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We call a coloring of the edge set of a graph G a b-bounded
coloring if no color is used more than b times. We say that a subset
of the edges of G is rainbow if each edge is of a different color.
A graph has property A(b, H) if every b-bounded coloring of its
edges has a rainbow copy of H . We estimate the threshold for the
random graph Gn,p to have property A(b, H).
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1. Introduction

We call a coloring of the edge set of a graph G a b-bounded coloring if no color is used more than
b times. We say that a subset of the edges of G is rainbow (or polychromatic) if each edge is of a
different color. We consider the following question: What relationship between b, G and H implies
that every b-bounded coloring of the graph G contains a rainbow copy of the graph H (i.e. a copy
of H in which E(H) is rainbow colored)? Note that this can be viewed as a variation on classical
Ramsey theory, but here instead of a homogeneous (i.e. monochromatic) copy of H we are interested
in a heterogeneous (i.e. rainbow) copy of H . Questions of this form have been studied in a number
of contexts. Erdős, Simonovits and Sós considered the minimum number of colors needed to ensure
a rainbow copy of H in every coloring of the edge set of Kn where we require that every color
is used at least once [5]. Lefmann, Rödl and Wysocka considered some variations on this question
where the restriction that each color is used at least once is replaced by other natural restrictions,
including b-bounded coloring [13]. The existence of rainbow Hamilton cycles in edge colored copies of
complete graphs was studied in [1,4,8,11]. The existence of rainbow stars was studied in Hahn [9,10]
and Fraisse, Hahn and Sotteau [7]. The complexity of finding rainbow sub-graphs was studied by
Fenner and Frieze [6]. Cooper and Frieze [3] studied the existence of polychromatic Hamilton cycles
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in random graphs. In this paper we study the existence of rainbow copies of a fixed graph H in
b-bounded colorings of the random graph Gn,p .

Let H be a fixed graph. Let v H and eH denote the number of vertices and edges of H , respectively.
For a positive integer b let A(b, H) denote the following graph property: G ∈ A(b, H) iff every b-
bounded coloring of E(G) has a rainbow copy of H . Define

mH = eH − 1

v H − 2
,

m∗
H = max{mH ′ : H ′ ⊆ H, v H ′ � 3},

p∗ = 1

n1/m∗
H

.

One can show that, unless maximum degree �H = 1, it is enough to consider only connected sub-
graphs H ′ .

Note that, when p is not too small, whp the number of copies of H in Gn,p is Θ(nv H peH ) while
the number of edges in Gn,p is Θ(np2). (Whp stands for with high probability, that is, with probability
1 − o(1) as n → ∞.) Thus if p � p∗ then the number of copies of H in Gn,p is much fewer than
the number of edges in Gn,p and so it should be the case that whp it is easy to color the edges so
that there is no rainbow copy of H . On the other hand, when p 	 p∗ there are so many copies
of H relative to the number of edges that whp a rainbow copy of H should be unavoidable. So, at
first glance, it is natural to expect p∗ to be the threshold for the anti-Ramsey property A(b, H). Of
course, this reasoning can also be applied to the classical Ramsey property, and p∗ is (with a few
exceptions) indeed the threshold for the Ramsey property that every coloring of Gn,p with a set of
r colors has a monochromatic copy of H as shown by Rödl and Ruciński [15]. See also Ruciński and
Truszczyński [16] for a version where there are restrictions on the number of colors used locally.

There is one immediate exception to this general framework for the anti-Ramsey property A(b, H).
Note that if H is a forest then m∗

H = 1 (assuming that �H � 2) but it turns out that there are trees
that have the property A(b, H). Since p = n−(k+1)/k is the threshold probability for having a copy of
every tree with k edges, it follows that p = 1/nm�

H = 1/n is not the threshold for the anti-Ramsey
property A(b, H).

So we begin with a general result for arbitrary graphs that are not acyclic.

Theorem 1. For all graphs H containing at least one cycle there exists a constant b0 = b0(H) such that if
b � b0 then there exist c1 = c1(b, H) and c2 = c2(b, H) such that if p = cn−1/m∗

H then

lim
n→∞ Pr

(
Gn,p ∈ A(b, H)

) =
{

0 if c � c1,

1 if c � c2.
(1)

In truth 1-statement (when c � c2) holds for all b � 2, as will be seen from an examination of the
proof in Section 4.2.

Our proof of the 1-statement (when c � c2) has been reduced to a few lines by a clever observation
from one of the reviewers of the paper.

We study the threshold for A(b, K3) in more detail. For b = 2 and H = K3, the situation is com-
pletely resolved.

Theorem 2. Let p = cn
n2/3 . Then

lim
n→∞ Pr

(
Gn,p ∈ A(2, K3)

) =
⎧⎨
⎩

0 if cn → 0,

1 − e−c6/24 if cn → c,
1 if cn → ∞.

Note that Theorem 2 shows that some condition on b is necessary in Theorem 1 (since m∗
K3

= 2).
When b = 3 and H = K3 there is an intriguing gap in our result.
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Theorem 3. Let p = c
n1/2 . Then,

lim
n→∞ Pr

(
Gn,p ∈ A(3, K3)

) =
{

1 − e−c10/120 if c < 1/
√

2,

1 if c >
√

2.

Theorem 3 leaves open the possibility of a ‘one-sided-sharp’ phase transition; to be precise, there
could be a critical value c ∈ [1/

√
2,

√
2] at which the probability that Gn,c/

√
n has property A(3, K3)

quickly jumps from 1 − e−c10/120 to 1. Finally, we note that (1) holds for H = K3 and b � 4, see
Remark 2 after the proof of Theorem 3.

We now turn to the anti-Ramsey thresholds for forests. For a tree T , let s(b, T ) be the minimum
value s such that there exists a tree with s edges having property A(b, T ). For a fixed forest F , the
threshold for A(b, F ) will then be p = n−(s+1)/s where s is the maximum of s(b, T ) over all connected
components T of F . So the study of thresholds for A(b, F ) amounts to the study of s(b, T ). We begin
with the following general statement about the growth rate of s(b, T ) as b grows.

Theorem 4. Let T be a fixed tree with diameter l, and set m = �l/2�. Then (letting b → ∞) we have

s(b, T ) = Θ
(
bm)

.

The upper bound in Theorem 4 is given by a certain class of trees which we conjecture always
determines s(b, T ). Let T be a tree, e be an edge in T and b be a positive integer. In Section 5 we
define the tree BT ,e,b (which we dub the b-blow up of T centered at e) and show that B T ,e,b ∈ A(b, T ).

Conjecture 1. For any b � 2 and tree T ,

s(b, T ) = min
e∈T

{∣∣E(BT ,e,b)
∣∣}.

In support of this conjecture, we verify it for paths and rooted trees with a constant branching factor.
Using similar proof techniques we have verified the conjecture for a few other special classes of trees
(e.g. the m-fork which consists of m leaves added to an endpoint of a path of length 3). The details
for these other classes of trees are omitted for the sake of brevity. We note that Picollelli [14] has
verified the conjecture for all trees of diameter at most four.

Theorem 5.

(a) Let Pl be the path with l edges. We have

s(b, Pl) =
{

(b + 1)
∑k−1

i=0 bi if l = 2k,

1 + 2
∑k

i=1 bi if l = 2k + 1.

(b) Let Td,l be a rooted tree, with all leaves at distance l from the root such that every non-leaf has the same
degree d. Then

s(b, Td,l) = 1 + 2
l−1∑
i=1

(
b(d − 1)

)i + (
b(d − 1)

)l
.

We prove our theorems in the following order. Theorem 2 is proved first in Section 2. Theorem 3
is proved in Section 3. The general theorem, Theorem 1, is proved in Section 4, and we discuss trees
in Section 5.

A few words on our notation. We will use ‘⊆’ to denote inclusion. The expression an ∼ bn means
that limn→∞ an/bn = 1. The O ()-notation is standard.
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2. Proof of Theorem 2

We begin by noting that K4 has the anti-Ramsey property A(2, K3) (by proving the following,
more general statement).

Lemma 6.

Kr+2 ∈ A(r, K3) for r � 1.

Proof. Assume for the sake of contradiction that a given r-bounded coloring of Kr+2 does not have
a rainbow triangle. Let C be a largest connected component, in terms of number of vertices, induced
by edges of the same color, red say. The number of vertices in C is at most r + 1 and so there is a
vertex v /∈ C . Consider the edges from v to C . They cannot be colored red and as there are no rainbow
triangles they must all be the same color, blue say. But then the connected component induced by
the blue edges that contains v has more vertices than C , contradiction. �

Now assume that p = c
n2/3 and let Z4 denote the number of copies of K4 in Gn,p . Thus

E(Z4) =
(

n

4

)
p6 → c6

24
.

It is well known [2,12,17] that in this case Z4 is asymptotically Poisson and so

Pr(Z4 = 0) → e−c6/24.

Since K4 ∈ A(2, K3) and the property A(b, H) is monotone, we can prove Theorem 2 by showing that
if p = c

n2/3 , c constant, then

lim
n→∞ Pr

(
Gn,p ∈ A(2, K3)

∣∣ Gn,p is K4-free
) = 0. (2)

We now define a triangle graph Γ = (W , X) where W is the set of triangles of Gn,p and
(T1, T2) ∈ X iff the triangles T1, T2 share an edge. If C = {T1, T2, . . . , T�} is a connected component
of Γ we define the base graph of C to be the sub-graph GC of Gn,p with vertex set V C = ⋃�

i=1 V (Ti)

and edge set EC = ⋃�
i=1 E(Ti).

We say that a graph K is d-degenerate if there is an ordering v1, v2, . . . , vk of the vertices of K
such that each vertex v has at most d neighbors that appear before v in this ordering; to be precise,∣∣{ j: j < i and {vi, v j} ∈ E(K )

}∣∣ � d

for every i = 1, . . . ,k. Note that for any component of Γ we have

|EC | � 2|V C | − 3

with equality iff GC is 2-degenerate.

Lemma 7. Let Γ be the triangle graph of Gn,p with p = c/n2/3 where c is constant. Whp every component C
of Γ satisfies one of the following two conditions

(a) GC is isomorphic to K4 , or
(b) GC is 2-degenerate.

Proof. We first show that whp |V C | � 6 for all components C of Γ . Indeed, if there exists a compo-
nent C of Γ such that |V C | � 7 then there is a set of 7 vertices in Gn,p that spans at least 11 edges.
A simple first moment calculation shows whp that no such sub-graph of Gn,p exists.

It remains to show that whp there are no components C of Γ such that GC is not 2-degenerate
and V C = 5 or 6. However, these correspond to sub-graphs of Gn,p with 5 vertices and 8 edges and
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sub-graphs of Gn,p with 6 vertices and 10 edges, respectively. By the first moment method no such
sub-graphs of Gn,p exist. �

We are now ready to prove (2). Suppose Gn,p is K4-free and that every component C of Γ has GC
2-degenerate. We color the edge set of Gn,p by considering each component of Γ in turn. Consider
a 2-degenerate ordering v1, . . . vk of the vertices of GC . We introduce one color for each vertex and
color the edge {vi, v j} with the color corresponding to the maximum of i and j. If {va, vb, vc} is a
triangle in C then the color corresponding to the maximum of a, b and c appears on 2 of the edges
in triangle. Thus, this gives a 2-bounded coloring of the edges of Gn,p with no rainbow K3.

3. Proof of Theorem 3

Suppose first that p = c
n1/2 and c < 1/

√
2.

Let Z5 denote the number of copies of K5 in Gn,p . We have

E(Z5) =
(

n

5

)
p10 → c10

120
and Pr(Z5 = 0) → e−c10/120.

Since K5 ∈ A(3, K3) by Lemma 6, we can prove the first part of Theorem 3 by showing that if p = c
n1/2

and c < 1/
√

2 then

lim
n→∞ Pr

(
Gn,p ∈ A(3, K3)

∣∣ Gn,p is K5-free
) = 0. (3)

Let the triangle graph Γ be as defined in Section 2. A component C of Γ is safe if

|EC | � 2|V C |.

Lemma 8. Whp every connected component C of Γ is safe.

Proof. Consider the following process that generates all connected components of Γ . Choose 3 ver-
tices u, v, w and let V 0 = {u, v, w} and let E0 = {{u, v}, {u, w}, {v, w}}. If u, v, w generate a trian-
gle in G continue as follows: Suppose that we have generated a disjoint sequence of vertex sets
V 0, V 1, . . . , Vk and edge sets E1, E2, . . . , Ek . Initialize Vk+1 = Ek+1 = ∅ and then perform the follow-
ing steps:

A. For each z /∈ V (k) = ⋃k
i=0 V i and e = {x, y} ∈ Ek see if both edges {x, z}, {y, z} exist in Gn,p . If so,

add these edges to Ek+1 and z to Vk+1. This is done one vertex at a time and for each vertex it is
done one edge at a time. We place z in Vk+1 on the first success and then move on to the next
vertex.

B. For each pair of vertices consisting of a vertex z in Vk+1 and a vertex a in V (k+1) see if the edge
{z,a} is in Gn,p . If so add this edge to Ek+1.

Of course, we terminate when Vk+1 = ∅ after step A. Let V final and Efinal be the vertex and edge sets,
respectively, that are formed at the end of this process and let C = Cu,v,w be the triangle component
containing the triangle u, v, w (if this triangle appears). Note that Efinal is not necessarily equal to
EC as we add edges in step B that are not necessarily involved in triangles. However, we do have
EC ⊆ Efinal. Also,

|Efinal \ EC | � 2|V final \ V C |.
Thus, if |Efinal| is at most 2|V final| then Cu,v,w is safe. Since edges and vertices join at a ratio of
2 edges to each vertex during step A, we have |Efinal| � 2|V final| iff the number of edges that join
during a step B is at most 3.

Note that throughout our process the conditioning we impose on Gn,p is of a very special form.
At any given point we have fully queried certain edges (i.e. we are conditioning on the event that
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some set of edges appears and some other set of edges does not appear). Furthermore, since we have
checked to see if certain pairs of edges appear in Gn,p in step A we also condition on the event that
a certain collection of pairs of edges do not appear. Since the latter is a downwardly closed event, it
follows from the FKG inequality that when we condition on this event the probability that any set of
k edges (that have not been fully queried) lie in Gn,p is at most pk .

We view our process as a sort of branching process in which the edges are the individuals and
each edge that joins has a ‘parent’ edge that it attaches to. Let Ai be the number of step A children of
the ith edge to join. Let Bi be the number of step B children of the ith edge to join. Note that there
is ambiguity in the parent of a type B edge. We assign paternity to an arbitrarily chosen incident –
and previously appearing – edge. Note also that each of these Bi edges shares a common vertex with
its parent.

Define the constant c′ = 6/(δc)2 where δ > 0 is defined by c + δ = 1/
√

2. Let K = c′ log n. Let
X1, X2, . . . be a sequence of i.i.d. Bi(n, p2) random variables. Here Bi is used to denote the binomial
random variable. Let Y1, Y2, . . . be a sequence of i.i.d. Bi(2K , p) random variables. Note that 2Xi
dominates Ai for all i while Yi dominates Bi for i = 1, . . . , K .

Let S be the event that the edges {u, v}, {u, w}, {v, w} appear in Gn,p . If S occurs and |Efinal| > K

then
∑K

i=1 Ai > K − ∑K
i=1 Bi − 3. If S occurs and K � |Efinal| > 2|V final| then

∑K
i=1 Bi � 4.

Thus we have

Pr
(|Efinal| > 2|V final|

∣∣ S
)
� Pr

(|Efinal| > K
∣∣ S

) + Pr
(|Efinal| > 2|V final|

∣∣ S ∧ |Efinal| � K
)

�
[

Pr

(
K∑

i=1

2Xi > K − 6

)
+ Pr

(
K∑

i=1

Yi � 4

)]
+ Pr

(
K∑

i=1

Yi � 4

)
.

Now we apply the Chernoff bounds. Since the sum
∑K

i=1 Xi is distributed as Bi(Kn, p2) we have

Pr

(
K∑

i=1

Xi � K − 6

2

)
� Pr

(
K∑

i=1

Xi � Knp2(1 + δ)

)
� exp

{−δ2 Knp2/3
} = 1

n2
.

(Note that we use the fact (1/
√

2 − x)2(1 + x) < 1/2 for x in the interval (0,1/
√

2) and that we
assume that n is sufficiently large.) For the sum of the Yi ’s we simply have

Pr

(
K∑

i=1

Yi � 4

)
�

(
2K 2

4

)
p4 = O

(
(log n)8

n2

)
.

Therefore, by the union bound, the probability that there is a triangle component C that is not safe is

O

(
n3

(
1√
n

)3
(log n)8

n2

)
= o(1). �

Assume that all triangle components C are safe. We give an algorithm for coloring each triangle
component in such a way that no triangle is rainbow. Consider a fixed component C of Γ . We define
the graph D to be K6 minus a perfect matching. Let v1, v2, v3, . . . , v� be the vertices of GC listed so
that

(i) If GC contains a copy of D then this graph comes at the beginning of the sequence. If there is no
copy of D , but there is a copy of K5 − e then this graph comes at the beginning of the sequence.
Finally, if there is no copy of D or K5 − e, but there is a copy of K4 then this graph comes at the
beginning of the sequence.
If GC does not contain any of these graphs then the first three vertices in the sequence form a
triangle.

(ii) Let vk be the last vertex in our initial graph as defined in (i). Each subsequent vertex vi, i > k has
at least 2 neighbors (called back-neighbors below) among v1, . . . , vi−1 and the set of neighbors
of vi among v1, . . . , vi−1 span at least one edge.



T. Bohman et al. / Journal of Combinatorial Theory, Series B 100 (2010) 299–312 305
Property (ii) follows from the facts that the ordering of vertices by their addition to GC satisfies it
and that we can start growing GC from any triangle, in particular, from one belonging to the targeted
initial graph.

For i = k + 1, . . . , v let di be the number of neighbors vi has among v1, . . . , vi−1. By assumption
di � 2 for all i > k. Let It = {i > k: di = t}, t � 3 and I = I3 ∪ I4 ∪ I5. Note that our assumption that C
is safe implies that It = ∅ for t � 6 and |I3| + 2|I4| + 3|I5| � 3. Furthermore,

GC contains D �⇒ I = ∅,

GC contains K5 − e �⇒ I4 ∪ I5 = ∅,

GC contains K4 �⇒ I5 = ∅ and |I3| + 2|I4| � 2.

We first check that K5 − e and D can be colored without creating a rainbow triangle.

K5 − e: Suppose that e = {4,5}. The following table shows a coloring without a rainbow triangle:

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5}
1 1 2 3 1 2 3 2 3

D: Suppose that the deleted matching is {1,4}, {2,5}, {3,6}. The following table shows a color-
ing without a rainbow triangle:

{1,2} {1,3} {1,5} {1,6} {2,3} {2,4} {2,6} {3,4} {3,5} {4,5} {4,6} {5,6}
1 2 2 1 1 3 4 3 3 4 4 2

We then use the following basic coloring algorithm to color the remainder of EC : color the edges
between vi and v1, . . . , vi−1 with the same color i. This always gives a coloring with no rainbow
K3 (the color of the last vertex in each triangle appears on 2 of the edges in the triangle). However,
the coloring is 3-bounded only if di � 3 for all i. For example, the algorithm succeeds if GC contains
a copy of D or K5 − e, because here I4 = I5 = ∅. We henceforth assume that GC does not contain
either of these graphs. We now describe how to modify this algorithm for the remaining cases. The
availability of free colors (that is, colors used less than three times in this basic coloring) will help us
in this task. For the sake of brevity, we will mention only the changes needed to fix this coloring.

Case 1. There exists an i such that di = 5.

In this case we have d j = 2 for j > k, j �= i. If the back-neighbors of vi are vi1 , . . . , vi5 then we
recolor each {vi, vis } with color is . Any triangle formed by i and 2 of its back-neighbors can be
expressed as vi, vis , vit where is > it , say. This triangle will then have two edges of color is .

Case 2. There exists an index i such that di = 4.

Let the back-neighbors of vi be vi1 , . . . , vi4 where i1 < i2 < i3 < i4.

Case 2a. di4 = 2.

Here, we use the color i4 for the edge {vi4 , vi}.
Note that if C contains a copy of K4 then, assuming that di = 4, we are in Case 2a (otherwise

i4 � k = 4 and we have a copy of K5, a contradiction). Assume for the remaining sub-cases that C
does not contain a copy of K4.

Case 2b. di4 = 3.

We have

d j = 2 for j < i, j �= i4.
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Now we consider the graph X induced by {vi1 , . . . , vi4 }. By assumption X has at most 4 edges (oth-
erwise we have a K5 or K5 − e). Since C does not contain a copy of K4, X does not contain a triangle.
We may assume that vi4 is adjacent to vi3 : Otherwise we can just recolor the edge {vi3 , vi} with
color i3. Also, we may assume that X has no isolated vertex v p : Otherwise p = i1 or i2, and we can
recolor the edge {v p, vi} with color p.

Therefore, we can now restrict our attention to one of the following cases listed below:

Case 2bi. X is 2 disjoint edges.

One of the edges in X is {vi1 , vi2 }. The color i2 is a free color, so we can use it to recolor the edge
{vi, vi2 }.

Case 2bii. X is a path of length 3.

If vi2 is an endpoint connected to vi1 , then we are done by recoloring {vi2 , vi} with color i2.
Thus we can assume that our path is the union of two sub-paths going monotonely up and ending
in vi4 . (One of the sub-paths can be empty.) Take the longer sub-path, let it begin with edge {vib , via },
b < a � 3. We recolor the edge {vib , vi} with color ia (thus color ia forms a path of length 3 after the
recoloring).

Case 2biii. X is a 3-star.

Note that the center of the star cannot be vi4 (since the back-neighbors of vi4 must span an
edge). Therefore, one of the edges in the star has a free color. Use this color on the edge from the
corresponding leaf to i.

Case 2biv. X is 4-cycle.

Let v p be the vertex not in {vi1 , vi2 , vi3 } that is a back-neighbor of vi4 . Let vq be the neighbor of
vi4 in {vi1 , vi2 }. Let vs be the other vertex in {vi1 , vi2 }. We have the following sub-cases.

• v p is not adjacent to vq .
The edge {vi4 , vq} has no conditions on its color (relative to vi4 ) i.e. vi4 , v p, vq and vi4 , vi3 , vq do
not form triangles. Using this observation we can proceed as follows. We re-color edge {vi4 , vq}
with color i. We then color edge {vi, vi4 } with color i4. We color edge {vi, vi3 } with color i3 (and
the edges {vi, vi1 }, {vi, vi2 } keep color i).

• v p is adjacent to vq but not to vi3 .
We replace the color on {v p, vi4 } with the color on {v p, vq}. Then use color i4 on the other edges
incident to vi4 , including the edge to vi .

• v p is adjacent to vq and to vi3 .
Note first that p < i3 as otherwise the back neighbors of v p do not span an edge. Since v p and
vs are the (only) back-neighbors of vi3 there must be an edge between them. Now we have a
copy of D with the deleted matching being {vi3 , vq}, {vi4 , vs}, {vi, v p}, contradiction.

This completes the proof of (3) and the first part of the proof of Theorem 3.
Suppose now that c >

√
2. Whp Gn,p has (1 + o(1))cn3/2/2 edges, (1 + o(1))c3n3/2/6 triangles and

o(n3/2) copies of K4. Suppose that we have a 3-bounded coloring and Ai is the set of colors that are
used i times and ai = |Ai| for i = 1,2,3. Thus,

a1 + 2a2 + 3a3 = (
1 + o(1)

)
cn3/2/2. (4)

Suppose that there are no rainbow triangles. Then each triangle T contains a pair of edges of the
same color c(T ). For color x let t(x) be the number of triangles T such that c(T ) = x. So t(x) = 0 for
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x ∈ A1, t(x) � 1 for x ∈ A2 and t(x) � 2 for x ∈ A3, unless x is used to color three edges of a copy
of K4. These latter colors are relatively rare (since the total number of K4-sub-graphs is o(n3/2)) and
so we have

a2 + 2a3 �
(
1 + o(1)

)
c3n3/2/6. (5)

It follows from (4) and (5) that

c3

4
� c

2
or c �

√
2.

This contradiction completes the proof of Theorem 3.

Remark 1. The bound c >
√

2 in Theorem 3 can be improved. For example we could remove from
our accounting those edges that are not in triangles. Or we could note that isolated triangles (which
whp form a non-negligible proportion of the triangles) must be accounted for by colors x such that
t(x) = 1. While these arguments improve this upper bound, they do not completely close the gap
between the bounds in Theorem 3.

Remark 2. If b � 4 and c < 1/
√

2 then limn→∞ Pr(Gn,p ∈ A(b, K3)) = 0. To see this observe that
K5 /∈ A(b, K3) for b � 4. Second, whp no two copies of K5 in Gn,p share an edge. Thus we can color
all copies of K5 without creating a rainbow copy of K3. The rest of the edges can now be colored as
in the proof of Theorem 3.

4. Proof of Theorem 1

4.1. Small c

Let p = cn−1/m∗
H . We first consider the case where c is sufficiently small. We can assume in fact

that

mH > mH ′ for all H ′ � H with v H ′ � 3.

For if not, and m∗
H = mH ′ for a sub-graph H ′ of H then we can show that it is possible to color Gn,p

without creating a rainbow copy of H ′ , which of course shows there is no rainbow copy of H . It
follows that if H ′ � H and v H ′ � 3 then

δH ′ def= eH − eH ′

mH
− v H + v H ′ = (v H ′ − 2)

(
1 − mH ′

mH

)
> 0.

Define

δH = min
{
δH ′ : H ′ � H, v H ′ > 2

}
.

We follow a similar strategy to that in the previous section. In place of the triangle graph Γ we
will have the H-graph ΓH whose vertices are the copies of H in Gn,p and in which two vertices
H1, H2 are joined by an edge in ΓH if H1, H2 share at least one edge in Gn,p .

A component C of ΓH is safe if GC is b(H)-degenerate where we set

b(H)
def= �H + mH v H − eH + 1

and �H is the maximum degree in H . Recall that GC is b(H)-degenerate if we can order V C =
{v1, v2, . . . , v�}, � = |V C | such that each vi has at most b(H) neighbors among v1, v2, . . . , vi−1.

Lemma 9. Whp every connected component C of ΓH is safe.
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Proof. In analogy to the proof of Lemma 8, we consider a process where we choose a set of vertices
V 0 = {v1, v2, . . . , v v H }, let E0 consist of all edges spanned by V 0, and if E0 contains a copy of H ,
we do a search that generates an edge set Efinal that contains EC where C is the corresponding
component of ΓH . We generate sets V i, Ei, i = 1,2, . . . ,k via an iterative application of the following
2 steps until Vk+1 = ∅ after step A:

A. For each set of v H vertices that contains some z /∈ V (k) def= ⋃k
i=0 V i and some e ∈ Ek determine

if this set of vertices gives a copy of H . When we find such a copy of H we add V (H) \ V (k) to
Vk+1, add E(H)\ E(k) to Ek+1 and move on. It is important to stress that once a vertex z is added
to Vk+1 we do not query any other vertex set that contains z.

B. For each pair of vertices consisting of a vertex z in Vk+1 and a vertex a in V (k+1) see if the edge
{z,a} is in Gn,p . If so add this edge to Ek+1.

As in the proof of Lemma 8, the conditioning on Gn,p imposed by this search is of a very special
form. At any stage, certain edges are fully queried and we further condition on the event that certain
sets of edges do not appear. Under any conditioning of this form, the probability that any set of k
(not fully queried) edges appears in Gn,p is at most pk . Note further that after step B we have fully
queried all edges within V (k+1) . Let Efinal be the edge set generated when this process terminates.

Again, we view this as a branching process where the edges are individuals. Here we have three
ways in which an edge e ∈ Ek can have offspring:

1. copies of H found in step A such that V (H) ∩ V (k) = e,
2. copies of H found in step A such that e ∈ E(H) but |V (H) ∩ V (k)| � 3, and
3. edges added during step B.

Of course, there is some ambiguity in assigning the paternity of edges of types 2 and 3. This is done
arbitrarily. Let Ai, Bi and Ci be the number of type 1, 2 and 3 offspring, respectively, of the ith edge
to join Efinal. For simplicity of our formulas, the edges that are in E0 but not in the initial copy of H ,
are accounted for by increasing appropriate Ci ’s.

Let K = C log n, where C = C(c, H) is a sufficiently large constant. Let X1, X2, . . . be i.i.d.
Bi(nv H −2, peH −1) random variables, let Y1, Y2, . . . be i.i.d.

∑
H ′�H,v H ′�3

Bi
(

K v H ′−2nv H −v H ′ , peH −eH ′ )

random variables, and let Z1, Z2, . . . be i.i.d. Bi(2K , p) random variables. We see that Ai, Bi and Ci

are dominated by (eH − 1)Xi, (eH − 1)Yi and Zi , respectively, for i � K . We have

E

[
K∑

i=1

(eH − 1)Xi

]
= K (eH − 1)nv H −2 peH −1 = K (eH − 1)ceH −1.

So if c is sufficiently small the Chernoff bound implies

Pr

(
K∑

i=1

(eH − 1)Xi � K − eH − (mH v H − eH + 1) − eH − 1

δH

[
v H − eH

mH
+ 1

])

= O
(
neH /mH −v H −1). (6)

The sum
∑K

i=1 Yi is distributed as

∑
H ′�H :v ′�3

Bi
(

K · K v H ′−2nv H −v H ′ , peH −eH ′ ).

H



T. Bohman et al. / Journal of Combinatorial Theory, Series B 100 (2010) 299–312 309
Let I denote the set of sequences of non-negative integers (iH ′ : H ′ � H, v H ′ � 3) such that the sum
of the iH ′ ’s is � 1

δH
[v H − eH

mH
+ 1]�. The probability that

∑K
i=1(eH − 1)Yi is at least eH −1

δH
[v H − eH

mH
+ 1]

is bounded by

∑
(iH ′ )∈I

∏
H ′�H: v H ′�3

(
K · K v H ′−2nv H −v H ′

iH ′

)(
peH −eH ′ )iH ′

<
∑

(iH ′ )∈I

∏
H ′�H: v H ′�3

K v H iH ′ (nv H −v H ′ peH −eH ′ )iH ′

<
∑

(iH ′ )∈I

∏
H ′�H: v H ′�3

K v H iH ′ n−δH ′ iH ′

< K O (1)
∑

(iH ′ )∈I

∏
H ′�H: v H ′�3

n−δH iH ′

� K O (1)
∑

(iH ′ )∈I
neH /mH −v H −1.

(Note that δH � δH ′ for any H ′ � H by definition.) Since there are |I| = K O (1) sequences we have

Pr

(
K∑

i=1

(eH − 1)Yi � eH − 1

δH

[
v H − eH

mH
+ 1

])
= K O (1)neH /mH −v H −1. (7)

Finally, we have

Pr

(
K∑

i=1

Zi � mH v H − eH + 1

)
�

(
2K 2

mH v H − eH + 1

)
pmH v H −eH +1

= K O (1)neH /mH −v H −1/mH . (8)

Since the expected number of the initial graphs H is at most nv H peH = nv H −eH /mH , the union bound
applied to (6), (7) and (8) shows that whp every component of ΓH has at most K edges. The desired
b(H)-degenerate ordering then follows from (8). �

Of course, if every component of ΓH is safe and b � b(H) then one can color the edges of G so
that there are no rainbow copies of H . To color EC for a component C , we simply use the same new
color for every edge from vi to {v1, v2, . . . , vi−1} for 1 � i � |V C |. Then every copy of H in C has
a last vertex in the order and our coloring prevents this copy being rainbow. (Note that we use the
fact that H has minimum degree at least 2, which follows from the assumption mH > mH ′ for all
sub-graphs H ′ and the inequality mH > 1.)

4.2. Large c

As already mentioned, the following proof is due to a reviewer of the paper. We will show that
if every coloring of the edges of graph G with b colors contains a monochromatic copy of H then
G ∈ A(b, H). Thus the claimed result for large c follows immediately from Rödl and Ruciński [15].

Indeed, given a b-bounded coloring of G , let the edges colored i be denoted ei,1, ei,2, . . . , ei,bi

where bi � b for all i. Now consider the auxilliary coloring in which edge ei, j is colored with j. At
most b colors are used and so in the auxilliary coloring there will be a monochromatic copy of H .
The definition of the auxilliary coloring implies that this copy of H is rainbow in the original coloring.
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5. Trees

We first define the tree BT ,e,b and prove that BT ,e,b ∈ A(b, T ).
Let e = {x, y} be an edge of the tree T . For each vertex v in T let �v be the distance from v to e

(so �x = �y = 0) and let S v be the set of all strings of the form (v, i1, i2, . . . , i�v ) where i1, i2, . . . , i�v

are integers in the set {1,2, . . . ,b}. Note that we have Sx = {(x)} and S y = {(y)}. The vertex set
of the BT ,e,b is

⋃
v∈V (T ) S v . In addition to the edge {(x), (y)}, we place an edge between vertex

(v, i1, . . . , i�v ) and (w, j1, . . . , j�w ) if and only if

(a) w and v are adjacent in T , and
(b) ik = jk for k = 1, . . . , �v (where we assume �w = �v + 1).

We call the set of edges in BT ,e,b between a vertex in S v and a set of vertices in S w , where �w =
�v + 1, a bundle of edges. We also let the singleton edge {(x), (y)} form a bundle. Note that the edge
set of BT ,e,b is the disjoint union of the set B of bundles.

Let Ω be the set of colors in an arbitrary b-bounded coloring of B T ,e,b . For each bundle B ∈ B let
C B be the set of colors used on the edges in B . Let X ⊆ B. Since the coloring is b-bounded we have∣∣∣∣⋃

B∈X

C B

∣∣∣∣ � 1

b

∑
B∈X

|B| � (|X | − 1)b + 1

b
.

Since the cardinality of this union is an integer, it is at least |X |. So, by Hall’s Theorem, there is a
system of distinct representatives of the sets {C X : X ∈ B}.

This system of distinct representatives corresponds to a set Y of edges in B T ,e,b such that there is
exactly one edge from each bundle in Y and the colors on the edges in Y are all different. This set
of edges defines a rainbow copy of T (as well as some extra components) and shows that B T ,e,b ∈
A(b, T ).

5.1. Special cases: proof of Theorem 5

We begin by showing that for the path Pl with l edges we have

s(b, Pl) =
{

(b + 1)
∑m−1

i=0 bi if l = 2m,

1 + 2
∑m

i=1 bi if l = 2m + 1.
(9)

Observe first that since the b-blow up of Pl centered on the edge e at the middle of the path is in
A(b, Pl), the above expression is an upper bound on s(b, Pl).

For the lower bound we use induction on l with cases l = 1,2 being trivial. Let a tree U give a
rainbow Pl for every b-bounded coloring of U . Partition E(U ) as X ∪ F1 ∪ · · · ∪ Fk so that

(i) for each 1 � i � k, |Fi | � b,
(ii) for each 1 � i � k and every path (x1, x2, x3, x4) in H , if the edge {x2, x3} belongs to Fi , then Fi

contains the edge {x1, x2} or the edge {x3, x4} (in other words each Fi consists of all edges in U
that intersect some set of vertices), and

(iii) |X | is as small as possible (given (i) and (ii)).

Note that every b-bounded coloring of the forest X yields a rainbow Pl−2; otherwise, we color the
forest X with no rainbow Pl−2 and each Fi with its own color to give a coloring of U with no
rainbow Pl . Thus for some component Y of X we have |E(Y )| � s(b, Pl−2). By induction |E(Y )| is
bounded below by the expression in (9).

In order to count the edges in U , we assign the other components of X and the parts Fi to vertices
of Y according to their vertex of attachment. (I.e. the vertex z and its incident edges are assigned to
y ∈ Y if the path from z to y is edge disjoint from E(Y ).)

We claim that for each vertex y ∈ Y of Y -degree d there are at least b − d + 1 edges attached
to Y in this way. Indeed, if this is not true, then form a new Fi -set by putting together all edges
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of Y incident to y, plus all parts attached to y. The new Fi has at most b edges and |X | has strictly
decreased. Take any path (x1, x2, x3, x4) with the edge {x2, x3} ∈ Fi . If y /∈ {x2, x3}, then both edges
{x1, x2} and {x3, x4} are in Fi . If, say, y = x2 then the edge {x1, x2} ∈ Fi . The claim has been proved.

For x ∈ V (Y ) let dY (x) be the Y -degree and fY (x) the aggregate number of edges of E(U \ Y )

assigned to x. We have∑
x∈V (Y )

(
dY (x) + fY (x)

)
� (b + 1)

∣∣V (Y )
∣∣.

But this sum equals 2|E(Y )| + |E(U ) \ E(Y )| = |E(U )| + |E(Y )|. So,∣∣E(U )
∣∣ � (b + 1)

∣∣V (Y )
∣∣ − ∣∣E(Y )

∣∣ = b
∣∣E(Y )

∣∣ + b + 1 � b · s(b, Pl−2) + b + 1,

as required to complete the proof of (9).
Now we turn to part (b) of Theorem 5. We will show that

s(b, Td,l) = 1 + 2
l−1∑
i=1

(
b(d − 1)

)i + (
b(d − 1)

)l
(10)

where Td,l is a rooted tree, with all leaves at distance l from the root such that every non-leaf has
the same degree d.

Observe first that the tree BTd,l,e,b with e being any edge incident with the root shows that our
expression is an upper bound for s(b, Td,l).

For the lower bound we again proceed by induction on l. The case l = 1 is simple: a tree with at
most b(d − 1) edges can be colored using only d − 1 colors. Let l � 2 and let U be a tree with the
coloring property (i.e. U ∈ A(b, Td,l)). We again grow classes Fi as in the proof of (9) but this time
the restriction on their size is (d − 1)b (to be precise, we partition U into X, F1, . . . , Fk such that
we have |Fi | � (d − 1)b, (ii) and (iii)). Note that every b-bounded coloring of the forest X yields a
rainbow Td,l−1; otherwise, we color the forest X with no rainbow Td,l−1 and each Fi with its own set
of d − 1 colors to give a coloring of U with no rainbow Td,l . Therefore, X has a component Y such
that |E(Y )| � s(b, Td,l−1), which is equal to the expression in (10) by induction. We again assign the
other components of X and the parts Fi to vertices of Y according to their vertex of attachment and
let dY (x) be the Y -degree and fY (x) the aggregate number of edges of E(U \ Y ) assigned to x. We
have ∣∣E(U )

∣∣ + ∣∣E(Y )
∣∣ =

∑
x∈V (Y )

(
dY (x) + fY (x)

)
�

(
(d − 1)b + 1

)∣∣V (Y )
∣∣.

But then∣∣E(U )
∣∣ �

(
(d − 1)b + 1

)∣∣V (Y )
∣∣ − ∣∣E(Y )

∣∣ = (d − 1)b
∣∣E(Y )

∣∣ + (d − 1)b + 1,

giving the required lower bound.

5.2. Proof of Theorem 4

For the upper bound, consider a b-blow up of T centered on an edge e that is in the middle of
a longest path in T . The upper bound follows from the fact that this blow-up is in A(b, T ) and has
O (bm) vertices.

For the lower bound it is enough to note that if a tree H is a sub-graph of T then s(b, H) � s(b, T ).
Since T contains the path Pl and s(b, Pl) = Ω(bm), we have the desired lower bound.
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