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Let D(G) be the smallest quantifier depth of a first-order formula which is true for a graph

G but false for any other non-isomorphic graph. This can be viewed as a measure for the

descriptive complexity of G in first-order logic.

We show that almost surely D(G) = Θ( ln n
ln ln n ), where G is a random tree of order n or

the giant component of a random graph G(n, cn ) with constant c > 1. These results rely on

computing the maximum of D(T ) for a tree T of order n and maximum degree l, so we

study this problem as well.

1. Introduction

This paper deals with graph properties expressible in first-order logic. The vocabulary

consists of variables, connectives (∨, ∧ and ¬), quantifiers (∃ and ∀), and two binary
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relations: the equality and the graph adjacency (= and ∼ respectively). The variables

denote vertices only, so we are not allowed to quantify over sets or relations. The notation

G |= A means that a graph G is a model of a sentence A (a first-order formula without

free variables); in other words, A is true for the graph G. All sentences and graphs are

assumed to be finite. The reader is referred to Spencer’s book [12] (or to Kim, Pikhurko,

Spencer and Verbitsky [5]) for more details.

A first-order sentence A distinguishes G from H if G |= A but H �|= A. Further, we say

that A defines G if A distinguishes G from any non-isomorphic graph H . In other words,

G is the unique (up to an isomorphism) finite model of A.

The quantifier depth D(A) is the largest number of nested quantifiers in A. This parameter

is closely related to the complexity of checking whether G |= A.

The main parameter we study is D(G), the smallest quantifier depth of a first-order

formula defining G. We call this graph invariant the logical depth of G. It was first

systematically studied by Pikhurko, Veith and Verbitsky [10] (see also [11]). In a sense, a

defining formula A can be viewed as the canonical form for G (except that A is not unique):

in order to check whether G ∼= H it suffices to check whether H |= A. Unfortunately, this

approach does not seem to lead to better isomorphism algorithms but this notion, being

on the borderline of combinatorics, logic and computer science, is interesting on its own.

Within a short time-span various results on the values of D(G) for order-n graphs

appeared. The initial papers [10, 11] studied the maximum of D(G) (the ‘worst’ case). The

‘best’ case is considered by Pikhurko, Spencer and Verbitsky [9, 8], while Kim, Pikhurko,

Spencer and Verbitsky [5] obtained various results for random graphs.

Here we study these questions for trees and sparse random structures. Namely, the

three main questions we consider are as follows.

Section 3: What is Dtree(n, l), the maximum of D(T ) over all trees of order at most n and

maximum degree at most l?

Section 4: What is D(G), where G is the giant component of a random graph G(n, c
n
) for

constant c > 1?

Section 5: What is D(T ) for a random tree T of order n?

In all cases we determine the order of magnitude of the studied function. Namely,

we prove that Dtree(n, l) = Θ( l ln n
ln l

), and w.h.p. we have D(G) = Θ( ln n
ln ln n

), whenever G is a

random tree of order n or the giant component of a random graph G(n, c
n
) with constant

c > 1. (The abbreviation w.h.p. stands for ‘with high probability’, i.e., with probability

1 − o(1) as n → ∞.) Moreover, for some cases involving trees we estimate the smallest

quantifier depth of a defining formula up to a factor of 1 + o(1). For instance, we show

that for a random tree T of order n we have w.h.p. D(T ) = (1 + o(1)) ln n
ln ln n

.

2. Further notation and terminology

Our main tool in the study of D(G) is the Ehrenfeucht game. Its description can be found

in Spencer’s book [12] whose terminology we follow (or see [5, Section 2]), so here we

sketch only basic ideas and definitions related to this concept.

Given two graphs G and G′, the Ehrenfeucht game Ehrk(G,G
′) is a perfect information

game played by two players, called Spoiler and Duplicator , and consists of k rounds,
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where k is known in advance to both players. For brevity, let us refer to Spoiler as ‘him’

and to Duplicator as ‘her’. In the ith round, i = 1, . . . , k, Spoiler selects one of the graphs

G and G′ and marks one of its vertices by i; Duplicator must put the same label i on

a vertex in the other graph. At the end of the game let x1, . . . , xk be the vertices of G

marked 1, . . . , k respectively, regardless of who put the label there; let x′
1, . . . , x

′
k be the

corresponding vertices in G′. Duplicator wins if the correspondence xi ↔ x′
i is a partial

isomorphism, that is, we require that {xi, xj} ∈ E(G) if and only if {x′
i, x

′
j} ∈ E(G′) as well

as that xi = xj if and only if x′
i = x′

j . Otherwise, Spoiler wins.

The key relation is that D(G,G′), the smallest quantifier depth of a first-order sentence A

distinguishing G from G′, is equal to the smallest k such that Spoiler can win Ehrk(G,G
′).

Also,

D(G) = max
G′ �∼=G

D(G,G′) (2.1)

(see, e.g., [5, Lemma 1]).

The parameters D(G) and D(G,G′), the Ehrenfeucht game, and the relationship between

them generalize to arbitrary finite structures with finitely many relations, if the notion of

a (partial) isomorphism is understood appropriately. We technically gain by considering

coloured graphs which, in addition to the adjacency relation, have unary relations

U1, U2, . . . and binary relations B1, B2, . . . . If Ui(x) = 1, we say that a vertex x has

colour i. It is supposed that Bj(x, y) = 1 only if x and y are adjacent. In this case we say

that a directed edge (x, y) has colour j.

Note that the Bj ’s are not supposed to be symmetric, that is, for an edge {x, y} we

consider two of its orientations, (x, y) and (y, x), whose colours may be different. Although

the set of colours is potentially infinite, a coloured graph is supposed to have only finitely

many colours. When the Ehrenfeucht game is played on coloured graphs, Duplicator must

additionally preserve the colours of the selected vertices and of all edges between them.

Colourings can be useful even if we prove results for uncoloured graphs. For example,

if x ∈ V (G) and x′ ∈ V (G′) were selected in some round, then, without changing the

outcome of the remaining game, we can remove x and x′ from G and G′ respectively,

provided we colour their neighbours with a new colour. (Note that in an optimal strategy

of Spoiler, there is no need to select the same vertex twice if k � max(v(G), v(G′)).)

We will also use the following fact, which can be easily deduced from the general

theory of the Ehrenfeucht game. Let x, y ∈ V (G) be distinct vertices. Then the smallest

quantifier depth of a first-order formula Φ with one free variable such that G, x |= Φ, but

G, y �|= Φ, is equal to the minimum k for which Spoiler can win the (k + 1)-round game

Ehrk+1(G,G), where the vertices x1 = x and x′
1 = y were selected in the first round.

In this paper ln denotes the natural logarithm, while the logarithm base 2 is written as

log2. We also assume everywhere that n is sufficiently large to satisfy all stated inequalities.

3. General trees

Let Dtree(n, l) be the maximum of D(T ) over all coloured trees of order at most n and

maximum degree at most l. Note that the number of colours does not appear in this

definition. The maximum exists because D(G) � n + 1 for every coloured graph G on at
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most n vertices. For some ranges of n, l we are able to compute Dtree(n, l) asymptotically.

At the end of the section we discuss the remaining values of n, l.

Theorem 3.1. Let both l and ln n/ ln l tend to infinity. Then

Dtree(n, l) =

(
1

2
+ o(1)

)
l ln n

ln l
. (3.1)

In fact, the lower bound can be achieved by uncoloured trees.

Theorem 3.2. Let an integer t � 1 be fixed. Suppose that l, n → ∞ are such that n � lt but

n = o(lt+1). Then

Dtree(n, l) =

(
t + 1

2
+ o(1)

)
l.

In fact, the lower bound can be achieved by uncoloured trees.

In order to prove Theorems 3.1 and 3.2 we need some preliminary results. Let distG(x, y)

denote the distance in G between x, y ∈ V (G).

Lemma 3.3. Suppose that in the Ehrenfeucht game on coloured graphs G and G′, some

vertices x, y ∈ V (G) and x′, y′ ∈ V (G′) were selected in the same rounds. Let I be a set of

colours. Suppose that there is an xy-path P of length k with no colours from I , while any

x′y′-path of length at most k, if such exists, has a vertex with a colour in I .

Then Spoiler can win in at most �log2 k� extra moves, playing all of the time inside G.

Proof. We prove the claim by induction on k. If k = 1, then Spoiler has already won, so

assume that k � 2. Spoiler selects a vertex w ∈ V (G) which is a middle vertex of P , that

is, k1 = distP (x, w) and k2 = distP (y, w) differ at most by one. Suppose that Duplicator

responds with w′ ∈ G′. Assume that no colour from I appears at w′ for otherwise Spoiler

has already won. It is impossible that G′ contains an x′w′-path of length at most k1 and

a y′w′-path of length at most k2, with no vertex there having a colour from I .

If, for example, the latter does not exist, then we apply induction to y, w ∈ G and

y′, w′ ∈ G′. The required bound follows by observing that k1, k2 � � k
2
�.

Lemma 3.4. Let T be a tree of order n and let T ′ be a graph which is not a tree. Then

D(T ,T ′) � log2 n + 4.

Proof. If T ′ is not connected, Spoiler selects two vertices x′, y′ ∈ T ′ from different

components. Then he switches to T and applies Lemma 3.3, winning in at most log2 n + 3

moves in total.

Otherwise, let C ′ ⊂ T ′ be a cycle of the shortest length k. If k � 2n, then Spoiler picks

two vertices x′, y′ at distance at least n in C ′ (and hence in T ′). But the diameter of T is

at most n − 1. Spoiler switches to T and wins in at most log2 n + 3 moves by Lemma 3.3.

If k < 2n, then Spoiler selects some three vertices x′, z′, y′ of C ′, every two at distance at

most n. Assume that of Duplicator’s replies in the tree T , z lies between x and y. Spoiler
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applies Lemma 3.3 to G = T ′ − z′ and G′ = T − z, making at most 3 + (log2 n + 1) moves

in total.

We are ready to prove Theorem 3.1. For future use it will be convenient to have an

upper bound which is valid for any l. The following lemma serves this purpose (except

perhaps some l � 8, when we can use the bound Dtree(n, l) � Dtree(n, 9)).

Lemma 3.5. There is a constant C such that for any 9 � l � n − 1 we have

Dtree(n, l) � l ln n

2 ln(l/2)
+

3l

2
+ 3 log2 n + C. (3.2)

Proof. Let T be any tree of order at most n and maximum degree at most l. Let T ′

be an arbitrary coloured graph not isomorphic to T . By Lemma 3.4 we can assume that

T ′ is a tree. We also assume that T and T ′ have the same diameter because otherwise

Spoiler wins in less than log2 n + 1 moves by Lemma 3.3.

It is easy to show (see, e.g., Ore [7]) that T contains a vertex x ∈ T such that any

component of T − x has order at most n
2
. We call such a vertex a median of T . Spoiler

selects this vertex x; let Duplicator reply with x′. We can assume that the degrees of x

and x′ are the same: otherwise Spoiler can exhibit this discrepancy in at most l + 1 extra

moves.

We update the colouring of each component of T − x and T ′ − x′ as follows. Let C

be a component of T − x and y be the neighbour of x in C (with the components of

T ′ − x′ we proceed similarly). In addition to the colours that already exist in C , the

vertex y receives a new colour which consists of three components: the set of j such that

Bj(x, y) = 1, the set of j such that Bj(y, x) = 1, and the number of the round in which x

and x′ are selected.

As T �∼= T ′, some component C1 has different multiplicities m1 and m′
1 in T − x and

T ′ − x′. As d(x) = d(x′), we have at least two such components. Assume that for C1 and C2

we have m1 > m′
1 and m2 < m′

2. By the condition on the maximum degree, m′
1 + m2 � l − 1.

Hence, min(m′
1, m2) � l−1

2
. Let us assume, for example, that m′

1 � l−1
2

. Spoiler chooses the

neighbours of x inside any m′
1 + 1 C1-components of T − x. It must be the case that some

vertices y ∈ V (T ) and y′ ∈ V (T ′) have been selected in the same round, so that y lies in

a C1-component F ⊂ T − x while y′ lies in a component F ′ ⊂ T ′ − x not isomorphic to

C1. Let n1 be the number of vertices in F . By the choice of x, n1 � n
2
.

Now, Spoiler restricts his moves to V (F) ∪ V (F ′). If Duplicator moves outside this set,

then Spoiler applies Lemma 3.3 to T − x and T ′ − x′, winning in at most log2 n + 1

moves. Otherwise Spoiler uses the recursion applied to F .

Let f(n, l) denote the largest number of moves (over all coloured trees T ,T ′ with

v(T ) � n, ∆(T ) � l, and T �∼= T ′) that Duplicator can survive against the above strategy,

with the additional restriction that a situation where Lemma 3.3 can be applied never

occurs and always d(x) = d(x′). Clearly,

Dtree(n, l) � f(n, l) + log2 n + l + O(1). (3.3)
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As m1 � n−1
n1

, we get the following recursive bound on f:

f(n, l) � max
{

2 + min
(
l−1

2
, n−1

n1

)
+ f(n1, l) : 1 � n1 � n

2

}
. (3.4)

Denoting n0 = n and unfolding (3.4) as long as ni � 1, say s times, we obtain that f(n, l)

is bounded by the maximum of

2s +

s∑
i=1

min

(
l − 1

2
,
ni−1

ni

)
, (3.5)

over all sequences n1, . . . , ns such that

1 � ni � ni−1

2
, i ∈ [s]. (3.6)

Note that the restrictions (3.6) force s to be at most log2 n. Let us maximize (3.5) over all

s ∈ N and real ni’s satisfying (3.6).

It is easy to see that for the optimal sequence we have 2 � ni−1

ni
� l−1

2
, i ∈ [s]. Moreover,

both these inequalities can be simultaneously strict for at most one index i. Indeed,

suppose on the contrary that for two indices 0 � i < j < s we have 2 < ni/ni+1 < l−1
2

and

2 < nj/nj+1 < l−1
2

. Define a new sequence: n′
h = nh if h � i or h > j, while n′

h = γnh for

i < h � j. If γ = 1, then we obtain the same sequence. Note that
n′
h

n′
h+1

= nh
nh+1

for any h

except h = i or h = j. So, we can slightly perturb γ either way, without violating (3.6).

The right-hand side of (3.5), as a function of γ in a small neighbourhood of γ = 1, is of

the form aγ + b
γ

+ c with a, b > 0. But this function is strictly convex, so it cannot attain

its maximum at γ = 1, a contradiction.

Let t be the number of times we have ni−1 = 2ni. The bound (3.5) reads

f(n, l) − 2 log2 n � 2t + (s − t)
l − 1

2
. (3.7)

Given that 2t( l−1
2

)s−t−1 � n, the right-hand side of (3.7) is maximized over reals t � 0 and

0 � s � log2 n if t = 0 and ( l−1
2

)s−1 = n, when the extremal value is(
ln n

ln((l − 1)/2))
+ 1

)
l − 1

2
� l ln n

2 ln(l/2)
+

l

2
.

This implies the upper bound (3.2) by (3.3) and (3.7).

Proof of Theorem 3.1. The upper bound follows from Lemma 3.5. It remains to prove the

lower bound. Let k = �l/2�. Define G0 = K1,l−1 and G′
0 = K1,l−2. Let the roots r0 ∈ V (G0),

r′
0 ∈ V (G′

0) be the vertices of high degree. Define inductively on i the following graphs. Gi

is obtained by taking k copies of Gi−1 and k − 1 copies of G′
i−1, pairwise vertex-disjoint,

plus the root ri connected to the root of each copy of Gi−1 and G′
i−1. We have d(ri) � l − 1.

The graph G′
i is defined in a similar way except that we take k − 1 copies of Gi−1 and k

copies of G′
i−1. Let i be the largest index such that max(v(Gi), v(G

′
i)) � n.

Let us disregard all roots, i.e., view Gj and G′
j as usual (uncoloured) graphs. Note that

the trees Gi and G′
i are non-isomorphic because for every j we can identify the level-j

roots as the vertices at distance j + 1 from some leaf.
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Define gj = (k − 1)j + l − 2, j ∈ [0, i]. Let us show by induction on j that Duplicator

can survive at least gj rounds in the Ehrenfeucht game on (Gj, G
′
j). This is clearly true for

j = 0. Let j � 1. If Spoiler claims one of rj , r
′
j then Duplicator selects the other. If Spoiler

selects a vertex in a graph from the ‘previous’ level, for example F ⊂ Gj with F ∼= G′
j−1,

then Duplicator chooses an F ′ ⊂ G′
i, F

′ ∼= G′
j−1 and keeps the isomorphism between F

and F ′. So any further moves of Spoiler inside V (F) ∪ V (F ′) will be useless and we can

ignore F and F ′. Thus it takes Spoiler at least k − 1 moves before we are down to the

pair (Gj−1, G
′
j−1), which proves the claim.

Thus we have D(Gi) � D(Gi, G
′
i) � gi = ( 1

2
+ o(1)) l ln n

ln l
, finishing the proof. If we wanted

to construct a tree with exactly n vertices, then we could just affix a path of length

n − v(Gi) to the roots of both Gi and G′
i; the obtained graphs, Hi and H ′

i , would satisfy

v(Hi) = n and D(Hi) � D(Hi,H
′
i ) � gi.

Remark. Verbitsky [14] proposed a different argument to estimate Dtree(n, l), which gives

weaker bounds than those in Theorem 3.1 but can be applied to other classes of graphs

with small separators.

Proof of Theorem 3.2. Since the arguments are similar to those of Theorem 3.1 we will

be brief.

Although the stated upper bound is slightly stronger than the one given by Lemma 3.5,

Spoiler uses the same strategy as before. Namely, he chooses a median x ∈ T and of two

possible multiplicities, summing up to at most l, chooses the smaller. Let m1 + 1, m2 +

1, . . . , mk + 1 be the number of moves for each selected median. Since mi < ni−1/ni for the

ni’s as in the proof of Lemma 3.5, we have n �
∏k

i=1 mi. Also, we have k � log2 n because

we always choose a median. Given these restrictions, the inequalities mi � (l + 1)/2,

i ∈ [k − 1], and mk � l, the sum
∑k

i=1 mi is maximized if mk = l and as many as possible

mj with j ∈ [m − 1] are maximum possible (i.e., mj = (l + 1)/2). We thus factor out

(l + 1)/2 at most t − 1 times until the remaining terms have the product (and so the sum)

o(l). Thus,

k∑
i=1

(mi + 1) �
k∑

i=1

mi + log2 n � l +
(t − 1)l

2
+ o(l),

as required.

The lower bound is given by the construction in the proof of Theorem 3.1: we have

gt−1 = ( t+1
2

+ o(1))l and, by induction on j, the tree Gj has at most lj vertices.

Theorems 3.1 and 3.2 do not cover all the possibilities for n, l. The asymptotic

computation in the remaining cases seems rather messy. However, the order of magnitude

of Dtree(n, l) is easy to compute with what we already have. For example, Theorem 3.2

implies that for n = Θ(lt) with fixed integer t � 1 we have Dtree(n, l) = Θ(l). If l � 2 is

constant, then Dtree(n, l) = Θ(ln n), where the lower bound follows by noting that for the

n-path we have D(Pn) = log2 n + O(1) (see [12, Section 2.1]) and the upper bound follows

from Lemma 3.5.
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4. The giant component

Let us recall that if p = c/n with constant c > 1, then w.h.p. in a random graph H ∈
G(n, p) there exists a unique component containing a positive fraction of all vertices. The

complexity of such a giant component is given by the following result.

Theorem 4.1. Let c > 1 be a constant, p = c/n, and let G be the giant component of a

random graph H ∈ G(n, p). Then w.h.p.

D(G) = Θ

(
ln n

ln ln n

)
. (4.1)

This result has the following consequence.

Theorem 4.2. Let c > 0 be a constant, p = c
n
, and H ∈ G(n, p). Then w.h.p.

D(H) = (e−c + o(1)) n. (4.2)

Proof. The proof is an easy modification of the arguments in [5, Theorem 19], where

the validity of (4.2) was established for c � 1.19 . . . .

The lower bound in (4.2) comes from considering the graph H ′ obtained from H by

adding an isolated vertex (and noting that w.h.p. H has (e−c + o(1)) n isolated vertices).

On the other hand, let H ′ be any graph non-isomorphic to H . We can assume that

Duplicator preserves the connectivity relation for otherwise Spoiler wins in extra log2 n +

O(1) = o(n) moves.

For a connected graph F , let cF (H) be the number of connectivity components in H

isomorphic to F . Since H �∼= H ′, there is an F with cF (H) �= cF (H ′), say cF (H) < cF (H ′).

Spoiler selects some cF (H) + 1 F-components of H ′ and picks one vertex in each of

them. By our assumptions, in some round the players must select x′ ∈ H ′ and x ∈ H

belonging to non-isomorphic components C ′ and C (namely, C ′ ∼= F �∼= C). Now Spoiler

can win the game in at most D(C,C ′) extra moves (assuming that Duplicator preserves

connectivity). But D(C,C ′) � D(C), which is at most O( ln n
ln ln n

) if C is the giant component

by Theorem 4.1 and at most v(C) + 1 = o(n) otherwise.

It was shown in [5, Theorem 19] by using a theorem of Barbour [1] (Theorem 5.6 in

Bollobás [2]) that w.h.p. cF (H) + v(F) � (e−c + o(1))n for any F except perhaps the giant

component. This finishes the proof of Theorem 4.2.

4.1. Upper bound

The structure of the giant component is often characterized using its core and kernel (e.g.,

see Janson, �Luczak and Ruciński [4, Section 5]). We follow this approach in the proof

of the upper bound in (4.1). Thus, we first bound D(G) from above for a graph G with

small diameter whose kernel fulfils some ‘sparseness’ conditions. Then, we show that these

conditions hold w.h.p. for the kernel of the giant component of a random graph.

4.1.1. Bounding D(G) using the kernel of G. The core C of a graph G is obtained by

removing, consecutively and as long as possible, vertices of degree at most 1. If G is not

a forest, then C is non-empty and δ(C) � 2.
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First we need an auxiliary lemma which is easily proved, in a similar way to the auxiliary

lemmas in Section 3, by the path-halving argument.

Lemma 4.3. Let G,G′ be graphs. Suppose that x ∈ V (G) and x′ ∈ V (G′) have been selected

in the same round so that G contains some cycle P of length at most k with x ∈ V (P ) while G′

does not contain such a short cycle through x′. Then Spoiler can win in at most log2 k + O(1)

moves, playing all the time inside G.

Proof. Spoiler chooses y, z, the neighbours of x in the cycle P . The distance between y

and z in G − x is at most k − 2, which cannot be true for Duplicator’s replies y′ and z′ in

G′ − x′. Now, Spoiler applies the strategy of Lemma 3.3.

Lemma 4.4. Let G,G′ be graphs and C,C ′ be their cores. If Duplicator does not respect

the core, then Spoiler can win in at most log2 d + O(1) extra moves, where d is the diameter

of G.

Proof. Assume that diam(G′) = diam(G) for otherwise Spoiler (unconditionally) wins in

at most log2 d + O(1) moves by Lemma 3.3. Suppose that, for example, some vertices

x ∈ V (C) and x′ ∈ V (G′) \ V (C ′) have been selected.

If x lies on a cycle C1 ⊂ C , then we can find such a cycle of length at most 2d + 1.

Of course, G′ cannot have a cycle containing x′, so Spoiler wins by Lemma 4.3 in

log2(2d + 1) + O(1) moves, as required.

Suppose that x does not belong to a cycle. Then G contains two vertex-disjoint cycles

C1, C2 connected by a path P containing x. Choose such a configuration which minimizes

the length of P � x. Then the length of P is at most 2d (in fact, at most d). Spoiler selects

the branching vertices y1 ∈ V (C1) ∩ V (P ) and y2 ∈ V (C2) ∩ V (P ). If some Duplicator’s

reply y′
i is not on a cycle, we are done again by Lemma 4.3. So assume there are cycles

C ′
i � y′

i . In G we have

dist(y1, y2) = dist(y1, x) + dist(y2, x). (4.3)

As x′ �∈ C ′, any shortest x′y′
1-path and x′y′

2-path enter x′ via the same edge {x′, z′}. But

then

dist(y′
1, y

′
2) � dist(y′

1, z
′) + dist(y′

2, z
′) = dist(y′

1, x
′) + dist(y′

2, x
′) − 2. (4.4)

By (4.3) and (4.4), the distances between x, y1, y2 cannot all be equal to the distances

between x′, y′
1, y

′
2. Spoiler can demonstrate this in at most log2(dist(y1, y2)) + O(1) moves,

as required.

In order to state our upper bound on D(G) we have to define a number of parameters of

G. In outline, we try to show that any distinct x, y ∈ V (C) can be distinguished by Spoiler

reasonably fast. This would mean that each vertex of C can be identified by a first-order

formula of small quantifier depth. Note that G can be decomposed into the core and a

number of trees Tx, x ∈ V (C), rooted at vertices of C . Thus, by specifying which pairs

of vertices of C are connected and describing each Tx, x ∈ V (C), we completely define
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G. However, we have one unpleasant difficulty that not all pairs of points of C can be

distinguished from one another. For example, we may have a pendant triangle on {x, y, z}
with d(x) = d(y) = 2, in which case the vertices x and y are indistinguishable. However,

we show that w.h.p. we can distinguish any two vertices of degree 3 or more in C , which

suffices for our purposes.

Let us give all the details. For x ∈ V (C), let Tx ⊂ G denote the tree rooted at x, i.e., Tx is

the component containing x in the forest obtained from G by removing all edges of C . Let

t = max{D(Tx) : x ∈ V (C)}, (4.5)

where D(Tx) is taken with respect to the class of graphs with one root (i.e., a vertex of a

special colour).

Let the kernel K of G be obtained from C by the serial reduction where we repeat as

long as possible the following step: if C contains a vertex x of degree 2, then remove x

from V (C) but add the edge {y, z} to E(C) where y, z are the two neighbours of x. Note

that K is a multigraph (that is, it may contain loops and multiple edges). We agree that

each loop contributes 2 to the degree; thus the minimal degree δ(K) � 3.

We view the core C as a vertex-coloured graph with the colour c(x) of a vertex x ∈ V (C)

being the isomorphism type of the rooted tree Tx. Also, we colour the oriented edges and

loops of K as follows. An oriented edge or loop −→e of K corresponds to the directed path

P−→e in C , say connecting x to y with x = y if e is a loop. The colour of −→e is the sequence

c(P−→e ) = (c(x), . . . , c(y)) of colours that we see in the core as we go along this path. Note

that we do not colour the vertices of K . This edge-colouring of K is redundant but it has

the desired property that the kernels (if non-empty) of any two non-isomorphic graphs

are non-isomorphic as coloured multigraphs.

We have not yet defined the Ehrenfeucht game, etc., for multigraphs. On the intuitive

level, the corresponding notions are fairly obvious. Here is the formal description for

rigour’s sake. We regard the multigraph K as a vertex- and edge-coloured simple graph

as follows. The colour of (x, y) with {x, y} ∈ E(K) is the multiset (that is, multiplicities

are noted) consisting of c(P−→e ) over oriented edges −→e connecting x to y in K . The colour

of a vertex x ∈ V (K) is the multiset of c(P−→e ) over all loops e at x and two possible

orientations −→e of each loop. Again, non-isomorphic edge-coloured multigraphs produce

non-isomorphic coloured graphs and the usual graph concepts of definability, Ehrenfeucht

game, etc., apply.

Let

u = ∆(G) and d = diam(G). (4.6)

It follows that each edge of K corresponds to the path P in C of length at most 2d.

Assume that u � 9.

We now introduce an integer parameter h assuming that K satisfies certain conditions.

Assumption 1. Every set of v � 6h + 5 vertices of K spans at most v edges in K . (Roughly

speaking, we do not have two short cycles close together.)

For {x, y} ∈ E(K) let Ax,y be the set of vertices obtained by doing breadth-first search

in K − x starting with y until the process dies out or, after we have added a whole level,
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we reach at least 2h vertices in total. Let Kx,y = K[Ax,y ∪ {x}] be a graph with two special

roots x and y.

The height of z ∈ V (Kx,y) is the distance in K − x between z and y. It is easy to deduce

from the condition on short cycles and the inequality δ(G) � 3 that each Kx,y has at most

one cycle (including loops) and the maximum height is at most h. In fact, the process dies

out only in the case if y is an isolated loop in K − x. For {x, y} ∈ E(K) let Gx,y be the

subgraph of G corresponding to Kx,y . We view Kx,y and Gx,y as having two special roots

x and y, each root having its unique colour.

Here we impose another condition on G and h.

Assumption 2. Let {x, x′}, {y, y′} ∈ E(K). If Kx,x′ and Ky,y′ both have order at least 2h

and Ax,x′ ∩ Ay,y′ = ∅, then the rooted graphs Gx,x′ and Gy,y′ are not isomorphic.

Let us define

b0 =
u ln(u2h)

2 ln(u/2)
+

3u

2
+ 3 log2 u + 3h + log2 d,

b1 = b0 + u + 2 log2 d,

b = b1 + t + u + 2 log2 d.

Lemma 4.5. Under Assumptions 1 and 2, we have D(G) � b + O(1).

Proof. Since the proof is rather complicated we have split it into a sequence of claims.

As the result, the bound we prove, namely D(G) � b + O(1), is slightly worse than the

best bound given by this method. Since we were not able to obtain the asymptotic result

in Theorem 4.1 anyway, we present the weaker bound for the sake of the clarity of

exposition.

Let G′ �∼= G. Let C ′, K ′ be its core and kernel. We can assume that ∆(G′) = u and its

diameter is d, for otherwise Spoiler easily wins in u + 2 or log2 d + 3 moves.

By Lemma 4.4 it is enough to show that Spoiler can win the Ehrenfeucht (G,G′)-game

in at most b − log2 d + O(1) moves provided Duplicator always respects V (C) and V (K)

(recall that the latter consists of the vertices in C having degree at least 3). Call this game C.

As G �∼= G′, we have K �∼= K ′ (as coloured graphs). Let K denote the Ehrenfeucht game

on K and K ′.

Claim 1. If Spoiler can win the game K in m moves, then he can win C in at most

m + t + u + log2 d + O(1) moves.

Proof of claim. We can assume that each edge of K ′ corresponds to a path in G′ of

length at most 2d + 1: otherwise Spoiler selects a vertex of C ′ at distance at least d + 1

from any vertex of K ′ and wins in log2 d + O(1) moves.

Spoiler plays according to his K-strategy by making moves inside V (K) ⊂ V (G) or

V (K ′) ⊂ V (G′). By the definition of C, Duplicator’s replies are inside V (K) ∪ V (K ′), so

they correspond to replies in the K-game. In at most m moves, Spoiler wins the K-game.
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Of a few similar cases, assume that Spoiler achieved that the multisets of coloured edges

between some selected vertices x �= y of V (K) and x′ �= y′ of V (K ′) are different.

In at most u moves, Spoiler can either win or select a vertex z ∈ V (C) \ V (K), the

neighbour of x in an xy-path P , such that the Duplicator’s reply z′ either is not in an

x′y′-path or its path P ′ � z′ has a different colouring from P . In the former case, Spoiler

wins by Lemma 3.3: in G the vertices y and z are connected by a path of length at most

2d that avoids any other vertex of K , while this does not hold for G′, y′, z′.

Consider the latter case. Assume that |P | = |P ′|, for otherwise we are done by

Lemma 3.3. Spoiler selects w ∈ P such that, for the vertex w′ ∈ P ′ with distP (w, x) =

distP ′ (w′, x′), we have Tw �∼= T ′
w′ . If Duplicator does not reply with w′, then she has

violated distances in one way or another and Spoiler wins by Lemma 3.3. Otherwise

Spoiler needs at most t extra moves to win the game T on (Tw, T
′
w′ ) (and at most

log2 d + O(1) extra moves to catch Duplicator if she does not respect T).

It remains to bound D(K), where K is the coloured graph, by b1 + O(1). This requires

a few preliminary facts.

Claim 2. For any {x, x′} ∈ K we have D(Kx,x′) � b0 + O(1) in the class of coloured graphs

with two roots.

Proof of claim. Let T = Kx,x′ and T ′ �∼= T . If T is a tree, then we just apply Lemma 3.5

using the bound of u2h for the order and the bound of u for the maximum degree.

Otherwise, Spoiler first selects a vertex z ∈ T which lies on the (unique) cycle. We have

at most u − 1 components in T − z, viewing each as a coloured tree where one extra

colour marks the neighbours of z. As T �∼= T ′, in at most u moves we can restrict our

game to one of the components. (If Duplicator does not respect components, she loses

in at most log2 d + O(1) extra moves.) Now, one of the graphs is a coloured tree, and

Lemma 3.5 applies.

Claim 3. For every two distinct vertices x, y ∈ V (K), there is a first-order formula Φx,y

in the language of coloured graphs, with one free variable and quantifier depth at most

b1 + O(1), such that K, x |= Φx,y and K, y �|= Φx,y .

Proof of claim. To prove the existence of Φx,y we have to describe Spoiler’s strategy,

where he has to distinguish (K, x) and (K, y) for given distinct x, y ∈ K .

If the multiset of isomorphism classes Kx,x′ , over {x, x′} ∈ E(K) is not equal to the

multiset {Ky,y′ : {y, y′} ∈ E(K)}, then Spoiler wins in at most b0 + u + log2 h + O(1) �
b1 + O(1) moves by Claim 2. Indeed, Spoiler ensures that in at most u + 1 moves some

vertices x′ and y′ are selected in the same round so that Kx,x′ �∼= Ky,y′ . Let r � h be the height

of Kx,x′ and let K̄y,y′ be the subgraph of Ky,y′ induced by the vertices of height at most

r. Then Kx,x′ �∼= K̄y,y′ and Spoiler can apply the strategy given by Claim 2. If Duplicator

moves outside these graphs, then Spoiler wins in at most log2 h + O(1) extra moves.

Assume now that the above multisets are equal. We show that in this case Spoiler

wins even faster. By the inequality δ(K) � 3 and Assumption 1, there are x′ and y′ such
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that Kx,x′ and Ky,y′ have more than two vertices and are isomorphic. This implies an

isomorphism Gx,x′ ∼= Gy,y′ . By Assumption 2, the latter implies that Ax,x′ ∩ Ay,y′ �= ∅. As

the height of any Ka,b is at most h, we conclude that

distK (x, y) � 2h + 2. (4.7)

It follows that neither x nor y is a loop. Indeed, otherwise both must be loops (or

Spoiler has already won). But then Assumption 1 implies that distK (x, y) > 6h + 4, a

contradiction to (4.7).

At most one neighbour of x can be a loop, for otherwise we get 3 vertices spanning 4

edges. The same holds for y. By (4.7) and Assumption 1, at least one of x, y has no loop

among its neighbours. If this is so for exactly one of x, y, then Spoiler wins in one more

move. So assume that no K-neighbour of x and y is a loop.

Let P be a shortest xy-path in K . Let x1, x2, x3 and y1, y2, y3 be three K-neighbours

of x and y respectively such that Kx,xi
∼= Ky,yi . We can additionally assume that both

{x1, x2, x3} and {y1, y2, y3} intersect P . Recall that

Ax,xi ∩ Ay,yi �= ∅, i ∈ [3], (4.8)

and the height of the corresponding subgraphs of K is at most h.

It is impossible to have three (not necessarily disjoint) paths each of length at most

2h + 2 of the form (x, xi, . . . , yi, y), i ∈ [3], as this would give v � 6h + 5 vertices spanning

at least v + 1 edges in K , a contradiction to Assumption 1. It follows that the length of

P is at most h (so that one path may be used to ensure (4.8) for more than one index i).

Still, P alone can take care of at most two such intersections so, up to a symmetry, one

of the following two cases takes place.

Case 1. In K there is a cycle of length at most h + (2h + 2) containing the edges xx1, xx2,

yy1, yy3.

Note that for i = 1, 2 we have Ax,x3
∩ Ax,xi = ∅ for otherwise we would have two short

cycles close together. Thus Kx,x3
�∼= Kx,xi .

Spoiler selects x1 and x2. If Duplicator does not reply with {y1, y3}, then Spoiler wins

in extra log2 h + O(1) � log2 d + O(1) moves, using the fact that x, x1, x2 lie on a cycle of

length at most 3h + 2 (cf. the proof of Lemma 3.4). So, assume that one of Duplicator’s

replies is y3. But Ky,y3
∼= Kx,x3

is not isomorphic to Kx,x1
or Kx,x2

. By Claim 2, Spoiler can

win in at most b0 + log2 h + O(1) extra moves, as required.

Case 2. In K there is a cycle C of length at most 2h + 2 containing the edges xx1, xx2

and a path of length at most h connecting y to a vertex of C via the edge yy3.

By the assumption on h the vertex y cannot belong to a cycle of length at most 2h + 2

in K . Spoiler can point out this difference between x and y in at most log2 h + O(1) moves

(cf. the proof of Lemma 3.4).

Claim 4. For the coloured graph K we have D(K) � b1 + O(1).

Proof of claim. Let K ′ �∼= K .
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For x ∈ V (K), define a formula Φx with one free variable by

Φx :=
∧

y∈V (K)\{x}

Φx,y (4.9)

with Φx,y as in Claim 3. Clearly, Φx has quantifier depth at most b1 + O(1).

If there is an x ∈ V (K) with no x′ ∈ V (K ′) such that K ′, x′ |= Φx, then Spoiler selects

x. Whatever Duplicator’s reply x′ is, it evaluates differently from x on Φx and Spoiler

can win in at most D(Φx) further moves, as required. If there are two distinct y′, z′ ∈ K ′

such that K ′, y′ |= Φx and K ′, z′ |= Φx, then Spoiler selects both y′ and z′. At least one of

Duplicator’s replies is not equal to x, say, y �= x. Again, the selected vertices y ∈ V (K) and

y′ ∈ V (K ′) are distinguished by Φx, so Spoiler can win in at most D(Φx) + 2 moves in total.

Therefore, let us assume that for every x ∈ V (K) there is the unique vertex x′ = φ(x) ∈
V (K ′) such that K ′, x′ |= Φx. Clearly, φ is injective. Furthermore, φ is surjective for if

x′ �∈ φ(V (K)), then Spoiler wins in b1 + O(1) moves: he selects x′ ∈ V (K ′) and then uses

Φx, where x ∈ V (K) is Duplicator’s reply.

As K �∼= K ′, Spoiler can select x, y ∈ V (K) such that the adjacencies between x and y

and between x′ = φ(x) and y′ = φ(y) are distinct or the vertex-colourings of {x, y} and

{x′, y′} are distinct. If Duplicator replies with x′ and y′, then she has lost. Otherwise she

has violated φ and Spoiler wins in at most b1 + O(1) moves.

The proof of Lemma 4.5 is complete by Claims 1 and 4.

4.1.2. Probabilistic part. Here we estimate the parameters from the previous section. As

before, let G be the giant component of G(n, c
n
) with c > 1, let C and K be its core and

kernel, and let the parameters t, u, and d be defined by (4.5) and (4.6).

It is well known that w.h.p. u = O( ln n
ln ln n

) (see, e.g., Bollobás [2, Chapter 3]), and

d = O(ln n) (see, e.g., Chung and Lu [3]).

Lemma 4.6. With high probability every edge of K corresponds to at most O(ln n) vertices

of G. Similarly, for any x ∈ V (C) we have v(Tx) = O(ln n).

Proof. The expected number of K-edges, each corresponding to precisely i vertices in G,

is at most

fi =

(
n

i

)(
i

2

)
pi−1ii−2(1 − p)(i−2)(n−i)+( i

2)−i+1.

If i = o(n), then

fi � ni

i!

i2

2
pi−1ii−2e−(c+o(1))i � ni2

(
ec

ec+o(1)

)i

.

We have ec < ec for c > 1, so if i is large enough, i > M ln n with M = M(c), then fi < n−2.

If α = i/n = Ω(1), then using the estimate
(
n
i

)
� (e1−α/2+o(1)n/i)i we get

fi �
(

(1 + o(1))
ec

eα/2+c((1−α)+α/2)

)i

�
(

(1 + o(1))
ec

ec

)i

< n−2.

Thus
∑n

i>M ln n fi = o(1) and the claim follows from Markov’s inequality.
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Similarly, the expected number of vertices x with v(Tx) = i > M ln n can be bounded

from above by

n

(
n − 1

i − 1

)
pi−1ii−2(1 − p)(i−1)(n−i)+( i

2)−i+1 < n−2.

In particular, Lemma 3.5 implies that w.h.p. t = O( ln n
ln ln n

).

Set h = 2 ln ln n. Thus 2h/ ln n → ∞. It remains to prove that this choice of h satisfies

Assumptions 1 and 2.

Lemma 4.7. With high probability any set of s � 6h + 5 vertices of K spans at most s

edges (including multiple edges and loops).

Proof. A moment’s thought reveals that it is enough to consider sets spanning connected

subgraphs only.

Let L = M ln n be given by Lemma 4.6. The probability that there is a set S such that

|S | = s � 6h + 5 and K[S] is a connected graph with at least s + 1 edges is at most

o(1) +

6h+5∑
s=1

(
n

s

)
ss−2 s4

∑
0��1 ,... ,�s+1�L

s+1∏
i=1

(
n

�i

)
(�i + 2)�ip�i+1(1 − p)�i(n−�i−2)

� o(1) +

6h+5∑
s=1

(
ne

s

)s

ss+2
∑

0��1 ,... ,�s+1�L

s+1∏
i=1

(
ce2

n
�2
i

(
ec

ec

)�i
)

� o(1) +

6h+5∑
s=1

(O(1))s

n

(
L∑

�=0

�2

(
ec

ec

)�
)s+1

� o(1) +

6h+5∑
s=1

(O(1))s

n
= o(1).

The lemma is proved.

Lemma 4.8. With high probability K does not contain four vertices x, x′, y, y′ such that

{x, y}, {x′, y′} ∈ E(K), v(Kx,y) � 2h, Ax,y ∩ Ax′ ,y′ = ∅, and Kx,y
∼= Kx′ ,y′ .

Proof. Let us briefly outline the proof. Let H ∈ G(n, p). For a pair of vertices x, y ∈
V (H) we define a certain breadth-first search procedure B(x, y) in H that resembles the

construction of Kx,y in K . Then we define an event FAIL(x, y, x′, y′) whose probability is

o(n−4). The proof will be complete when we show that if x, y, x′, y′, H do not satisfy the

conclusion of the lemma, then FAIL(x, y, x′, y′) occurs. Please note that when we define

B(x, y) we do not assume that {x, y} ∈ E(K); in fact, x and y may even lie outside the

giant component.

Here are the details. Given c, choose the following small positive constants in this order:

ε1 � 1/M1 � ε2 � 1/M2 � ε3. Let x, y, x′, y′ ∈ V (H). Next, we describe the procedures

B(x, y) and B(x′, y′), and specify which outcomes are included in FAIL(x, y, x′, y′).

In the procedure B(x, y) we take the breadth-first search in H − x starting with y. Let

L1 = {y}, L2, L3, etc., be the levels. Let Ti = ∪i
j=1Li. Let s be the smallest index such

that |Ts| � M1 ln n. If the search dies out before we reach M1 ln n vertices, then s and the

parameters depending on it are undefined but this itself does not result in FAIL.
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If |Ts| > 2cM1 ln n, then this is FAIL. Chernoff’s bound implies that the probability

of this event is o(n−4). Indeed, this is at most the probability that the binomial random

variable with parameters (n, c
n

× M1 ln n) exceeds 2cM1 ln n.

We also get FAIL if there is an i � s such that |Ti| � ε3n and |Li+1| does not lie inside

the interval (c ± ε2)|Li|. Again, by Chernoff’s bound this has probability o(n−4). Informally

speaking, the levels Li increase proportionally after we reached M1 ln n vertices.

Take some i � s with |Ti| � ε3n. The sizes of the next M2 levels of the breadth-first

search from the vertices of Li can be bounded from below by independent branching

processes with the number of children having the Poisson distribution with mean c − ε2.

Indeed, for every active vertex v choose a pool P of �(1 − ε2

2c
)n� available vertices and

let v choose its neighbours from P , each with probability c/n. If v claimed r neighbours,

then, when we take the next active vertex, we add extra r vertices to the pool, so that its

size remains constant.

With positive probability p1 the ideal branching process survives infinitely long; in fact,

p1 is the positive root of 1 − p1 = e−(c−ε2)p1 . Let

p2 = max
j�0

cje−c

j!
< 1.

The numbers p1 > 0 and p2 < 1 are constants (depending on c only).

Take the smallest q such that |Tq| � M2 ln n. We know that

|Lq| �
(
c − 1

c
− ε1

)
|Tq| (4.10)

because the levels grow proportionally from the sth level (and |Ts| � 2cM1 ln n � M2 ln n�
|Tq|). Let Z consist of those vertices of Lq for which the search process goes on for at

least M2 further levels before dying out.

We define B(x′, y′) in the same way, using the same notation but with primes added

(for example, L′
i, T

′
i , and so on). Now we specify the last (and crucial) component of the

event FAIL. It depends on all four vertices x, y, x′, y′.

We fail if s is defined, Tq+M2
∩ T ′

q+M2
= ∅, and there is an isomorphism φ : H[Tq+M2

] ∼=
H[T ′

q+M2
] such that φ(y) = y′. Let us analyse this event. We expose Tq+M2

and all edges

inside it. The graph H ′ = H − Tq+M2
is the genuine Erdős–Rényi random graph with

edge probability p. Also, we know that |Tq+M2
| = o(n). Assume Tq+M2

∩T ′
q+M2

= ∅. This

means that T ′
q+M2−1 can be alternatively constructed by applying the procedure B(x′, y′)

to the random graph H ′.

The expected number of embeddings of φ : H[Tq] → H ′ respecting the special vertices

y and y′ is at most n|Tq |−1 p|Tq |−1. If FAIL occurs, then on top of φ(H[Tq]), we have to

get the |Z | specified trees, each of height at least M2. But the probability of this event is

at most (
(p2 + o(1))M2

)|Z |
, (4.11)

because if we want to get a given height-M2 tree, then at least M2 times we have to match

the sum of degrees of a level, each coincidence having probability at most p2 + o(1).
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Our previous assumptions and (4.10) imply that with probability 1 − o(n−4)

|Z | � p1

2
× |Lq| � p1

2
×

(
c − 1

c
− ε1

)
× |Tq|.

By (4.11) the probability of failure at this stage is at most

n|Tq |−1 p|Tq |−1(p2 + o(1))M2
p1
2

(
c−1
c

−ε1

)
|Tq |,

which is o(n−4) because |Tq| � M2 ln n and the constant M2 can be arbitrarily large.

Claim 1. Suppose that x, y, x′, y′, H do not satisfy the assumptions of the lemma. Then

we have FAIL(x, y, x′, y′).

Proof of claim. Since v(Kx,y) � 2h > M2 ln n, the parameters s, q, and others are defined.

Also, Tq+M2
⊂ V (Gx,y) and T ′

q+M2
⊂ V (Gx′ ,y′ ), so their intersection is empty. Since Kx,y

∼=
Kx′ ,y′ , we have Gx,y

∼= Gx′ ,y′ and H[Tq+M2
] ∼= H[T ′

q+M2
]. Thus the event FAIL(x, y, x′, y′)

occurs, as required.

Now we are ready to complete the proof of the lemma. There are at most n4 choices

for x, y, x′, y′ and each violates the conclusion of the lemma with probability o(n−4) by

Claim 1. By Markov’s inequality, w.h.p. no violations happen.

Putting all together we deduce the upper bound of Theorem 4.1.

4.2. Lower bound

Let l = (1 − ε) ln n
ln ln n

for some ε > 0. We claim that w.h.p. the giant component G has a

vertex i adjacent to at least l leaves of G. (Then we have D(G) � l + 1: consider the graph

obtained from G by adding an extra leaf attached to i.)

Choose a constant δ > 0 so that c(1 − δ) > 1 and let V ′ be a fixed set of �(1 − δ)n�
vertices of V (H), where H ∈ G(n, p). First we expose H ′ = H[V ′]. The expected degree

in H ′ is p(|V ′| − 1) > 1, so we are in the supercritical stage and w.h.p. there is the giant

component G′ of order m = Ω(n).

Let us expose the remaining edges of H . For i ∈ V (G′) let Xi be the event that, in H ,

the vertex i is incident to at least l leaves from D = V \ V ′. It is easy to estimate the

expectation of X =
∑

i∈V (G′) Xi:

E(X) = m

(
|D|
l

)
pl(1 − p)(

l
2)+l(n−l−1) + O(1) × m

(
|D|
l + 1

)
pl+1(1 − p)(l+1)n

= (1 + o(1))
mδlcle−cl

l!
→ ∞.

Also, for i �= j,

E(Xi ∧ Xj) = (1 + o(1))

(
|D|
l

)(
|D| − l

l

)
p2l(1 − p)(

2l
2)+2l(n−2l−1)

= (1 + o(1))E(Xi)E(Xj).
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The second moment method gives that X is concentrated around its mean. In particular,

w.h.p. X > 0. Since every vertex of G′ also belongs to the giant component of H , the

claim follows.

5. Random trees

We consider the probabilistic model T(n), where a tree T on the vertex set [n] is selected

uniformly at random among all nn−2 trees. In this section we prove that w.h.p. D(T ) is

close to the maximum degree of T .

Theorem 5.1. Let T ∈T(n). With high probability D(T )=(1 + o(1))∆(T )=(1 + o(1)) ln n
ln ln n

.

Let F(n, k) be a forest chosen uniformly at random from the family of Fn,k of all forests

with the vertex set [n], which consist of k trees rooted at vertices 1, 2, . . . , k. Note that a

random tree T ∈ T(n) can be identified with F(n, 1). We recall that |Fn,k| = knn−k−1; see,

e.g., Stanley [13, Theorem 5.3.2]. We start with the following simple facts on F(n, k).

Lemma 5.2. Let k = k(n) = o(
√
n).

(i) The probability that F(n, k) contains precisely �, 0 � � � k − 1, isolated vertices is (1 +

O(k2/n))
(
k−1
�

)
e−�(1 − e−1)k−�−1.

(ii) Let k � ln4 n and k0 = k(1 + 1/ ln n) + 9 ln2 n. The probability that the roots of F(n, k)

have more than k0 neighbours combined is o(n−3).

(iii) The probability that � given roots of F(n, k) have degree at least s � 4 each is bounded

from above by (2/(s − 1)!)�

Proof. In order to see (i), note that from the generalized inclusion–exclusion principle

the stated probability equals

k−1∑
i=�

(
i

�

)
(−1)i−�

(
k

i

)
(k − i)(n − i)n−k−1

knn−k−1

=

(
1 + O

(
k2

n

)) k−1∑
i=�

(k − 1)!

�!(i − �)!(k − 1 − i)!
(−1)i−�e−i

=

(
1 + O

(
k2

n

))(
k − 1

�

)
e−�(1 − e−1)k−�−1. (5.1)

Let us prove (ii). For the probability that precisely m vertices of F(n, k) are adjacent to

the roots, where k � m � n − k, Stirling’s formula gives, rather crudely,(
n − k

m

)
km

m (n − k)n−k−m−1

k nn−k−1
� O(1)

(
e1−k/mk

m

)m √
(n − k)m

k
. (5.2)

For every x, 0 < x < 1, we have xe1−x � e−(1−x)2/2. Thus, for m > k0,

(
e1−k/mk

m

)m

� exp

(
− (m − k)2

2m

)
�

⎧⎪⎨
⎪⎩

exp
(

− (9 ln2 n)2

18 ln3 n

)
, if m � 9 ln3 n,

exp
(

− (m/(1+ln n))2

2m

)
, if m > 9 ln3 n.
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This is at most e−4.4 ln n = n−4.4 in either case. Thus∑
m>k0

exp

(
− (m − k)2

2m

)
� n × n−4.4 = o(n−3),

proving the assertion.

For k = 1 the probability that a given root has degree at least s is bounded from

above by

∑
t�s

(
n − 1

t

)
t(n − 1)n−t−2

nn−2
�

∑
t�s

1

(t − 1)!
� 2

(s − 1)!
.

If we fix some � � 2 roots, then if we condition on the vertex sets of the � corresponding

components, the obtained trees are independent and uniformly distributed, implying the

required bound by the above calculation.

Using the above result one can estimate the number of vertices of T ∈ T(n) with a

prescribed number of pendant neighbours.

Lemma 5.3. Let X�,m denote the number of vertices in T ∈ T(n) with precisely � neigh-

bours of degree one and m neighbours of degree larger than one. Let

A ⊆ {(�, m) : 0 � � � ln n, 1 � m � ln n},

be a set of pairs of natural numbers and XA =
∑

(�,m)∈A X�,m. Then, the expectation

E(XA) = (1 + o(1)) n
∑

(�,m)∈A

e−�−1

�!

(1 − e−1)m−1

(m − 1)!
(5.3)

and, if E(XA)/ ln3 n → ∞, then

E(XA(XA − 1)) = (1 + o(1)) (E(XA))2. (5.4)

Proof. Using Lemma 5.2(i) we get

E(XA) = (1 + o(1))n
∑

(�,m)∈A

(
n − 1

m + �

)
(m + �)(n − 1)n−m−�−2

nn−2

×
(
m + � − 1

�

)
e−�(1 − e−1)m−1,

which gives (5.3).

Let E(XA)/ ln3 n → ∞. In order to count the expected number of pairs of vertices with

prescribed neighbourhoods, we condition on the event that a vertex x has � + m neighbours

x1, . . . , x�, y1, . . . , ym such that d(xi) = 1 and d(yi) � 2. The graph F = T − {x, x1, . . . , x�} is

a forest with roots y1, . . . , ym. Once we condition on the orders of the components T1, . . . , Tm

of F , say n1 + · · · + nm = n − � − 1 with each ni � 2, each component is distributed as

a random tree. For each Ti we estimate the expectation of the corresponding random

variable XA,i using the same argument as above. If ni/ ln2 n → ∞, then the changes are

negligible and the asymptotic estimate (5.3) still applies to XA,i. Note that the error term
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o(1) in (5.3) is in fact O(max{(� + m)2 : (�, m) ∈ A}/n) because of the error term O(k2/n)

in Lemma 5.2(i). The other components contain at most O(ln3 n) vertices: recall that

m � ln n for any (�, m) ∈ A. Hence,
∑m

i=1 E(XA,i) = (1 + o(1))E(XA), and (5.4) holds.

As an easy corollary of the above result we get a lower bound for D(T(n)).

Theorem 5.4. Let T ∈T(n). With high probability D(T )� (1 − o(1))∆(T )=(1 − o(1)) ln n
ln ln n

.

Proof. Since w.h.p. the maximum degree is

∆(T ) = (1 + o(1))
ln n

ln ln n
(5.5)

(see Moon [6]), in order to prove the assertion it is enough to show that w.h.p. T contains

a vertex v with

�0 = (1 − o(1))
ln n

ln ln n
(5.6)

neighbours of degree one. Indeed, to characterize such a structure Spoiler needs at least

�0 + 1 moves. Using Lemma 5.3, we infer that, for the number of vertices X� of T with

exactly � neighbours of degree 1 and, say, one neighbour of degree larger than 1, we have

E(X�) = Ω(e−�n/�!). Thus, one can choose �0 so that (5.6) holds and E(X�0
)/ ln3 n → ∞.

Then, due to Lemma 5.3, Var(X�0
) = o((E(X�0

))2), and Chebyshev’s inequality implies that

w.h.p. X�0
> 0.

Let us state another simple consequence of Lemma 5.2 which will be used in our proof

of Theorem 5.1. Here and below Nr(v) denotes the r-neighbourhood of v, i.e., the set of

all vertices of the graph which are at distance r from v, and N�r(v) =
⋃r

i=0 Ni(v).

Lemma 5.5. Let r0 = r0(n) = �7 ln n�. Then, w.h.p. the following holds for every vertex v

of T ∈ T(n):

(i) |N�r0
(v)| � 108 ln4 n,

(ii) N�r0
(v) contains fewer than ln n/(ln ln n)2 vertices of degree larger than (ln ln n)5.

Proof. For s � r0 let Ws = N�s(v). Note that, conditioned on the structure of the subtree

of T induced by Ws for some s � r0, the forest T − Ws−1 can be identified with the random

forest on n − |Ws−1| vertices, rooted at the set Ns(v). Thus, it follows from Lemma 5.2(ii)

that w.h.p. the following holds: let i be the smallest integer with |Ni(v)| � 9 ln3 n; then

|Ni(v)| � 10 ln3 n and for every j � i with |Nj(v)| � ln4 n we have |Nj+1(v)| � |Nj(v)|(1 +

2/ ln n). Hence,

|N�r0
(v)| � r0 × 10 ln3 n × (1 + 2/ ln n)r0 � 108 ln4 n.

In order to show (ii) note that (i) and Lemma 5.2(iii) imply that the probability that,

for some vertex v, at least � = �ln n/(ln ln n)2� vertices of N�r0
(v) have degree larger than
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m = (ln ln n)5 is bounded from above by

n

(
ln5 n

�

)(
2

(m − 1)!

)�

� n

(
2e ln5 n

�(m − 1)!

)�

= o(1).

In our further argument we need some more definitions. Let T be a tree and let v be

a vertex of T . For a vertex w ∈ Nr(v) let Pvw denote the unique path connecting v to

w (of length r). Let the check Ch(v, Pvw) be the binary sequence b0 · · · br , in which, for

i = 0, . . . , r, bi is zero (resp. 1) if the ith vertex of Pvw is adjacent (resp. not adjacent) to

a vertex of degree one. (The parameter v in Ch(v, Pvw) is needed to indicate in which

direction we go along Pvw .) Finally, the r-checkbook Chr(v) is the set

Chr(v) = {Ch(v, Pvw) : w ∈ Nr(v)}.

Note that a checkbook is not a multiset, i.e., a check from Chr(v) may correspond to more

than one of the paths Pvw .

Our proof of the upper bound for D(T(n)) is based on the following fact.

Theorem 5.6. Let r0 = �7 ln n�. With high probability, for each pair Pvw , Pv′w′ of paths of

length r0 in T ∈ T(n) which share at most one vertex, the checks Ch(v, Pvw) and Ch(v′, Pv′w′ )

are different.

Proof. Let C = del(T ) denote the tree obtained from T by removing all vertices of degree

one. From Lemma 5.3 it follows that w.h.p. the tree C has (1 − e−1 − o(1))n vertices, of

which

(1 + o(1)) n
∑
�>0

e−�−1

�!
= (exp(e−1 − 1) − e−1 + o(1)) n

vertices have degree one, and

αn = (1 − exp(e−1 − 1) + o(1)) n

vertices have degree greater than one. (Note that by (5.5) there is no need to consider the

values of � larger than ln n in Lemma 5.3.)

Moreover, among the set B of (e−1 + o(1))n vertices removed from T ,

(1 + o(1))n

∞∑
l=1

�
e−�−1

�!
= (1 + o(1)) exp(e−1 − 2)n

were adjacent to vertices which became pendant in C . Let B′ denote the set of the

remaining

(e−1 − exp(e−1 − 2) + o(1))n = (ρ0 + o(1))n

vertices which are adjacent to vertices of degree at least two in C . Note that, given

C = del(T ), each attachment of vertices from B \ B′ to pendant vertices of C , such that

each pendant vertex of C gets at least one vertex from B \ B′, as well as each attachment

of vertices from B′ to vertices of degree at least two from C , is equally likely.
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Let Pvw , Pv′w′ , be two paths of length r0 in T which share at most one vertex. Clearly,

each vertex of Pvw , except at most two vertices at each of the ends, belongs to C and

contains at least two neighbours in C; the same is true for Pv′w′ . Since (ρ0 + o(1))n vertices

from B′ are attached to the αn vertices of degree at least two in C at random, the

probability that one such vertex gets no attachment is

p0 = (1 + o(1))

(
1 − 1

αn

)ρ0n

= (1 + o(1)) e−ρ0/α = 0.692 . . . + o(1).

Therefore, the probability that the checks Ch(v, Pvw) and Ch(v′, Pv′w′ ) are identical can be

bounded from above by

o(n−3) +
(
p2

0 + (1 − p0)2 + o(1)
)r0 � e−3 ln n = o(n−2 ln−8 n).

Indeed, Chernoff’s bound implies that with probability 1 − o(n−4), for every path P in T

of length r0 the number of leaves that attach to the path is o(n). So, if we expose one

by one the attachments to pairs of the corresponding vertices of Pvw and Pv′w′ and each

time condition on o(n) exposed leaves so far, this would change the total probability by at

most r0n
−4 = o(n−3). But the conditional probability that a given pair of distinct vertices

yields a coincidence is clearly p2
0 + (1 − p0)2 + o(1).

Since, by Lemma 5.5(i), w.h.p. T contains at most O(n ln4 n) checks of length r0, the

assertion follows.

Now, let r0 = �7 ln n�. We call a tree T on n vertices typical if:

• for each pair of paths Pvw , Pv′w′ of length r0 which share at most one vertex, the checks

Ch(v, Pvw), Ch(v′, Pv′w′ ) are different,

• for the maximum degree ∆ of T we have

ln n

2 ln ln n
� ∆ � 2 ln n

ln ln n
,

• |N�r0
(v)| � 108 ln4 n, for every vertex v,

• for every vertex v at most ln n/(ln ln n)2 vertices of degree larger than (ln ln n)5 lie

within distance r0 from v.

Theorem 5.7. For a typical tree T ∈ T(n) we have D(T ) � (1 + o(1)) ∆.

Proof. Our approach is somewhat similar to that for the giant component from

Section 4.

Let T be a typical tree and let T ′ be any other graph which is not isomorphic to T . We

shall show that Spoiler can win the Ehrenfeucht game on T and T ′ in (1 + o(1))∆ moves.

Let us call a vertex v of a graph a yuppie if there are two paths Pvw , Pvw′ of length r0

starting at v so that V (Pvw) ∩ V (Pvw′ ) = {v}. Note that the set of all yuppies Y spans a

subtree in T , call it K .

Claim 1. Every vertex v is at distance at most r0 from a yuppie.

Proof of claim. By the assumption on the neighbourhoods, we have

|N<2r0
(v)| � 1016 ln8 n < n,

so there is a vertex u at distance 2r0 from v. The median of the vu-path is a yuppie.
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Let us view K as a vertex-coloured graph where the colour of a vertex x ∈ Y is the

isomorphism type of Tx, the component of T − (Y \ {x}) rooted at x. Let Y ′ be the

set of yuppies of T ′, and let K ′ = T ′[Y ′]. We can assume that Duplicator respects the

subgraphs K and K ′, for otherwise Spoiler wins in extra O(ln ln n) moves.

Claim 2. Any distinct v, v′ ∈ K can be distinguished in O(ln ln n) moves.

Proof of claim. Assume that the r0-checkbooks of v, v′ are the same, for otherwise Spoiler

wins in log2 r0 + O(1) moves. (Please note that the checkbooks are viewed as sets, not as

multisets, so the number of moves does not depend on the degrees of v and v′.)

Take a path Pvx of length r0, which shares with Pvv′ only vertex v. Spoiler selects x.

Let Duplicator reply with x′. Assume that Ch(v, Pvx) = Ch(v′, Pv′x′ ). The path Pv′x′ must

intersect Pvx; thus v ∈ Pv′x′ . Next, Spoiler selects the Pvx-neighbour y of v. Assume that

Duplicator’s reply y′ belongs to Pv′x′ (for otherwise Spoiler can win in O(ln ln n) moves).

Let z ∈ T maximize dist(v, z) on the condition that Chr0
(z) = Chr0

(v) and v lies between

y and z in T . Define the analogous vertex z′, replacing v, y in the definition by v′, y′.

We have dist(v, z) > dist(v′, z′) because any legitimate choice for z′ is also a legitimate

choice for z. Let Spoiler select w = z. If Duplicator’s reply w′ satisfies Chr0
(w′) �= Chr0

(w),

then Spoiler wins in at most log2 r0 + O(1) extra moves. Otherwise, v′ is not on the path

between y′ and w′ or dist(v, w) > dist(v′, w′). Moreover, dist(v, w) � 2r0 (because their r0-

checkbooks are equal). Spoiler wins in log2 r0 + O(1) extra moves. The claim has been

proved.

Similarly to the argument following (4.9), one can argue that, for every vertex x ∈ K ,

there is a formula Φx with a single free variable of quantifier depth O(ln ln n) identifying

x in T (note that the property of being a yuppie is definable with depth log2 r0 + O(1)).

Moreover, we can assume that this gives us an isomorphism φ : K → K ′ which is respected

by Duplicator.

Assume first that T ′ is not connected. As K ′ ∼= K is connected, there is a component

C ′ of T ′ without a yuppie. Spoiler chooses an x′ ∈ C ′. Now, any Duplicator’s reply x is

within distance r0 from a yuppie by Claim 1, which is not true for x′. Spoiler can win in

O(ln ln n) moves.

Assume now that T ′ is connected. It follows that there is a vertex x ∈ K such that

Tx �∼= T ′
x′ , where x′ = φ(x) and T ′

x′ is the component of T ′ − (Y ′ \ {x′}) rooted at x′.

Since each vertex of T is within distance at most r0 from some yuppie by Claim 1, the

tree Tx has height at most r0. If T ′
x′ has a path of length greater than 2r0 or a cycle, then

Spoiler can win in at most log2 r0 + O(1) moves; cf. Lemma 3.4. (Duplicator is forced

to play within Tx and T ′
x′ on account of Lemma 3.3, because Y and Y ′ are succinctly

definable.) So assume that T ′
x′ is a tree. Now Spoiler should select all vertices of Tx which

are of degree larger than (ln ln n)5, say w1, . . . , ws. Since T is typical there are at most

ln n/(ln ln n)2 such vertices in Tx. Suppose that, in response, Duplicator chooses vertices

w′
1, . . . , w

′
s in T ′

x′ . Then, Tx \ {w1, . . . , ws} splits into a number of trees F1, . . . , Fu, coloured

according to their adjacencies to the wi’s. Now, for some i the multisets of coloured

trees adjacent to wi and w′
i are different. Spoiler can highlight this by using at most
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∆(T ) + 1 moves. Now Spoiler plays inside some Fi, using the strategy of Theorem 3.1.

Note that Fi has at most 108 ln4 n vertices and maximum degree at most (ln ln n)5, so

O((ln ln n)6/ ln ln ln n) moves suffice here.

Consequently, for a typical tree T ,

D(T ) � ∆(T ) +
ln n

(ln ln n)2
+ o((ln ln n)6),

and the assertion follows.

Proof of Theorem 5.1. Theorem 5.1 is an immediate consequence of Theorems 5.4 and 5.7

and the fact that, due to Lemma 5.5, Theorem 5.6, and the known estimates of maximum

degree [6], w.h.p. a random tree T ∈ T(n) is typical.

6. Restricting alternations

If Spoiler can win the Ehrenfeucht game, alternating between the graphs G and G′ at most

r times, then the corresponding sentence has alternation number at most r, that is, any chain

of nested quantifiers has at most r changes between ∃ and ∀. (To make this well defined, we

assume that no quantifier is within the range of a negation sign.) Let Dr(G) be the smallest

quantifier depth of a sentence which defines G and has alternation number at most r. It

is not hard to see that Dr(G) = max{Dr(G,G
′) : G′ �∼= G}, where Dr(G,G

′) may be defined

as the smallest k such that Spoiler can win Ehrk(G,G
′) with at most r alternations. For

small r, this is a considerable restriction on the structure of the corresponding formulas,

so let us investigate the alternation number given by our strategies.

Let Dtree
r (n, l) be the maximum of Dr(T ) over all coloured trees of order at most n and

maximum degree at most l.

Unfortunately, in Theorem 3.1 we have hardly any control on the number of alterna-

tions. However, we can show that alternation number 0 suffices if we are happy to increase

the upper bound by a factor of 2.

Lemma 6.1. Let T and T ′ be non-isomorphic coloured trees. Assume that v(T ) � v(T ′)

and denote n = v(T ). Assume also that ∆(T ) � l and let both l and ln n/ ln l tend to infinity.

Then Spoiler can win the Ehrenfeucht game on (T ,T ′) in at most

(1 + o(1))
l ln n

ln l
(6.1)

moves, playing all the time in T .

Proof. In the first move Spoiler selects a median x ∈ T ; let x′ be Duplicator’s reply.

If d(x) > d(x′), then Spoiler wins in extra l moves, which is negligible when compared

to (6.1). So, suppose that d(x′) � d(x).

Let t = d(x) and C1, . . . , Ct be the (rooted) components of T − x indexed so that

v(C1) � v(C2) � · · · � v(Ct). Referring to the root of a component, we mean that vertex of

it which is adjacent to x. Spoiler starts selecting, one by one, the roots of C1, C2, . . . , Ct in

this order. Duplicator is forced to respond with roots of distinct components of T ′ − x′.
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Spoiler keeps doing so until the following situation occurs: he selects the root y of a

component C = Ci while Duplicator selects the root y′ of a component C ′ such that

v(C) � v(C ′) and C �∼= C ′ (as rooted trees). Such a situation must occur for some i � t due

to the conditions that v(T ) � v(T ′), d(x) � d(x′), and T �∼= T ′.

We claim that if Spoiler selects a vertex z inside C then Duplicator must reply with

some z′ ∈ C ′, for otherwise Spoiler wins in at most log2 n extra moves. Indeed, suppose

z′ �∈ C ′. Spoiler selects z1, which is a middle point of the yz-path. Whatever the reply z′
1,

the z′z′
1-path or z′

1y
′-path contains the vertex x′. Suppose it is the z′z′

1-path. Then Spoiler

halves the zz1-path, and so on. In at most log2 n times he wins.

Thus, making i + 1 � t + 1 � l + 1 steps, we have reduced the game to two non-

isomorphic (rooted) trees, C and C ′, with v(C) � min( 1
i
, 1

2
) v(T ). In the game on (C,C ′)

Spoiler applies the same strategy recursively. Two ending conditions are possible: the root

of C has strictly larger degree than the root of C ′ and Duplicator violates a colour, the

adjacency, or the equality relation. It is easy to argue (cf. the proof of Lemma 3.5) that

the worst case for us is when we have i = (1 + o(1)) l all the time, which gives the required

bound (6.1).

Theorem 6.2. Let both l and ln n/ ln l tend to infinity. Then

Dtree
0 (n, l) � (1 + o(1))

l ln n

ln l
. (6.2)

Proof. Let T be a tree of order n and maximum degree at most l and let G �∼= T . If

∆(T ) �= ∆(G) then Spoiler wins the Ehrenfeucht game on (T ,G) in at most l + 2 moves

playing in the graph of the larger degree. We therefore assume that T and G have the

same maximum degree not exceeding l.

Case 1. G contains a cycle of length no more than n + 1.

Spoiler plays in G proceeding as in the last paragraph of the proof of Lemma 3.4.

Case 2. G is connected and has no cycle of length up to n + 1.

If v(G) � n, then G must be a tree. Lemma 6.1 applies. Let us assume v(G) > n. Let A

be a set of n + 1 vertices spanning a connected subgraph in G. This subgraph must be a

tree. Spoiler plays in G, staying all the time within A. Lemma 6.1 applies.

Case 3. G is disconnected and has no cycle of length up to n + 1.

We can assume that every component H of G is a tree, for otherwise Spoiler plays the

game on (T ,H) staying in H , using the strategy described above.

Suppose first that G has a tree component H such that H �∼= T and v(H) � n. If

v(H) = n, let T ′ = H . Otherwise let T ′ be a subtree of H on n + 1 vertices. Spoiler plays

the game on (T ,T ′) staying in T ′ and applying the strategy of Lemma 6.1 (with T and

T ′ interchanged and perhaps with n + 1 in place of n).

Suppose next that all components of G are trees of order less than n. In the first move

Spoiler selects a median x of T . Let Duplicator respond with a vertex x′ in a component

T ′ of G. If in the sequel Duplicator makes a move outside of T ′, then Spoiler wins by

Lemma 3.3. As long as Duplicator stays in T ′, Spoiler follows the strategy of Lemma 6.1.
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Finally, it remains to consider the case that G has a component T ′ isomorphic to T .

Spoiler plays in G. In the first move he selects a vertex x′ outside T ′. Let x denote

Duplicator’s response in T . Starting from the second move Spoiler plays the game on

(T ,T ′) according to Lemma 6.1, where x is considered coloured in a colour absent in T ′.

Our description of Spoiler’s strategy is complete.

It is not clear what the asymptotic of Dtree
0 (n, l) is. We could not even rule out the

possibility that Dtree
0 (n, l) = ( 1

2
+ o(1)) l ln n

ln l
.

The similar method shows that Dtree
0 (n, l) = Θ(ln n) if l � 2 is constant and Dtree

0 (n, l) =

Θ(l) if ln n
ln l

= O(1), but the exact asymptotic seems difficult to compute.

Using these results, one can rewrite the proofs of Theorems 4.1 and 5.1 so that the

obtained sentences have a small number of alternations (at most 3). However, we could

not find strategies requiring no alternations at all. For example, one of a few places that

seems to require an alternation is establishing that φ is a bijection: Spoiler may be forced

to start in one of the graphs, while later (for example, when showing that Tx �∼= T ′
x′ ) he

may need to swap graphs. We do not know if the upper bounds in Theorems 4.1 and 5.1

are valid if no alternations are allowed.
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