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Abstract

We label the vertices of a given graphG with positive integers so that the pairwise differences
over its edges areall distinct. LetD(G) be the smallest value that the largest label can have.

For example, for the complete graphKn, the labels must form a Sidon set. Hence,D(Kn) =
(1 + o(1))n2. Rather surprisingly, we demonstrate that there are graphs with onlyn

3
2+o(1) edges

achieving this bound.
More generally, we studythe maximum value ofD(G) that a graphG of the given ordern and

sizem can have. We obtain bounds which are sharp up to a logarithmic multiplicative factor. The
analogous problem for pairwise sums is considered as well. Our results, in particular, disprove a
conjecture of Wood.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Let G be a graph. Adifference-magic labellingof G is an injective mappingl : V(G) →
N (into positive integers) such that thee(G) numbers

|l (x) − l (y)|, {x, y} ∈ E(G),

are pairwise distinct.
It is trivial to see that every graph admits a difference-magic labelling, so a natural

question to ask is how economical it can be. More precisely, we should like to determine
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the difference-magic numberD(G) which is the smallestk such that a difference-magic
labelling ofG into [k] := {1, . . . , k} exists.

For example, it iseasy to see that ifG is the complete graph of ordern, thenD(G) is
preciselysn, the smallests suchthat [s] contains aSidonsubset of sizen. (A set A ⊂ Z

is Sidonif all sumsa + b with a, b ∈ A anda ≤ b are distinct.) The latter problem is
well studied; the results of Singer [13] and Erdős and Tur´an [8] (see e.g. Halberstam and
Roth [10, Chapter II]) imply thatsn = (1+ o(1))n2. Erdős [5] offered $500 for proving or
disproving thatsn = n2 + O(n).

Here we deal with

D(n, m) := max{D(G) : v(G) = n, e(G) = m},
the maximum value ofD(G) for a graphG of ordern and sizem.

It turns out that

D(n, m) = (1 + o(1))n2 if m
/√

n3 ln n → ∞ . (1)

In fact, a random graph of ordern with the appropriate edge probability demonstrates (1).

We find it surprising that graphs so sparse (with onlyn
3
2+o(1) edges) have theD-function

asymptotically the same as that of the complete graph.
What happens for smallerm? The obvious choice is to consider random graphs of

suitable density. This, indeed, leads to interesting results. LetG ∈ G(n, p), that is,G
is a random graph onn vertices where each edge is included inG independently of others
and with probabilityp. If p = O((ln n/n)1/2) and p > n−1+ε, then

D(G) = Θ(n3p2/ ln n). (2)

A lower bound onD(n, m) can be obtained by adding isolated vertices to a random
graph and figuring out the best parameters to choose. On the other hand, the simple
labelling procedure described inSection 4 gives an upper bound that is within an
O((ln n)2/3)-factor of the lower bound. Roughly, we obtain

D(n, m) = m
4/3+O

(
ln ln m
ln m

)
, if m = O

(√
n3 ln n

)
, (3)

unlessm = o(n3/4) when D(n, m) = (1 + o(1))n. All details (with more precise
expressions for the error terms) can be found in the corresponding sections.

Let us define asum-magic labellingof a graphG as an injectionl : V(G) → N such
that alle(G) sumsl (x) + l (y), {x, y} ∈ E(G), are pairwisedistinct. We ask for thesum-
magicnumberS(G), the smallest value that the largest label can have, and for

S(n, m) := max{S(G) : v(G) = n, e(G) = m}.
It is not surprising that most of the methods on theD-function transfer toS, giving

similar bounds. (In particular, (3) holds forS(n, m) as well.) However, there is one peculiar
distinction. WhileCorollary 2 states thatS(Kn) = (1 + o(1))n2, Theorem 3shows that
there is aconstantc > 0 such thatS(n, m) < (1 − c)n2 wheneverm ≤ cn2. Random
graphs are far worse in hitting(1 + o(1))n2: this happens only when the random graph is
almost complete.
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Wood [15] defines anedge-magic injectionwith the magic sum s as an injection
l : V(G) ∪ E(G) → N such that for any edge{a, b} ∈ E(G) we haves = l (a) +
l (b) + l ({a, b}). Let E(G) be the smallest possible value ofs. Wood [15, Section 7]
conjectured that there is an absolute constantC such that for any graphG we have
E(G) ≤ C(v(G) + e(G)). Clearly, the vertex labels of any edge-magic injection form
a sum-magiclabelling, soE(G) ≥ S(G) and random graphs disprove Wood’s conjecture.

One can also ask what is the value of, for example,

Smin(n, m) := min{S(G) : v(G) = n, e(G) = m}.
This is the inverse problem to maximising the number of distinct pairwise sums that a set
A ⊂ [s] of given sizen can have. This question is investigated by Pikhurko [12].

2. Some preliminary results

Let A ∈ ([m]
n

)
, meaning thatA is ann-subset of[m].

Recall thatA is called aSidon setif the sumsa + b, a, b ∈ A with a ≥ b, are pairwise
distinct, which is equivalent to all differencesa − b, a, b ∈ A with a > b, beingpairwise
distinct. Erdős and Tur´an [8] proved that this property implies thatm ≥ (1+ o(1))n2. The
following results show that, in a sense, it is the condition on differences (rather than that
on sums) which pushes maxA upwards.

For i ∈ [m − 1] let gi be the number of representationsi = a − b with a, b ∈ A. Thus,
if n2 ≥ (1+ ε)m (andn is large), then theremust bei with gi ≥ 2. Although the following
theorem strengthens this claim considerably, its proofgoes via an easy modification of the
original argument of Erd˝os and Tur´an [8]. A similar result (in a more precise form) was
independently obtained by Ferrara, Kohayakawa and R¨odl [9, Lemma 12].

Let f+ = f if f > 0 and f+ = 0 otherwise.

Theorem 1. Let ε > 0 be fixed and n→ ∞. Let A ∈ ([m]
n

)
. If n2 ≥ (1 + ε)m, then

g = Ω(n2), where g:= ∑m−1
i=1 (gi − 1)+.

Proof. Let t := cn2, wherec = c(ε) > 0 is a small constant. Assumet ∈ N. Define

Ai := A ∩ [i , i + t − 1] and ai := |Ai |, i ∈ [2 − t, m],
where[i , j ] := {i , i + 1, . . . , j }.

LetX consist of all quadruples(a, b, i , x) suchthatx = a−b > 0 anda, b ∈ Ai . Using
the identity

∑m
i=2−t ai = nt and the quadratic-arithmetic mean inequality, we obtain

|X | =
m∑

i=2−t

(
ai

2

)
= 1

2

m∑
i=2−t

a2
i − nt

2
≥ (nt)2

2(m + t − 1)
− nt

2
. (4)

Eachx ∈ [t − 1] is included ingx · (t − x) ≤ (t − x) + t (gx − 1)+ quadruples. Hence,

|X | ≤
t−1∑
x=1

(t − x + t (gx − 1)+) = t (t − 1)

2
+ gt. (5)
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By choosingc sufficiently small, wecan ensure that the right-hand side of (4) is, for

example, at least(1 + ε
2) t2

2 , which togetherwith (5) implies the theorem. �

We will needTheorem 1in Section 3. Here we demonstrate another application.

Corollary 2. S(Kn) = (1 + o(1))n2.

Proof. Let A be the label set of a sum-magic labelling. Notethat A need not be Sidon as
it may well happen thata − c = c − b for a, b, c ∈ A. However, ifa − b = c − d with
a /∈ {b, c}, then eithera = d or b = c. It follows thatgx ≤ 2 for anyx > 0 and, if gx = 2,
then there area, b, c ∈ A with a − b = c − a = x. If a − b′ = c′ − a �= 0, then we have
b′ + c′ = 2a = b + c and thus{b′, c′} = {b, c}. Hence, noa can appear for more than one
x in the above manner.We conclude thatg ≤ |A|, implying the claim byTheorem 1. �

The natural analogue ofTheorem 1in terms of the number of solutions tox = a + b,
a, b ∈ A, isnot true, as the following construction of Erd˝os and Freud [6] demonstrates. Let
S ∈ ([t ]s ) be a Sidon set witht = (1+o(1))s2. (Such sets were constructed by Singer [13].)
Let X = S ∪ S ′, where

S′ := 3t + 1 − S := {3t + 1 − a : a ∈ S} ⊂ [2t + 1, 3t].
Clearly,S+S⊂ [2, 2t], S+S′ ⊂ [2t +2, 4t] andS′+S′ ⊂ [4t +2, 6t] are disjoint. Hence,
all sumsa + b, a, b ∈ X with a ≤ b, are pairwise distinctexcept thoses sums which are
equal to 3t + 1. If the complement of an order-n graphG has a matching covering all but
r = o(n) vertices, then considering the firstn elements of the setX constructed above for
s := n+r

2 , we conclude

S(G) ≤ (3/4 + o(1))n2. (6)

By modifying the above construction, we can show one of the results claimed in the
Introduction.

Theorem 3. There is a constant c> 0 such that if m ≤ cn2, then

S(n, m) ≤ (1 − c)n2. (7)

Proof. Let α = 0.9, for example. In the above construction ofX = S ∪ S′ let Y ⊂ X
consist of the firstn := �(1 + α)s
 elements ofX. As it was shown by Erdős and
Freud [6, Lemma 1], any asymptotically maximum Sidon subset of[t] is almostuniformly
distributed. Thisimplies that maxY = (2 + α + o(1))t .

Now, all sums inY + Y are distinct except those sums which equal 3t + 1. The number
of these exceptional sums is�αs
 = ( α

1+α
+ o(1))n. So, if the complement of an order-n

graphG has a matching of size bigger than 0.48n > ( α
1+α

+ o(1))n, then

S(G) ≤ (2 + α + o(1))t = 2 + α + o(1)

(1 + α)2 n2 < 0.9n2.

It follows from the Tutte 1-factor theorem [14] that a matching of size 0.48n in the
complementG is guaranteed ife(G) ≤ δn2 for some constantδ > 0. Now, the theorem
follows. �
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Remark. Random graphs do not provide good examples if we want to achieveS(G) =
(1+o(1))n2: this happens only when 1−p = O( ln n

n ). Indeed, Erd˝os and R´enyi [7] (cf. Bol-

lobás and Thomason [3]) showed that ifp ≤ 1− (1+ ε) ln n
2n then with high probability the

complement ofG ∈ G(n, p) has an almost perfect matching; so then (6) holds.

3. Random graphs

Theorem 4. Fix anyδ > 0. Let G ∈ G(n, p), where n→ ∞ and p∈ (0, 1) is a function
of n such that np/ ln n → ∞. Let λ := p

√
n/ ln n. Then almost surelyD(G) ≥ d and

S(G) ≥ s, where

d :=




(1 − δ)n2(
λ2

16+ 2λ2
− δ

)
n2,

(
1

16
− δ

)
n3 p2

ln n
,

s :=




(
1

4
+ 1

(π + 2)2
− δ

)
n2, if λ → ∞,(

λ2

32+ 4λ2 − δ

)
n2, if λ = Θ(1),

(
1

32
− δ

)
n3 p2

ln n
, if λ = o(1).

Proof. Weprove the lower bound onD(G). Let [n] be the vertex set. Letε > 0 be a small
constant depending onδ. Assumed ∈ N.

Fix an injective mapping l : [n] → [d]. Now, let us chooseG ∈ G(n, p). We want to
bound the probability p′ that all differencesl (i )− l ( j ), with {i , j } ∈ ([n]

2

)
being an edge of

G(n, p) andl (i ) > l ( j ), are pairwisedistinct. If u is an upper bound onp′ for anyl , then
the probability thatG ∈ G(n, p) satisfiesD(G) ≤ d is at mostn!(dn)u < dnu. Hence, if
we can show thatp′ = o(d−n), then almost surelyD(G) > d.

Fork ∈ [d], let gk be the number of representationsk = l (i ) − l ( j ) with i , j ∈ [n]. Let
t := (n

2

) = ∑d
k=1 gk. Clearly,

p′ =
d∏

k=1

pk, (8)

wherepk = (1− p)gk +gk p(1− p)gk−1 is the probability of selecting at most one edge with
differencek. (Notethat the formula is also valid forgk = 0 andgk = 1, whenpk = 1.) It
is routine to see that

p′ =
d∏

k=1

pk ≤ ((1 − p)t/d + (pt/d)(1 − p)(t/d)−1)d. (9)

Case 1. p = o(
√

ln n/n), that is,λ = o(1).
We havet/d → ∞ andpt/d = o(1). Using the inequality e−x(1+ x) ≤ 1− (1

2 − ε)x2

valid if x > 0 is small, we deduce from (9) the required bound onp′:

p′ ≤ ((1 − p)t/d(1 + pt/d + 2p2t/d))d ≤ (e−pt/d(1 + pt/d + 2p2t/d))d

≤ (1 − (1/2 − ε)(pt/d)2 + 2p2t/d)d ≤ e−(1/2−2ε)(pt)2/d = o(e−n ln d).
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Case 2. p = Θ(
√

ln n/n), that is,λ = Θ(1).
We havet/d = O(1) so we can simply take the Taylor expansion of (9) to obtain the

required bound:

p′ ≤
(

1 +
(

t

2d
− t2

2d2

)
p2 + O(p3)

)d

≤ e
1
2 (t− t2

d +ε)p2 = o(e−n ln d).

Case 3. p
√

n/ ln n → ∞, that is,λ → ∞.
By Theorem 1we know thatg := ∑d

k=1(gk − 1)+ = Ω(n2). It is routine to see that if
gi ≥ gj + 2, thenthe right-hand side of (8) increases if we replacegi andgj by gi − 1 and
gj + 1 respectively. Hence,

p′ ≤ ((1 − p)2 + 2p(1 − p))g = (1 − p2)g = o(d−n),

as required.
Let us turn to the sum-magic number. Fix an injectionl : [n] → [s]. For k ∈ [2s]

definegk as the number of representationsk = l (i ) + l ( j ) with 1 ≤ i < j ≤ n. Let
t := (n

2

) = ∑2s
k=1 gk. The remainder of the proof goes via the obvious modification of the

argument forD(G) except that forλ → ∞ weuse the result by Pikhurko [12, Theorem 2]
which implies that

∑2s
k=1(gk − 1)+ = Ω(n2). (If we are content withs = (1

4 − δ)n2,

then
∑2s

k=1(gk − 1)+ = Ω(n2) follows by trivial counting.) The reader should have little
difficulty in filling in all missing details. �

Remark. There is a jump in the lower bounds when we change from the caseλ = Θ(1)

to λ → ∞. It should be possible to ‘smoothen’ this by improving our bounds for large but
boundedλ. However, the calculations seem to be rather unpleasant, so we do not go into
the details.

Remark. As it was mentioned in the introduction,Theorem 4disproves the conjecture of
Wood in view of the inequalityE(G) ≥ S(G). Indeed, if we takeG ∈ G(n, n−1/2) for
example, then almost surelye(G) = (1

2 + o(1))n3/2 while D(G) = Ω(n2/ ln n). With a
bit of extra work it is possible to show that under the assumptions ofTheorem 4we have
almostsurelyE(G) ≥ 2s. To do this, prove that, almost surely, any sum-magic labelling
of G hasΩ(n) labels which are greater thans and there is an edge connecting two such
labels. We leave the details to the interested reader.

Now let us turn to upper bounds.

Theorem 5. Let δ > 0 be fixed. Let G∈ G(n, p), where n → ∞ and p ∈ (0, 1)

is a function of n such thatln(np)
ln ln n → ∞ and p = O((ln n/n)1/2). Then almost surely

D(G) ≤ 2m andS(G) ≤ m, where

m := (1 + δ)
n3p2

ln(np)
. (10)

Proof. Let us estimateS(G). (Thecase ofD(G) is dealt with almost identically.)

We can assume thatδ is sufficiently small andm ∈ N. Let n be large andε > 0 be a
small constant depending onδ. Let V(G) = [n] be the vertex set. Chernoff’s bound [4]
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implies that almost surely we have∣∣∣∣Γ (i + 1) ∩ [i ]∣∣− i p
∣∣ ≤ εnp, for all i ∈ [0, n − 1], (11)

whereΓ (i + 1) is the set of neighbours ofi + 1 ∈ V(G).
Consider the conditional distribution ofG given (11). We have gained the very useful

control over the edges while some important properties ofG ∈ G(n, p) are preserved.
(That is, almost sure events stay so; the random setΓ (i + 1) ∩ [i ] is independent from
G[[i ]], etc.)

We choose vertex labels one by one, doing the label arithmetic inM = Z/mZ (that is,
modulom). Our labellingl : V(G) → [m] will have the property that the sumsl (x)+ l (y),
{x, y} ∈ E(G), will be pairwise distinct modulom.

Suppose that we have already chosen labels for the vertices inI := [i ].
Let

K := {l (x) + l (y) : {x, y} ∈ E(G), x, y ∈ I } ⊂ M,

andk := |K |. By (11),

k ≤
(

1
2 + ε

)
inp. (12)

Clearly, we can find a suitable label fori + 1 if

M\l (I ) �⊂
⋃

x∈I ∩Γ (i+1)

(K − l (x)), (13)

that is, if the translatesK − l (x), x ∈ I ∩ Γ (i + 1), donot coverM\l (I ).
This is obviously the case if

|M\(∪x∈I (K − l (x))| ≥ n,

so let us assume otherwise. Then we havem − ik ≤ n, which implies by (12) that

i ≥ n
√

2p/ ln(np). (14)

Now, we have toovercome the difficulty that i is large enough to potentially refute (13).
In outline, we fix the labellingl of I and then choose the random setI ∩ Γ (i + 1). The
labelsl (x), x ∈ I ∩ Γ (i + 1), are random variables. If the translatesK − l (x) cover the
whole of M\l (I ), then for everyz ∈ M\l (I ) at least one elementl (x) ∈ K − z is chosen.
We prove thatthis is unlikely.

Let Sconsist of those elements fromM\l (I ) which are covered by at most

t := �(1 + ε)kn/m

of the translatesK − l (x), x ∈ I . Clearly,

|M\(S∪ l (I ))| × (1 + ε)kn/m ≤ kn,

so

s := |S| ≥ εm

1 + ε
− n ≥ εm/2.
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Let γ ′ = �i p + εnp
 andγ = �i p + 2εnp�. Let us choosey1, . . . , yγ ∈ I , one by
one, independently and uniformly distributed. Of course, some of these might coincide.
Let Y := {y1, . . . , yγ }, ignoring multiple occurrences of the same vertex. The probability
that|Y| ≤ γ ′ is at most

(
i

γ ′

)(
γ ′

i

)γ

≤
(

ei

i p + εnp

)ip+εnp( i p + εnp

i

)ip+2εnp

= eip+εnp
(

p + εnp

i

)εnp
.

The last expression, as a function of a real-valued argumenti ≥ 0, is first decreasing and
then increasing ini so it is maximised if eitheri = n or i achieves the lower bound (14). In
either case, the result can be bounded byo(n−1). Thus, the setY has at leastγ ′ elements
with probability 1− o(n−1).

Let the random variableU count the number ofx ∈ Swhich belong to none ofK −l (y),
y ∈ Y.

We considerthe martingale(U0, . . . ,Uγ ), whereUj is the expected value ofU after
having exposed the firstj verticesy1, . . . , yj . Clearly, each new vertex changesU by at
mostk.

It is easy to estimateU0, the expectation ofU :

E(U) ≥ |S|
(i−t

γ

)
( i
γ

) ≥ s

(
i − t − γ + 1

i − γ + 1

)γ

≥ se−(1+ε)γ t/ i ≥ s(np)−
1
2+ δ

4 .

(Note thatt = o(i ) by the definition oft andγ = o(i ) by (14).)
By applying the Hoeffding–Azuma inequality [2, 11] (see e.g. Alon and Spencer [1,

Theorem 7.2.1]) we obtain

Pr{U = 0} ≤ Pr{|U − E(U)| ≥ E(U)} ≤ exp

(
− (E(U))2

2k2γ

)

= exp(−Ω((np)
δ
2 / ln2(np))) = o(n−1).

Hence, the event that|Y| < γ ′ for somei or U = 0 has probabilityo(1). Of course,
when we select a randoma-subset ofY, we obtain a uniformly distributeda-subset ofI .
Note that|Γ (i + 1) ∩ [i ]| ≤ γ ′ by (11). We can find a distribution fora ∈ [0, i ] suchthat
when we first choosea, thenY as above, then a randoma-subset ofY, weobtain precisely
the distribution ofΓ (i + 1) ∩ [i ], conditioned on (11).

Hence, almost surely for anyi , condition (13) holds; that is, we can always choose an
appropriate label. �

4. General graphs

Let us prove upper bounds that apply to arbitrary graphs. The obvious greedy algorithm
gives the following (cf. Wood [15, Theorem 4]).
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Lemma 6. For any graph G we have

D(G) ≤ 2∆(G)e(G) + v(G),

S(G) ≤ ∆(G)e(G) + v(G).

Proof. Let us boundS(G), for example. We choose vertex labels one by one. When we
consider a vertexi ∈ V(G), we are forbidden to choose a previously used label as well as
any number of the forml (u) + l (v) − l (w) where{u, v}, {w, i } ∈ E(G) and the labels of
u, v andw have already been chosen. This forbids at mostv(G) − 1 + d(i )e(G) elements
sowe can always proceed.�

Remarkably, the trivialLemma 6is not far from the truth: if applied toG ∈ G(n, p),
with np

ln n → ∞, it gives a bound within the multiplicative factor ofO(ln n) from the actual
value. It is an interesting open problem todetermine the maximum value ofD(G) and
S(G) over all graphs of ordern and maximum degree at mostd.

For the functionsD(n, m) andS(n, m) we obtain the following upper bounds.

Theorem 7. Let n→ ∞ and m≤ (n
2

)
. Then

D(n, m) ≤ n + (24/3 + o(1))m4/3,

S(n, m) ≤ n + (22/3 + o(1))m4/3.

Proof. Let us deal withD(n, m) here. Letn be large andG be an arbitrary graph of order
n and sizem. It is easy to see thatD(n, m) = n if m = O(1), so assume thatm → ∞.

Order the vertices ofG by their degrees:d(x1) ≥ · · · ≥ d(xn). Let k = �(2m)2/3�.
Label verticesx1, . . . , xk by a Sidonk-subset of[s], s = �(1 + ε)k2
. We try tolabel the
remaining vertices one by one using labels from[n + s]. When choosing a label forxi ,
the forbidden values are the already assigned labels,i − 1 of them, as wellas the numbers
l (xu) ± (l (xv) − l (xw)), whereu, v,w ∈ [i − 1] with {xi , xu}, {xv, xw} ∈ E(G), at most
2md(xi ) numbers. Butd(x j ) ≥ d(xi ) for any j < i , henced(xi ) ≤ 2m

i ≤ 2m
k and the total

number of forbidden labels is at most

n − 1 + 4m2

k
< n + s;

that is, we can always find a suitable label.�

Needless to say, we have a trivial upper bound, namely(1 + o(1))n2.
Good lower bounds onD(n, m) and S(n, m) are provided by random graphs plus

isolated vertices. Our aim is to choosev ≤ n such that, if we definep by p
(
v
2

) = (1− ε)m,
the bound ofTheorem 4for G ∈ G(v, p) is as large as possible.In order not to clutter
this paper with details we compute only the order of magnitude, not bothering about
multiplicative constants.

If m = Ω(n3/2
√

ln n), then we takev = n. Almost surely D(G), S(G) = Ω(n2).
Otherwise, takev = Θ(m2/3(ln m)−1/3) < n. Now, the lower bound is

D(n, m),S(n, m) = Ω(m4/3(ln m)−2/3), for m = o(n3/2
√

ln n).

Also, note the trivial lower boundD(n, m), S(n, m) ≥ n.
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A little more careful analysis shows that there is an absolute constantC such that our
lower and upper bounds onD(n, m) andS(n, m) are within factorC(ln n)2/3 for anym, n.
This poses an intriguing problem of closing this gap.
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