
COMBINATORICA
Bolyai Society – Springer-Verlag

0209–9683/110/$6.00 c©2010 János Bolyai Mathematical Society and Springer-Verlag

Combinatorica 30 (3) (2010) 277–293
DOI: 10.1007/s00493-010-2474-6

HYPERGRAPHS WITH INDEPENDENT NEIGHBORHOODS

TOM BOHMAN*, ALAN FRIEZE†, DHRUV MUBAYI‡,
OLEG PIKHURKO§

Received January 3, 2008

For each k ≥ 2, let ρk ∈ (0,1) be the largest number such that there exist k-uniform
hypergraphs on n vertices with independent neighborhoods and (ρk + o(1))

`

n
k

´

edges as
n → ∞. We prove that ρk = 1− 2logk/k + Θ(log logk/k) as k → ∞. This disproves a
conjecture of Füredi and the last two authors.

1. Introduction

The neighborhood N(S) of a (k−1)-set S in a k-uniform hypergraph (hence-
forth a k-graph) is the set of vertices v such that S ∪{v} is an edge. For
n≥ k ≥ 2, let f(n,k) be the maximum number of edges in a k-graph on n
vertices such that all its neighborhoods are independent sets (that is, span
no edge). Mantel proved in 1907 that f(n,2)=�n2/4�, and this was the first
result in extremal graph theory. Thus the problem of computing f(n,k) is a
natural generalization of Mantel’s result.

A k-graph is odd if it has a vertex partition X ∪Y such that all edges
have an odd number of points less than k in Y . It is easy to see that all
neighborhoods in an odd k-graph are independent sets. Let b(n,k) be the
maximum number of edges in an odd k-graph. Then the previous observation
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implies that f(n,k)≥b(n,k). It was conjectured in [8] that there exists some
function n0(k) such that n>n0(k) implies

(1) f(n, k) = b(n, k).

There was some evidence for this, as it reduces to Mantel’s theorem for
k = 2, and it was proved for k = 3 by Füredi, Pikhurko, and Simonovits [9,
10], thereby settling a conjecture of Mubayi and Rödl [18]. Recently, (1) has
also been proved for k=4 [8]. As we will show here, (1) is not that far from
the truth for k=5.

Since exact results are rare in extremal hypergraph theory, one often stud-
ies asymptotics. In this case, we can define ρk = limn→∞ f(n,k)/

(n
k

)
which

is easily shown to exist [12]. Now conjecture (1) implies that ρk =1/2 for all
even k and ρk ↑1/2 as k→∞ for odd k. Thus a weaker statement than (1)
would be that ρk = limn→∞ b(n,k)/

(n
k

)
, and an even weaker statement is

that ρk→1/2 as k→∞.
In this paper we show that conjecture (1) is false for all k≥7, and in fact

that ρk → 1. This follows from an old construction of Kim and Roush [16]
which gives lower bounds for the Turán problem for complete k-graphs. Thus
the small cases shed little light on the behavior of ρk.

We are able to obtain rather sharp estimates on the rate at which ρk

converges to 1:

Theorem 1. As k→∞, we have

1 − 2 log k

k
+ (1 + o(1))

log log k

k
≤ ρk ≤ 1 − 2 log k

k
+ (5 + o(1))

log log k

k
,

where log denotes the natural logarithm. Furthermore, for k ≥ 7, we have
ρk >1/2, hence (1) is false for k≥7.

This leaves open the cases k = 5 and 6, where we believe that (1) still
holds.

Conjecture 1. f(n,k)=b(n,k) for k∈{5,6} and n sufficiently large.

We will present the lower bounds in Theorem 1 via constructions in the
next section. Sections 3 and 4 are devoted to the proof of the upper bound.
In Section 5 we prove that 40/81=0.493 . . .≤ρ5 <0.534. We close with some
concluding remarks and related open problems.

We associate a k-graph with its edge set. For a vertex subset S of size k−1,
let d(S) = |N(S)|. Let

(
V
k

)
= {X ⊂ V : |X|= k}. We denote [n] = {1, . . . ,n}.

Let Bin(k,p) denote the binomial distribution with parameters k and p. In
Sections 2–4, the asymptotic notation (O(1), o(1), etc.) will refer to the case
when k is fixed and n→∞.
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2. Construction

In this section we prove the lower bound in Theorem 1 by means of a con-
struction due to Kim and Roush. As we will mention in Section 6, this is
not the only construction that can be used for this result, but it appears to
be the simplest one.

Construction 1 (Kim and Roush [16]). Let Y1∪·· ·∪Yl be a partition
of [n] into sets, each of size �n/l� or �n/l�. Let the k-graph H consist of all
k-sets that have at least one point in each Yi. Partition H into H1∪·· ·∪Hl,
where

Hj =

{

S ∈ H :
l∑

i=1

i|S ∩ Yi| ≡ j mod l

}

.

By the Pigeonhole Principle, we may assume that there is an a ∈ [l] with
|Ha|≤|H|/l. Now let

F = H \Ha.

Proposition 1. For any δ > 0 there is a k0 = k0(δ) such that for all k≥ k0

and all sufficiently large n (i.e. n > n0(k,δ)), Construction 1 produces a
k-graph F on n vertices with independent neighborhoods such that

|F| >

(
1 − 2 log k

k
+ (1 − δ)

log log k

k

)(
n

k

)
.

Proof. To see that F has independent neighborhoods, consider a (k−1)-set
S. Then N(S) cannot have a point in each Yi for then

{∑l
i=1 i|(S∪{v})∩Yi| :

v ∈ N(S)
}

covers all congruence classes modulo l. But then N(S) is an
independent set, since every edge of F has a point in each Yi.

Let k > k0(δ) be fixed and n→∞. If l is a fixed function of k then we
have

|F| ≥
(

1 − 1
l

) ((
n

k

)
− l

(
n − �n/l�

k

))

≥
[(

1 − 1
l

)(
1 − l(1 − 1/l)k

)
+ Θ

(
1
n

)](
n

k

)

=
(

1 − 1
l
− (l − 1)(1 − 1/l)k + Θ

(
1
n

))(
n

k

)
.

Set l=�k/((2−ε) log k)�, where ε=log logk/ logk. Then using (1−1/l)k <e−k/l

and kε =logk, we obtain

|F| ≥
(

1 − (2 − ε) log k

k
− 1

k
+ Θ

(
1
n

))(
n

k

)
.
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This gives the required bound.

Proposition 2. For any k≥7, we have ρk >1/2.

Proof. Let us take l=3 in Construction 1. The Inclusion-Exclusion Principle
shows that |H|/

(
n
k

)
=1−3 ·(2/3)k +3 ·(1/3)k +o(1). The right-hand side as-

sumes value 602
729 > 3

4 for k=7 and, as it is not hard to show, is an increasing
function of k≥7. Since F contains at least 2/3 edges of H, the proposition
follows.

3. Lemmas

This section contains some auxiliary results needed in the proof of the up-
per bound of Theorem 1. It may be possible to extract the following result
from [20] (as pointed out to us by a referee). In any case, we give an inde-
pendent proof below.

Lemma 1. For every k ≥ 100 there is an n0 such that for all n, x, and y
with x+y=n≥n0 and 4n

k−1 ≤y≤ n
2 , we have

max
0≤i≤k−1

(
x
i

)(
y

k−i−1

)

(
n

k−1

) ≤ 5
(

n

ky

)1/2

.

Proof. Let n0 = n0(k) be sufficiently large. Let p = x/n and q = y/n =
1− p. For 0 ≤ i ≤ k− 1, let pi =

(
x
i

)(
y

k−i−1

)(
n

k−1

)−1 and bi =
(
k−1

i

)
piqk−1−i.

We begin by noting that the hyper-geometric distribution (as given by pi)
can be bounded by the binomial distribution (as given by bi). Consider an
experiment in which we choose k− 1 elements of [n] uniformly at random
with replacement. Let X ⊂ [n] with |X| = x, and let D be the event that
the k− 1 random choices are distinct. Note that bi is the probability that
exactly i of our randomly chosen element fall in X and pi is the probability
that exactly i of our randomly chosen elements fall in X when we condition
on D. Therefore,

(2) pi ≤
bi

Pr(D)
≤ bi

1 −
(
k−1
2

)
1
n

.

Note that bi < bi+1 if and only if i + q < (k − 1)p. Therefore, if we set
i0 = �(k−1)p� and i1 = i0 +1 then maxi bi = max{bi0 , bi1}. Since k ≥ 3 and
y≤n/2 we have x=n−y≥ n

2 ≥
n

k−1 and hence (k−1)p=(k−1)x
n ≥1. Also,
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4n
k−1 ≤y implies that i0 <k−2. Consequently, 1≤ i0 <k−2 and we can apply
a standard estimate for binomial coefficients (e.g., Inequality (1.5) in [2]):

bi0 ≤
(

(k − 1)
2πi0(k − 1 − i0)

)1/2 (
(k − 1)p

i0

)i0 (
(k − 1)q

k − 1 − i0

)k−1−i0

.

Now let us estimate each of these three terms.

• Since k≥100 and p≥1/2 we have p
49 ≥

1
98 ≥

1
k−1 . Therefore i0

k−1 ≥p− 1
k−1 ≥

48
49p. Also

x(k − 1 − i0) ≥ x(k − 1 − (k − 1)p) = x(k − 1)(1 − p) =
xy(k − 1)

n

≥ y(k − 1)
2

≥ 99
200

yk.

This gives
(

k − 1
2πi0(k − 1 − i0)

)1/2

≤
(

49
96πp (k − 1 − i0)

)1/2

=
(

49n
96πx(k − 1 − i0)

)1/2

≤ α

(
n

yk

)1/2

where

α =
(

200 × 49
96 × 99 × π

)1/2

.

• (k−1)p≤ i0 +1, so
(

(k − 1)p
i0

)i0

≤
(

i0 + 1
i0

)i0

< e.

• Since q+p=1, we have (k−1)(q+p)<k and so (k−1)q<k−(k−1)p≤k−i0.
Therefore

(
(k − 1)q

k − 1 − i0

)k−1−i0

≤
(

k − i0
k − 1 − i0

)k−1−i0

< e.

Altogether we obtain

bi0 ≤ α

(
n

yk

)1/2

× e2.

Now let us do the same for i1.
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• We have i1
k−1 ≥p. Also

x(k − 1 − i1) ≥ x(k − 1 − (k − 1)p − 1) = x(k − 1)(1 − p) − x =
xy(k − 1)

n
− x ≥ 3xy(k − 1)

4n
≥ 3y(k − 1)

8
≥ 297

800
yk.

This gives
(

k − 1
2πi1(k − 1 − i1)

)1/2

≤
(

1
2πp (k − 1 − i1)

)1/2

=
(

n

2πx(k − 1 − i1)

)1/2

≤ β

(
n

yk

)1/2

where

β =
(

800
594π

)1/2

.

• (k−1)p≤ i1.

• We have (k−1)q=k−(k−1)p−1≤k− i1 . Therefore
(

(k − 1)q
k − 1 − i1

)k−1−i1

≤
(

k − i1
k − 1 − i1

)k−1−i1

< e.

Altogether we obtain

bi1 ≤ β

(
n

yk

)1/2

× e.

Now the lemma follows from (2) since αe2,β e<5.

Lemma 2. For every k ≥ 100 there is an n0 such that for all n ≥ n0 the
following holds. Suppose that we have two families F and G of k-subsets and
(k−1)-subsets of [n], respectively, such that |F|≥(1−f)

(n
k

)
and |G|≥g

( n
k−1

)
.

Let [n]=X∪Y with x= |X| and y= |Y | satisfying 4n
k−1 ≤y≤ n

2 . Suppose that

reals 0<f ′,g′ <1 satisfy

(3) g′f + f ′g > f + f ′g′ + 5f ′√n/ky.

Then there is an i, 0≤ i≤k−1, with

(4) |Fi| = |{K ∈ F : |K ∩ X| = i}| ≥ (1 − f ′)
(

x

i

)(
y

k − i

)

and

(5) |Gi| = |{L ∈ G : |L ∩ X| = i}| ≥ g′
(

x

i

)(
y

k − i − 1

)
.
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Proof. Suppose on the contrary that no such i exists. Consider

(6) s =
(1 − g′)

(
n
k

) |F| + f ′
(

n
k−1

) |G| ≥ (1 − g′)(1 − f) + f ′g.

Observe that we always have |Fi| ≤
(x

i

)( y
k−i

)
and |Gi| ≤

(x
i

)( y
k−1−i

)
. Since

for each i, either Fi or Gi is small (as defined by (4), (5)), we have s ≤∑k
i=0 max(ai, bi), where

ai = (1 − g′)(1 − f ′)

(x
i

)( y
k−i

)

(n
k

) + f ′
(x

i

)( y
k−i−1

)

( n
k−1

)

bi = (1 − g′)

(
x
i

)(
y

k−i

)

(
n
k

) + f ′g′
(
x
i

)(
y

k−i−1

)

(
n

k−1

) .

Since

ai − bi =

(x
i

)( y
k−i

)

(n
k

) × (1 − g′)f ′ ×
(
−1 +

(n − k + 1)(k − i)
k(y − k + i + 1)

)
,

there is an i0 such that ai≥bi for 0≤ i<i0 and ai≤bi for i0≤ i≤k. Hence,

s ≤
i0−1∑

i=0

ai +
k∑

i=i0

bi.

Let P =
(n
k

)−1 ∑i0−1
i=0

(x
i

)( y
k−i

)
and P ′ =

( n
k−1

)−1 ∑i0−1
i=0

(x
i

)( y
k−i−1

)
. Let us

choose a random (k− 1)-subset L of [n] and then let K be obtained from
L by adding a random vertex x /∈L. Then K is also uniformly distributed.
Note that P (resp. P ′) is the probability that K (resp L) has less than i0
vertices in X. Since L⊂K, P ≤P ′. On the other hand P ′−P is exactly the
probability that x ∈X and |L∩X| = i0 −1. It follows from Lemma 1 that
Pr(|L∩X|= i0−1)≤5

√
n/ky and so P ′−P ≤5

√
n/ky. Hence,

s ≤ P (1 − g′)(1 − f ′) + P ′f ′ + (1 − P )(1 − g′) + (1 − P ′)f ′g′

≤ P (1 − g′)(1 − f ′) + Pf ′ + (1 − P )(1 − g′) + (1 − P )f ′g′ + 5f ′√n/ky

= 1 − g′ + f ′g′ + 5f ′√n/ky.

From (6), we obtain that

(1 − g′)(1 − f) + f ′g ≤ s ≤ 1 − g′ + f ′g′ + 5f ′√n/ky,

and this contradicts (3).
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4. The Upper Bound on ρk

Before embarking on the formal proof, let us briefly describe the main idea.
Suppose that F is an n vertex k-graph with ρ

(n
k

)
edges and independent

neighborhoods. We may assume that k is large but fixed and n →∞. By
simple averaging, there is a (k−1)-set S with d(S)= |N(S)|≥ ρ(n−k+1).
No k-set within N(S) can be in F , since F has independent neighborhoods.
Consequently, we obtain

(1 − ρ)
(

n

k

)
=

(
n

k

)
− |F| ≥

(
ρ(n − k + 1)

k

)
.

This yields
1 − ρ ≥ (1 − o(1))ρk

and solving for ρ gives the bound ρ ≤ 1− (1+ o(1)) logk
k . This is where the

main term logk
k comes from.

Now suppose we could find not just one neighborhood of size (1−o(1))ρn
but we could in fact find k1−o(1) such neighborhoods. No k-set in any of
these neighborhoods lies in F so we would (roughly) obtain

(1 − ρ)
(

n

k

)
=

(
n

k

)
− |F| ≥ k1−o(1)

(
ρ(n − k + 1)

k

)
.

This yields
1 − ρ ≥ k1−o(1)ρk

and solving for ρ now yields ρ ≤ 1− (1 + o(1))2logk
k . However, the above

calculation is not precise since we have over counted some k-sets, namely
those that lie in two distinct neighborhoods. Thus the main technical details
of the proof are concerned with controlling the total amount of over counting
in this inclusion/exclusion calculation. We now begin the formal proof.

Take small δ > 0. Let k≥ k0(δ)≥ 100 be sufficiently large. Choose large
n0 =n0(k,δ). With foresight, we define

c0 = 4 + δ c1 = 5 + 2δ c2 = 5 + 3δ c3 = 5 + 6δ.

For brevity of notation, let ε=log logk/ logk. We will show that for all k>k0

we have

ρk < 1 − (2 − (5 + 7δ)ε) log k

k
= 1 − 2 log k

k
+ (5 + 7δ)

log log k

k
.
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Suppose that this is false for some k>k0. Then for infinitely many n, in
particular for some n>n0(k,δ), we can find a k-graph F with vertex set [n]
and independent neighborhoods such that

|F| >

(
1 − (2 − c3ε) log k

k

)(
n

k

)
.

Define

l =
⌈

k

(log k)c0

⌉
.

Our goal is to find sets A1, . . . ,Al,B1, . . . ,Bl ⊂ [n] such that the following
conditions hold.

Condition 1. For every i ∈ [l], the set Ai is independent (with respect
to F), is disjoint from Bi, and has size

(7) a =
⌈(

1 − (2 − c1ε) log k

k

)
n

⌉
.

Condition 2. The sets B1, . . . ,Bl are pairwise disjoint, each of size

(8) b =
⌈

(2 − c2ε) log k

k
n

⌉
.

Indeed, if we have such sets then, for any 1 ≤ i < j ≤ l, the set Ai ∩Aj

has at most n−2b elements because its complement contains Bi ∪Bj as a
subset. Since every k-set in

⋃l
i=1

(Ai
k

)
is missing from F , we have by a simple

version of the Inclusion-Exclusion Principle that

l

(
a

k

)
−

(
l

2

)(
n − 2b

k

)
≤

(
n

k

)
− |F| <

2 log k

k

(
n

k

)
.

Dividing by
(n
k

)
and using k>k0(δ) and n>n0(k,δ), we get

(1 − δ)
(

l

k2−c1ε
− l2

2k4−2c2ε

)
≤ 2 log k

k
,

which is a contradiction (for δ<1 and k≥k0(δ)).
Before proceeding with an argument that gives the sets A1, . . . ,Al,B1, . . . ,

Bl, we need two observations regarding (k− 1)-sets of large degree. First,
observe that for every (k−1)-set S, we have

(9) d(S) <

(
1 − log k − 2 log log k

k

)
n,
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for otherwise
(n
k

)
−|F|≥

(d(S)
k

)
> 1

2
log2 k

k

(n
k

)
which is a contradiction.

We will obtain the sets Ai as neighborhoods of (k−1)-sets. Our strategy
is to use the global lower bound on the number of edges to show that there
are many (k−1)-sets S with large neighborhoods d(S). We would therefore
like to restrict our attention to those (k−1)-sets with large neighborhoods.
Let G be the collection of (k−1)-sets S∈

( [n]
k−1

)
such that d(S)≥n−b.

Claim 1. |G|≥2δε
( n
k−1

)
.

Proof of Claim. Let |G|=g
( n
k−1

)
. We have

k

(
1 − (2 − c3ε) log k

k

)(
n

k

)
≤ k|F| =

∑

S∈( [n]
k−1)

d(S)

≤
(

n

k − 1

)
(1 − g)

(
1 − (2 − c2ε) log k

k

)
n

+ g

(
n

k − 1

)(
1 − log k − 2 log log k

k

)
n,

where the last expression comes from (9). Solving for g yields

g ≥ (c3 − c2)ε − 2k2/n

1 − c2ε + 2 log log k/ log k
> 2δε.

(We used the facts that c3− c2 =3δ and c2 > 2 in the last inequality.) This
completes the proof of Claim 1.

Now we describe how to inductively construct the sets Ai and Bi. Suppose
that we have constructed A1, . . . ,Ap,B1, . . . ,Bp with 0 ≤ p < l satisfying
Conditions 1 and 2. Let

(10) y =
⌊

2n
(log k)c0−1

⌋

and x=n−y. Take an arbitrary partition [n]=X∪Y with Y ⊃
⋃p

j=1([n]\Aj)
and |Y |= y, which is possible since each set [n] \Ai has n−a≤ 2n logk/k
elements and p<l. Our task now is to construct Ap+1 and Bp+1.

For an integer i, define

Fi = {S ∈ F : |S ∩ X| = i} and Gi = {S ∈ G : |S ∩ X| = i}.

Also, let

f = 2 log k/k, g = 2δε, f ′ = log2+δ k/k, g′ = δε.
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A short calculation shows by (10) that (3) holds:

f ′(g − g′) + (g′f − f − 5f ′√n/ky) >
δε log2+δ k

k
− C

log k

k
> 0,

for some absolute constant C. So Lemma 2 implies that there is an i such
that |Fi|≥(1−f ′)

(x
i

)( y
k−i

)
and |Gi|≥δε

(x
i

)( y
k−i−1

)
.

Let λ=f ′/(δε). Let us show that there is a (k−1)-set T0∈Gi such that

(11) |Y \ N(T0)| ≤ λ(y − k + i + 1).

Suppose on the contrary that no such T0 exists. Let us count the number γ
of pairs (K,z) with K∈Fi and z∈K∩Y in two different ways. On the one
hand, we can first choose K and then z. This gives

(k − i)(1 − f ′)
(

x

i

)(
y

k − i

)
≤ (k − i)|Fi| = γ.

On the other hand, we can first choose K−{z} and then z. The set K−{z}
is either in Gi or not. Taking both cases into account yields

γ < |Gi|(1 − λ)(y − k + i + 1) +
((

x

i

)(
y

k − 1 − i

)
− |Gi|

)
(y − k + i + 1).

It follows that

λ|Gi|(y − k + i + 1) < f ′
(

x

i

)(
y

k − i

)
(k − i).

Since |Gi|≥δε
(
x
i

)(
y

k−i−1

)
, this contradicts the choice of λ.

Choose an arbitrary set Bp+1 ⊂ X that contains all of X \N(T0) and
such that |Bp+1|=b. (This is possible because |X|≥n− lb≥b and T0∈G, so
|X \N(T0)|≤n−d(T0)≤b.) For every j∈ [p], the set Bj ⊂Y is disjoint from
Bp+1⊂X, so Condition 2 holds. Let Z =Y \N(T0) and A′=[n]\(Bp+1∪Z).
Note that A′, as a subset of N(T0), is an independent set. Moreover, by the
definition of T0 (i.e. by (11)), we have

|A′| ≥ n − b − λy ≥ n −
⌈

(2 − c2ε) log k

k
n

⌉
− log2+δ k

δεk
× 2n

(log k)c0−1
≥ a.

Let us take for Ap+1 an arbitrary a-subset of A′. Condition 1 clearly holds,
finishing the proof.
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5. k=5

As we have mentioned in Conjecture 1, the cases k=5,6 remain interesting
open questions. By suitably modifying the proof that ρ4 =1/2 from [8], we
can obtain fairly good bounds for ρ5.

Theorem 2. 0.493≤ρ5≤0.534.

Proof. (Sketch) Suppose that G is a 5-graph with independent neighbor-
hoods and π

(n
5

)
edges which is maximum possible with this restriction. Let

I be the 5-graph

{12345, 12346, 12347, 12348, 12349, 56789}.

Then a 5-graph with independent neighborhoods is precisely one with no
copy of I. Consequently, G contains no copy of I. Since I has the property
that every two of its vertices lie in an edge, we conclude that if we duplicate
any vertex of G then the resulting 5-graph also contains no copy of I. Now
if there are vertices u,v ∈ G and any small positive ε > 0 such that d(u) >
d(v)+εn4, then we could delete v and duplicate u to obtain another 5-graph
G′ with n vertices, independent neighborhoods, and more edges than G (such
a process is sometimes called Zykov symmetrization). This contradiction
shows that we may assume all vertex degrees of G are (π+o(1))

(
n
4

)
.

Now let A be a neighborhood of maximum size, say |A|= αn, and B =
[n]\A. Let hi be the number of edges of G with exactly i points in B; note
that h0 = 0 by our hypothesis. Let σi be the sum, over all 4-sets S with i
points in B and 4− i points in A, of d(S). Then one obtains

(
αn

3

)
(1 − α)n × αn ≥ σ1 = 4h1 + 2h2(12)

(
αn

2

)(
(1 − α)n

2

)
× αn ≥ σ2 = 3h2 + 3h3(13)

αn

(
(1 − α)n

3

)
× αn ≥ σ3 = 2h3 + 4h4.(14)

On the other hand, using the fact that all degrees are almost equal we
get

(15) (1 − α)n × (π + o(1))
(

n

4

)
=

∑

x∈B

d(x) = h1 + 2h2 + 3h3 + 4h4 + 5h5.
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Now consider 3/4 × (12) + 1/6 × (13) + 1/4 × (14) + (15), observe that∑5
i=1 hi = |G|, and divide by n5. This gives that, as n→∞,

π ≤ α

5α − 1
(
15(1 − α)α3 + 5(1 − α)2α2 + 5(1 − α)3α

)
+ o(1).

Maximizing this function over all α ∈ (0.5,1) yields π < 0.534 and hence
ρ5 <0.534.

For the lower bound, observe that b(n,5) =
(

40
81 + o(1)

)(n
5

)
(take |Y | =(

1
3 +o(1)

)
n). This shows that ρ5≥ 40

81 >0.493.

6. Concluding Remarks and Open Problems

• Our results are similar in flavor to the following problem about the Turán
numbers of complete hypergraphs. Let tk denote the maximum proportion
of edges in a k-graph on n vertices, as n → ∞, that contains no copy of
the complete k-graph on k+1 vertices. Thus t2 =1/2 by Mantel’s theorem.
The most famous conjecture in this area, due to Turán [24], is that t3 =
5/9, which is achieved by (among others) the 3-graph with vertex partition
Y1,Y2,Y3 into almost equal parts and all edges with two points in Yi and
one point in Yi+1 (indices modulo 3) or one point in each Yi. Perhaps just
as interesting is to determine the growth rate of tk as k →∞. Frankl and
Rödl [7] proved that 1−tk =O(logk/k) via a construction that has similarities
to Construction 1 in this paper. On the other hand, the known upper bound
is tk = 1−Ω(1/k), where the best results are due to Chung and Lu [3]. It
would be very interesting to obtain sharper estimates for tk. Perhaps the
methods of this paper can be used to show that 1− tk = ω(1/k), an open
question for whose solution de Caen [4, Page 190] offered 500 Canadian
dollars.

• For 2≤m≤ k let the book Bk,m be the k-graph with the following m+1
edges: [k−1]∪{k+i−1} for i∈ [m], and {k,k+1, . . . ,2k−1}. The problem of
computing the Turán function ex(n,Bk,m) has been actively studied [1,5,6,
8–10,14,18,21,23]. Clearly, the property not containing Bk,k as a subgraph
is equivalent to having empty neighborhoods, so f(n,k) = ex(n,Bk,k). Our
results can be modified to show, for example, that for any function m =
m(k)<c1 logk, where c1 is a constant, we have

(16) π(Bk,k−m) = 1 − Θ

(
log k

k

)
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as k → ∞, where π(F ) = limn→∞ ex(n,F )/
(n

k

)
denotes the Turán density

of a k-graph F . Indeed, the upper bound on π(Bk,k−m) follows from Theo-
rem 1 and the trivial observation that ex(n,Bk,k)≥ex(n,Bk,k−m). The lower
bound (16) can be obtained by taking the k-graph F of Construction 1 with
l = k/c2 logk where c2 � max(c1,1) and removing those edges of F that
intersect some part Yi in at most m vertices. As n→∞, the proportion of
edges that we delete is approximately at most

l × Pr
(
Bin(k, 1/l) < m

)
≤ l e−c2 log k/4 <

1
k2

.

(We apply the Chernoff bound here, see e.g. [11, Corollary 2.3].) Therefore,
the size of the family F is at least (1−1/l)(1−1/k2)

(n
k

)
, and (16) follows.

On the other hand, it is easy to show that π(Bk,m) = o(1) if m = o(k).
Determining the behavior of π(Bk,m) for the intermediate values of m is an
interesting open problem.

• A related problem which has been studied a fair amount recently (see,
e.g., [13,15,17,22]) is the maximum possible minimum degree (of (k− 1)-
sets) that a k-graph can have without containing some fixed configuration.
Let g(n,k) denote the maximum minimum degree of a k-graph on n vertices
with independent neighborhoods. Then it was shown in [19] that the limit
γk = limn→∞ g(n,k)/n exists. It is trivial to see that γk ≤ 1/2 for all k,
and odd k-graphs show that if k is even, we have equality. It would be
interesting to determine the behavior of γk for k odd. As with tk, the small
cases seem difficult. For k=3, the construction for t3 above minus the edges
with one point in each Yi shows that γ3≥1/3. In fact, we make the following
conjecture.

Conjecture 2. For every ε>0, there exists n0 such that if n>n0 and G is
an n-vertex 3-graph with every pair lying in at least (1/3+ ε)n edges, then
G contains a neighborhood that is not an independent set. In particular,
γ3 =1/3.

• Construction 1 has the following generalization. We begin with some def-
initions that establish the general setting. Let a, l≥ 2 be fixed parameters.
Consider the digraph D with vertex set Z

l
a and an arc from x=(x1, . . . ,xl)

to y=(y1, . . . ,yl) if and only if there exists a coordinate k such that

yi =

{
xi if i �= k,

xi − 1 if i = k.



HYPERGRAPHS WITH INDEPENDENT NEIGHBORHOODS 291

Note that the out-degree of each vertex is l. We say that a subset X of
Z

l
a is a perfect cover of D if the out-neighborhoods of the elements of X

form a partition of Z
l
a. In other words, the set X is a perfect cover if for

every y ∈ Z
l
a there exists a unique x ∈ X such that the arc (x,y) (i.e. the

arc directed from x to y) is in D. Note that a perfect cover contains al/l
vertices.

Suppose X is a perfect cover of D. Let n be large and fix a partition
Y1, . . . ,Yl of [n]. For each k-set S let yS ∈Z

l
a be the vector yS = (y1, . . . ,yl)

where yi ≡ |S ∩Yi| mod a for i = 1, . . . , l. Now we are ready to define our
family with independent neighborhoods. Let F be the collection of k-sets S
such that S∩Yi �=∅ for i=1, . . . , l and yS �∈X. We claim that the collection
F has independent neighborhoods. To see this, consider a (k − 1)-set T .
Since X is a perfect cover, there exists x ∈ X such that (x,yT ) is an arc
in D. It follows that there exists an index k such that T ∪{z} �∈ F for all
z ∈ Yk. In other words, the neighborhood of T (in the hypergraph F) does
not intersect Yk. Since every edge in F intersects Yk, it follows that F has
independent neighborhoods.

In order to ensure a lower bound on the cardinality of the collection F ,
we consider situations where there is a partition of Z

l
a into perfect cov-

ers X1, . . . ,Xl. Each Xi corresponds to a collection Fi. Furthermore, each
set S that intersects Y1, . . . ,Yl is excluded from exactly one of the collec-
tions Fi. Therefore, there is an index i such that |Fi| is at least (1− 1/l)
times the number of k-sets S that intersect Y1, . . . ,Yl.

Note that Construction 1 is given by this general setting by taking a= l
and letting

Xj =

{

x ∈ Z
l
l :

l∑

i=1

ixi = j

}

.

For a second example, set a = 2 and suppose l = 2b for some integer b≥ 2.
Fix a Hamming code H⊆{0,1}l−1; that is, fix a set of strings H⊆{0,1}l−1

with the property that every string in {0,1}l−1 is either in H or adjacent
(in the (l−1)-cube) to exactly one element of H. Note that

X =
{
(x1, . . . , xl) ∈ Z

l
2 : (x1, . . . , xl−1) ∈ H

}

is a perfect cover of Z
l
2. Furthermore the collection X,X+e1,X+e2, . . . ,X+

el−1 is a partition of Z
l
2 into perfect covers. Thus, the Hamming code gives

another construction that achieves the bound given by Construction 1.
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[22] V. Rödl, A. Ruciński and E. Szemerédi: A Dirac-type theorem for 3-uniform
hypergraphs, Combinatorics, Probability and Computing 15(1–2) (2006), 229–251.

[23] A. F. Sidorenko: The maximal number of edges in a homogeneous hypergraph
containing no prohibited subgraphs, Math Notes 41 (1987), 247–259. Translated
from Mat. Zametki.

[24] P. Turán: On an extremal problem in graph theory (in Hungarian), Mat. Fiz. Lapok
48 (1941), 436–452.

Tom Bohman

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

USA

tbohman@math.cmu.edu

Alan Frieze

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

USA

alan@random.math.cmu.edu

Dhruv Mubayi

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

and

Department of Mathematics, Statistics

and Computer Science

University of Illinois

Chicago, IL 60607

USA

mubayi@math.uic.edu

Oleg Pikhurko

Department of Mathematical Sciences

Carnegie Mellon University

Pittsburgh, PA 15213

USA

pikhurko@andrew.cmu.edu

mailto:tbohman@math.cmu.edu
mailto:alan@random.math.cmu.edu
mailto:mubayi@math.uic.edu
mailto:pikhurko@andrew.cmu.edu

	Heading
	1. Introduction
	2. Construction
	3. Lemmas
	4. The Upper Bound on \rho_k
	5. k = 5
	6. Concluding Remarks and Open Problems
	7. Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [476.000 671.000]
>> setpagedevice


