkably, the triviaLemma 6is not far from the truth: if applied t& € G(n, p),
with % — 00, it gives a bound within the multiplicative factor €f(In n) from the actual
value. Itis an interesting open problem tietermine the maximum value @¥(G) and
S(G) over all graohs of orden and maximum degree at makt

For the finctionsD(n, m) andS(n, m) we obtain the following upper bounds.

Theorem 7. Letn— oo and m=< (5). Then

D(n, m) < n+ (2¥3 + o(1))m*3,
S, m) < n+ %3 + o(1)m*3.

Proof. Let us deal withD(n, m) here. Letn be large ands be an arbitrary graph of order
n and sizem. It is easy to see thd?(n, m) = nif m = O(1), so asume tham — oco.

Order he vertices ofG by their degreesd(xq) > --- > d(xn). Letk = [(2m)%/3].
Label verticey, .. ., Xk by a Sidork-subset ofs], s = [(1+ e)k?]. We try tolabd the
remaining vertices one by one using labels fromt s]. When choosing a label fox,
the folbidden values are the already assigned labels] of them, as welbas the numbers
I (Xy) £ ((Xy) — 1 (Xy)), Whereu, v, w € [i — 1] with {X;, Xy}, {Xy, Xw} € E(G), at most
2md(x;) numbers. Butl(xj) > d(x;) foranyj < i, herced(xj) < 2" < 2™ and the total
number of forbidden labels is at most

4m?

n—1+ S <Nn+s;

that is, we can always find a suitable labell

Needless to say, we have a trivial upper bound, nartiely o(1))n2.

Good lower bounds orD(n, m) and S(n, m) are provided by random graphs plus
isolated vertices. Our aim is to choose< n such that, if we definep by p(g) =(1-e)m,
the bound of Theorem 4for G € G(v, p) is as large as possiblén order not to clutter
this paper with details we compute only theder of magnitude, not bothering about
multiplicative constants.

If m = 2(n¥2{Inn), then we takev = n. Almost surely D(G), S(G) = 2(n?).
Otherwise, take = ©(Mm%3(Inm)~1/3) < n. Now, the lower bound is

D(n, m), S(n, m) = 2(m*3(nm)~%/3), for m = o(n®2vInn).

Also, note the trivial lower boun®(n, m), S(n, m) > n.
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A little more careful analysis shows that there is an absolute corStaanth ttat our
lower and upper bounds of(n, m) andS(n, m) are within factotC(In n)%/2 for anym, n.
This poses an intriguing problem of closing this gap.
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