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a b s t r a c t

Given a graph G and an integer k, two players alternatively color the edges of G using k
colors so that adjacent edges get different colors. The game chromatic index χ ′g (G) is the
minimum k for which the first player has a strategy that ensures that all edges of G get
colored.
The trivial bounds are∆(G) ≤ χ ′g (G) ≤ 2∆(G)− 1, where∆(G) denotes the maximal

degree of G. Lam, Shiu, and Xu and, independently, Bartnicki and Grytczuk asked whether
there is a constant C such that χ ′g (G) ≤ ∆(G) + C for every graph G. We show that the
answer is in the negative by constructing graphs G such that χ ′g (G) ≥ 1.008∆(G) and
∆(G) → ∞. On the other hand, we show that for every µ > 0 there is ε > 0 such that
for any graph G with ∆(G) ≥ (1/2 + µ)v(G), we have χ ′g (G) ≤ (2 − ε)∆(G), where v(G)
denotes the number of vertices of G.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let a graphG and a positive integer kbe given. Twoplayers, calledAlice andBob, alternatively color a previously uncolored
edge of G in one of the colors from [k] = {1, . . . , k} so that no two adjacent edges have the same color. Thus, at anymoment
of the game, the current partial coloring of E(G) is a proper edge coloring. The game can end in two different ways. Either
all edges of G are colored (and then Alice is the winner) or the uncolored edge picked by a player cannot be properly colored
(and then Bob wins).
Let us agree that Alice starts the game. (In fact, all theorems stated in this paper will remain valid for the version where

we let Bob start the game.) The game chromatic index χ ′g(G) is the smallest k such that Alice has a winning strategy. This
parameter has been previously studied by Lam, Shiu and Xu [9], Cai and Zhu [6], Erdős, Faigle, Hochstättler, and Kern [8],
Andres [1], Bartnicki and Grytczuk [2], and others.
This is a variation of the game chromatic number which is analogously defined for the game where nodes (not edges)

are colored. The latter parameter is much better studied; we refer the reader to Bohman, Frieze, and Sudakov [5] for some
history and references on the game chromatic number.
The trivial bounds on the game chromatic index are

∆(G) ≤ χ ′g(G) ≤ 2∆(G)− 1, (1)

where∆(G) denotes the maximal degree of G.
Unfortunately, the game chromatic index seems hard to analyze. For example, a player’smove can easily harm that player

later in the game. Also, it is not clear if there is any useful ‘potential’ function that measures a player’s progress. Therefore,
we settle for the modest task of getting a constant factor improvement over the trivial bounds (1) when∆(G) is large.
Lam, Shiu and Xu [9, Question 1] and, independently, Bartnicki and Grytczuk (Problem 1 in the preprint version of [2])

asked whether there is a constant C such that χ ′g(G) ≤ ∆(G) + C for an arbitrary graph G. In Section 2 we show that the
answer to this question is in the negative. Namely, we construct, for every sufficiently large d, a graph Gwith∆(G) ≤ d and
χ ′g(G) ≥ 1.008 d.
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On the other hand, the lower bound in (1) is attainable for some graphs. A trivial example is G = K1,d. However, we
believe that large minimal degree δ(G)will force χ ′g(G) to be well above δ(G). Namely, we make the following conjecture.

Conjecture 1. There are ε > 0 and d0 such that any graph G with δ(G) ≥ d0 satisfies χ ′g(G) ≥ (1+ ε)δ(G).

Of course, the conclusion of Conjecture 1 is interesting only when∆(G) < (1+ε)δ(G), that is, when all degrees are fairly
close to each other.
From the other direction, we show in Section 3 that for any µ > 0 there is ε > 0 such that any graph G with

∆(G) ≥ (1/2 + µ)v(G) satisfies χ ′g(G) < (2 − ε)∆(G). (Here, v(G) denotes the number of vertices of G.) Surprisingly,
this is done by letting Alice play randomly, see Section 3 for details. While probabilistic intuition and reasoning often help in
the analysis of combinatorial games, see e.g. Beck [3], there are not many examples where non-trivial results are obtained
by actually introducing randomness into a player’s strategy. Such examples were discovered by Spencer [11], Bednarska and
Łuczak [4], Pluhár [10], and others. Our proof of the upper bound fits into this category.
The restriction∆(G) ≥ (1/2+µ)v(G) in the above result is needed in order to make our proof work. We do not believe

that there is anything special about the constant 1/2 here. We conjecture that a much stronger claim is true.

Conjecture 2. There is ε > 0 such that for an arbitrary graph G we have χ ′g(G) ≤ (2− ε)∆(G).

2. Lower bounds

Theorem 3. For every sufficiently large integer d, there is a graph G with maximum degree at most d such that χ ′g(G) > 1.008 d.

Proof. Let β = 4/7, α = 1− β = 3/7, and λ = 1/25. Let d be sufficiently large and let n = bd/β − 3d2/3c.
We define a graph G of order n and maximum degree at most d as follows. Take two disjoint sets A and B of sizes dαne

and bβnc = n − dαne respectively. The vertex set of G is A ∪ B. Put a complete bipartite graph between A and B. Let A be
an independent set. Let G[B], the subgraph of G induced by B, be a random graph with each pair of B being an edge with
probability p = 1− α/β = 1/4, independently of the other pairs.
Let the acronym whp (with high probability) mean ‘with probability 1− o(1) as n→∞’.
By the Chernoff bound [7], whp the G-degree d(x) of every x ∈ V (G), satisfies |d(x) − βn| ≤ n2/3. In particular, the

maximal degree of G is at most d. Also, whp every subset X of B spans at least p
(
|X |
2

)
− n5/3 edges. (Indeed, any fixed X

violates this inequality with probability o(2−n) by the Chernoff bound.) Fix any G[B] that satisfies these two conditions.
Let k ≤ 1.008d be an arbitrary integer and let κ = k/n. In order to prove Theorem 3 we have to show that Bob has a

winning strategy for the pair (G, k). By (1), it is enough to consider only those k that are at least∆(G).
At the start of the game, Bob picks some l = dλne special colors, say 1, . . . , l ∈ [k]. (Note that the assumption k ≥ ∆(G)

implies that l ≤ k.) His strategy consists of two stages. At each round of Stage 1, Bob tries to color some (arbitrary) edge
inside B with one of the special colors. If this is impossible (that is, the endpoints of every uncolored edge of G[B] see all
special colors between the two of them), then Stage 1 is over. In Stage 2 Bob plays arbitrarily.
Let us show that Bob necessarily wins. Suppose on the contrary that all edges of G get colored by the end of the game.
Let Stage 1 have τn2 rounds. Suppose that Alice plays τBn2 times inside B (and (τ − τB)n2 times between A and B).
Let us analyze the moment when Stage 1 ends. Take any special color i ∈ [l]. Let Xi ⊆ A∪ B be the set of vertices that are

adjacent to an edge of color i. Let µi = |B \ Xi| /n. We have

p
(
µin
2

)
− n5/3 =

(
pµ2i
2
+ o(1)

)
n2 ≤ τBn2 +

lµin
2
+ o(n2). (2)

Indeed, G[B \ Xi] has at least p
(
µin
2

)
− n5/3 edges and all of them must be colored. On the other hand, Bob can color at most

lµin/2 edges of G[B \ Xi] because he uses only the l special colors in Stage 1 (and each color class is a matching).
Inequality (2), which is quadratic in µi, implies that

µi ≤
λ+

√
λ2 + 8pτB
2p

+ o(1). (3)

Also, we have

2τBn2 ≤
l∑
i=1

(|Xi ∩ B| − 3|Xi ∩ A|) . (4)

Indeed, Bob increases σ =
∑l
i=1(|Xi ∩ B| − 3|Xi ∩ A|) by 2 in each his move in Stage 1. If Alice uses a special color on a

G[A, B]-edge, then σ does not change in this round. If Alice does something else, which happens at least τBn2 times, then σ
increases by at least 2 during the round.
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For i ∈ [l], let Yi be the set of vertices covered by the edges of Color i after the game ends. Let µn2 =
∑l
i=1 µin. At most

µn2 edges can be colored with special colors in Stage 2, because an edge colored i ∈ [l] in Stage 2 must intersect B \ Xi.
(Recall that A is an independent set in G.) Thus we have

l∑
i=1

(|Yi ∩ B| − 3|Yi ∩ A|) ≥
l∑
i=1

(|Xi ∩ B| − 3|Xi ∩ A|)− 2µn2. (5)

The total number of edges of special colors at the end of the game is, by (4) and (5),

1
2

l∑
i=1

|Yi| =
1
2

l∑
i=1

(|Yi ∩ A| + |Yi ∩ B|)

≤
2
3

l∑
i=1

|Yi ∩ B| −
τB − µ

3
n2 ≤

2λβ
3
n2 −

τB − µ

3
n2 + o(n2).

Each of the remaining k − l ≥ (κ − λ)n colors is used on at most n/2 edges. Since the total number of edges of G is
(β/2+ o(1))n2, we have

2λβ
3
−
τB − µ

3
+
κ − λ

2
≥
β

2
+ o(1).

By dividing by β/2, re-arranging, and using the definition of µ and Inequality (3), we obtain

κ

β
+ o(1) ≥ 1+

2τB
3β
−
4λ
3
−
λ2 + λ

√
λ2 + 8pτB
3pβ

+
λ

β
. (6)

By taking the derivative with respect to τB of the right-hand side of (6), one can conclude that the minimum over all real
τB is attained when τB = 3λ2/(8p). Substituting this into (6) and using the known values of the constants, we obtain that

κ

β
+ o(1) ≥

3781
3750

> 1.0082. (7)

This contradiction shows that Bob wins, finishing the proof of Theorem 3. �

Remark. In order to have a rigorous proof of Theorem3 checkable by hand, we used rational numbers for all fixed constants.
These choices are not optimal (given the stated inequalities) but are good rational approximations of such. In particular, the
bound (7) can be slightly improved. Further improvements can be obtained by using more sophisticated strategies for Bob
in Stage 1. Unfortunately, the analysis becomes too messy while the new bounds seem still to be very close to 1. Therefore
we settled for the current version.

3. Upper bounds

Here we are going to prove the upper bound on χ ′g promised in the introduction. Our result will be stronger if we give
Bob the freedom to skip moves. Namely, we consider the following new game, studied by Andres [1].
Let G and k be given. Bob and Alice alternatively make moves. Bob starts. In his move, Bob can either properly color an

uncolored edge or skip (that is, not color any edge at all). Alice, however, always has to properly color an uncolored edge.
As in the old version, any moment of the game gives a partial proper coloring of E(G) and Alice wins if the whole graph is
colored at the end. Let the upper game chromatic index χ ′u(G) be the smallest k such that Alice has a winning strategy.
Since Bob is allowed to miss his first turn, we have χ ′g(G) ≤ χ

′
u(G) for any graph G. Here we prove the following upper

bound on χ ′u(G).
Theorem 4. For every µ > 0 there is ε > 0 such that any graph G with∆(G) ≥ (1/2+ µ)v(G) satisfies

χ ′u(G) ≤ (2− ε)∆(G). (8)

The rest of Section 3 is dedicated to proving Theorem 4.
Let us first specify some notation we are going to use. We abbreviate an unordered pair {x, y} as xy.
Suppose that we fix players’ strategies and observe the game. Let us agree that we immediately stop the game if there

is an uncolored edge incident to all possible colors. (Then no player will be able to color it and Bob automatically wins.) A
round consists of amove of Bob (possibly skipped) followed by amove of Alice. Let Ar and Br denote the sets of edges colored
by Alice and Bob respectively after the initial r rounds. If the game ended earlier, before r full rounds were completed, let
Ar and Br denote the final edge-sets colored by Alice and Bob respectively.
Let Cr = Ar∪Br consist of the colored edges after Round r . Let c : E(G)→ [k]be the (possibly partial) coloring constructed

at the end of the game. Let C ′r be the set of colored edges before Alice’s move in Round r . For a vertex x of G, let Cr(x) be the
set of the colors of the Cr -edges incident to x:

Cr(x) = {c(xy) : xy ∈ Cr}.

The sets Ar(x), Br(x), and C ′r(x) are defined analogously.
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Proof of Theorem 4. We will use various positive constants, whose dependences are as follows

µ� c1 � c2 � c3 � c4 � c5 � ε > 0,

where a � bmeans that b is sufficiently small depending on a. It is enough to prove Theorem 4 for all sufficiently large n.
Indeed, for any order-n graph G we have∆(G) ≤ n and χ ′u(G) ≤ 2∆(G)− 1 ≤ (2− 1/n)∆(G); thus the theorem becomes
valid for every n ≤ n0 if ε is reduced below 1/n0.
Let n be sufficiently large. Let the asymptotic notation, like O(1), refer to the case that n→∞while µ, c1, etc, are fixed.

Let G be an arbitrary graph of order n and maximum degree d ≥ ( 12 + µ)n. Let k = b(2− ε)dc.
Here is the strategy of Alice.
She makes two types of moves: R-moves (or random moves) and S-moves (or set moves). If Bob skipped his move, then

Alice makes an R-move. An R-move consists of selecting an uncolored edge, uniformly at random from all uncolored edges
of G. (The coloring rule, which is the same for both R-moves and S-moves, will be described shortly.) If Bob selected an edge
xy in the previous move, then Alice throws a biased coin. With probability 1 − c1, she makes an R-move. With probability
c1/2, she makes an S-move at x, that is, picks a random uncolored edge at x. (If all edges at x have already been colored, then
Alice makes an R-move instead.) With probability c1/2, she makes an S-move at y, that is, picks a random uncolored edge at
y (or makes an R-move if all edges at y have already been colored).
The rules for selecting Alice’s edge uv are different for these two types of moves but the coloring rule is the same: the

color c(uv) is chosen uniformly at random from all admissible colors (that is, from the set [k] \ (C ′r(u) ∪ C
′
r(v)), where r is

the number of the current round). There is always at least one available color for the edge uv, for otherwise we would have
already stopped the game and declared Bob to be the winner. Let Rr and Sr denote the sets of Alice’s R-moves and S-moves
respectively after r rounds. Thus, for every r ,

Ar = Rr ∪ Sr .

Note that if Bob has a winning strategy, then (since this is a complete information game) Bob has a deterministic winning
strategy. Hence, in order to prove the theorem, it is enough to show that, for any fixed (deterministic) strategy of Bob, this
random strategy of Alice has non-negative probability of winning.
So let us fix some strategy of Bob and let Alice play as above. Let

D = {x ∈ V (G) : d(x) ≥ (1− 2ε)d},

where d(x) denotes the degree of x. Clearly, if we take an edge not entirely inside D, then at most d+ (1− 2ε)d < k colors
are forbidden, so this edge can always be colored. For x ∈ D let

r(x) = min{r : |Cr(x)| ≥ c2d}. (9)

Here is an informal description why Alice wins whp. We will show that whp two vertices of D will share at least εd
common colors before the game ends. Indeed, if this occurs, then Alice wins because every edge gets colored: the number
of forbidden colors is at most (d − 1) + (d − 1) − εd < k. In fact, we show that this event occurs early in the game, after
at most r rounds, where r can be set to be, for example, 4c2n2. Since the set Cr , containing at most 2r edges, is small, when
Alice colors a random edge incident to a vertex x ∈ D in some Round i, the color of this edge is spread on almost all the set
[k] \ C ′i (x). Hence, it is enough to show that whp each |Ar(x)|, x ∈ D is fairly large. To this end observe that if |Br(x)| is small,
then |Rr(x)| is large because then any R-move had a chance at least (d−|Cr(x)|)/

(n
2

)
to pick an edge at x; otherwise |Sr(x)| is

large, being whp at least (c1/4)× |Br(x)|. This is why we need an occasional S-move: to prevent Bob from claiming almost
all edges at some vertex x ∈ D.
Let us present a rigorous proof. We define a family of ‘bad’ events and establish the following two properties. Property I:

the expected value of the sum of the indicator functions of bad events is o(1). Property II: if none of the bad events occurs
then Alice necessarily wins. Then the theorem clearly follows.
All our bad events will be split into a few families. For each family we immediately analyze Property I, leaving the proof

of Property II until the very end. For the notational convenience, we identify each event with its indicator function.

3.1. The first family

Each event B1z,m,r of this family is indexed by a triple (z,m, r), where z ∈ D and 0 ≤ r < m ≤ e(G). Informally speaking,
if none of the events B1z,m,r occurs, then the number of A-edges that hit a vertex z ∈ D at any interval of the game is not much
smaller than the expected value, provided that the final degree of z is not too big.
Here a formal definition of B1z,m,r . If the game ends before Roundm, we set B

1
z,m,r = 0. So suppose that the game continues

for at leastm rounds. We set B1z,m,r = 0 if Cm(z) ≥ 4c2d or if

|Am(z) \ Ar(z)| ≥
(m− r)(2− 4c1)

n
− c5n. (10)

Otherwise, we set B1z,m,r = 1.
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Let us show that∑
z∈D

∑
0≤r<m≤e(G)

E(B1z,m,r) = o(1). (11)

We fix z,m, r and estimate the probability of B1z,m,r . Consider a moment when Alice is about to make a move in Round i,
with r < i ≤ m. Assume that z is currently incident to fewer than 4c2d colored edges for otherwise we necessarily have
Cm(z) ≥ 4c2d and B1z,m,r = 0. The probability of Alice’s making an R-move is at least 1− c1, whether or not Bob skipped his
previous move. We have at least d(z)−4c2d ≥ (1−2ε−4c2)d uncolored edges at z and at most dn/2 edges in total. Hence,
the probability of increasing the number of A-edges at z is at least

(1− c1)
(1− 2ε − 4c2)d

dn/2
>
2− 4c1
n
=: p

at each round. Hence, if we assume that C ′i (z) ≤ 4c2d for each i ∈ [r + 1,m], then the left-hand side of (10) can be bounded
from below by coupling with the (m − r, p)-Binomial variable. The Chernoff bound implies that the probability that (10)
fails is exponentially small in n. Since the number of choices of the triple (z,m, r) is O(n5), the inequality (11) follows.

3.2. The second family

Herewedefine the eventB2
{x,y}, where x, y ∈ D, x 6= y. Using our convention,wewill abbreviate it asB

2
xy. Roughly speaking,

we observe the game for the initial r rounds for some r . Suppose that x and y have not acquired at least εd common colors
yet. Furthermore, suppose that one of them (say x) is incident to at least c3d uncolored edges whose other endpoint does
not see at least c3d of the colors appearing at y. Then it is very unlikely that, in next c4dn rounds, x gets almost none of the
colors that were present at y at Round r .
Here is a formal definition of B2xy. If B

1
u,m,r = 1 for some 0 ≤ r < m ≤ e(G) and u ∈ {x, y}, then we immediately set

B2xy = 0. So let us suppose otherwise. Let r = max(r(x), r(y)), where r(z) is the function defined by (9). If r is undefined (i.e.
the game stops before each of x and y gets Cr -degree at least c2d), then we set B2xy = 0. (It will be the case that some other
bad events will be ‘responsible’ for this.) If

|Cr(x) ∩ Cr(y)| ≥ εd, (12)

then we set B2xy = 0, so let us suppose that (12) does not hold. We define

Z(x,y) = {z : xz ∈ E(G) \ Cr , |Cr(y) \ Cr(z)| ≥ c3d}, (13)
Z(y,x) = {z : yz ∈ E(G) \ Cr , |Cr(x) \ Cr(z)| ≥ c3d}. (14)

If max(|Z(x,y)|, |Z(y,x)|) < c3d, then we set B2xy = 0. So suppose otherwise and let {u, v} = {x, y} satisfy |Z(u,v)| ≥ c3d. (If
both assignments u = x and u = ywork, we can agree that e.g. u is the smaller of x and ywith respect to some fixed linear
order on V (G).)
Let us observe the game until Roundm, where

m = r + bc4dnc. (15)

If the game ends before Round m, then we do the following: Set B2xy = 1 if the edge xy is uncolorable at the end (possibly
one of a few uncolorable edges) and set B2xy = 0 otherwise (that is, if xy is colored or can be properly colored in the final
position).
So, suppose that the game lasts at least until Roundm. If

|Cm(x) ∩ Cm(y)| ≥ εd, (16)

we set B2xy = 0; otherwise, we set B
2
xy = 1. This finishes the description of the event B

2
xy.

Let us prove that∑
x,y∈D
x6=y

E(B2xy) = o(1). (17)

Let us fix xy ∈
(D
2

)
and estimate the probability of B2xy. We analyze the game, starting from Round r and assuming that

the previous development of the game does not rule out B2xy yet. In particular, we have defined u, v with {u, v} = {x, y} and
|Z(u,v)| ≥ c3d.
We will observe the game in Rounds r + 1 tom′, where

m′ = min(m, r ′), (18)

where r ′ is the total number of the rounds until the game stops.
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Sincem′ − r ≤ m− r ≤ c4dn, we have, for any i ∈ [r + 1,m′], that

|Z(u,v) \ Z ′i | ≤ 2×
m− r
c3d/2

≤ 4
c4dn
c3d
≤
c3d
4
,

where we define Z ′i = {z ∈ Z(u,v) : |Cr(v) \ C
′

i (z)| ≥ c3d/2}. Indeed, every vertex in Z(u,v) \ Z
′

i must gain at least c3d/2
colored edges in Rounds r + 1 to i, resulting in the first inequality. The final inequality follows from c4 � c3. Thus

|Z ′i | ≥ |Z(u,v)| −
c3d
4
≥
3c3d
4
. (19)

Let I consist of those i ∈ [r + 1,m′] such that in Round i Alice colors an edge between u and Z ′i . Let E0 be the event that
B2xy occurs and |I| ≥ c5d. Let us show that the probability of each of E0 and B

2
xy \ E0 (given the previous history up to Round r)

is exponentially small in n—this will prove (17) because there are O(n2) choices of xy in total.
Let us analyze E0 first. We will make use of the following coupling. Let p0 = (c3/2 − ε)/2. Let X = (X1, X2, . . .) be an

infinite 0/1-sequence where each entry is 1 with probability p0, independently of the other entries. Initially we set k = 1.
Let us observe the rounds one by one as the game progresses. Let i ≥ r + 1 be number of the current round.
Suppose first that, in this Round i, Alice has selected and is about to color an edge uz with some z ∈ Z ′i . Let W =

[k] \ (C ′i (u) ∪ C
′

i (z)) consist of all available colors for uz. LetW
′
= W ∩ C ′i (v) consist of those available colors that are also

present at v. Alice increases the number of common colors at u and v with probability p = |W ′|/|W |.
By the definition of Z ′i there are at least c3d/2 colors of Cr(v) ⊆ C

′

i (v) that are absent in C
′

i (z). Assume that at most
εd of these colors are present in C ′i (u) for otherwise (16) holds, B

2
xy = 0, and E0 = 0. Hence, |W

′
| ≥ c3d/2 − εd and

p = |W ′|/|W | ≥ (c3d/2− εd)/2d = p0.
Our coupling requires that the edge uz is coloredwith a color fromW ′ whenever the k-th element Xk of X is 1. This can be

achieved, for example, as follows. If Xk = 1, Alice picks a random color fromW ′. If Xk = 0, then Alice picks, with probability
(p − p0)/(1 − p0) a random color fromW ′ and with probability 1 − (p − p0)/(1 − p0) a random color fromW \W ′. This
gives the uniform distribution on the setW of all available colors. Indeed, any two colors both fromW ′ or fromW \W ′ are
equally likely to be picked while the probability of selecting a color fromW ′ is exactly

p0 + (1− p0)
p− p0
1− p0

= p =
|W ′|
|W |

.

Now, we increase k by 1 so that the new (unexposed) value of Xk is independent of the previous history. Continue the game.
If, in Round i, Alice does not color an edge uz with z ∈ Z ′i , then we do not do anything (and do not increase the counter k).
It follows that if E0 occurs, then the first bc5dc elements of X contain at most εd ones. By the Chernoff bound, this has

exponentially small in n probability, giving the desired result. (Note that we do not have to take the union bound over all
choices of I since we were feeding in the bits of X only when there was demand.)
Next, we analyze E ′0 = B

2
xy \ E0, the event that B

2
xy occurs and |I| < c5d. We split it further into two complementary sub-

events E ′0 = E1 ∪ E2 depending respectively on whether or not Bob colors at least c3d/4 edges incident to u in Rounds r + 1
tom′, wherem′ is defined by (18).
In order to analyze E1, consider the first l = bc3d/4c moves of Bob after Round r incident to u. Let us consider Alice’s

move in any such Round i, when Bob has just colored an edge at u. Of all G-edges between u and Z ′i , at most c5d edges are
colored by Alice (we can assume this for otherwise |I| ≥ c5d) and, trivially, at most l ≤ c3d/4 edges are colored by Bob.
Hence, by (19), the probability that Alice picks an edge between u and Z ′i in Round i is at least

c1
2
×
3c3d/4− c5d− c3d/4

d
≥
c1c3
5
.

Similarly to above, we can couple this with an infinite 0/1-sequence X = (X1, X2, . . .), whose each entry is 1 with proba-
bility c1c3/5, where we read the next bit of X after those moves of Bob that touch u. It follows that if E1 = 1, then there are
less than c5d ones among the first lmembers of X1. The Chernoff bound shows that the probability of this (and thus of E1) is
exponentially small in n.
Let us analyze E2.
Suppose first that m′ < m (and that B2xy = 1). Recall that m and m

′ are defined by (15) and (18). Then xy is uncolorable
in the final position, so at least (1 − ε)d edges incident to u get colored. In particular, at least |Z ′m′ | − εd edges between u
and Z ′m′ are colored. Alice colors at most c5d of these edges since E0 does not occur, while Bob colors at most c3d/4 of these
edges since E1 does not occur. By (19), we conclude that c5d+ c3d/4 ≥ 3c3d/4− εd, a contradiction.
Hence, assume that m′ = m, that is, the game lasts for at least m rounds. We observe bc4ndc rounds after Round r and,

in each Round iwith r < i ≤ m, the probability of Alice’s hitting an edge between u and Z ′i is at least

(1− c1)×
3c3d/4− c5d− c3d/4

nd/2

because neither E0 nor E1 occurs. Again, the probability of fewer than c5d successes (which is needed to avoid |I| ≥ c5d) is
exponentially small. This completely proves (17).
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3.3. The third family

Its events B3a are indexed by a color a ∈ [k]. The event B
3
a occurs if and only if the graph Rm contains at least 37c2n edges

of color a, wherem = b4c2n2c. (Recall that Rm consists of all R-moves of Alice made during the firstm rounds.)
Initially, let us set H = ∅ and let X be an infinite 0/1-sequence where each entry is 1 with probability 3/n independently

of the other entries. Let the game last for r ′ rounds.
We observe Alice’s moves until Roundm′, wherem′ = min(m, r ′). Let us consider amomentwhen Alice has just selected

an R-edge xy and is about to color it in some Round i. If there are less than n/3 available colors for the edge xy at the current
moment, then we just add the pair xy to H and proceed with the game. Suppose that there are more than n/3 available
colors. The probability of selecting the color a for c(xy) is at most 3/n. We read the next unexposed bit of X . Our coupling
requires that if it is 0, then Alice does not select color a for c(xy).
Consider the partial coloring right after Round m′. Let Y consist of vertices of G of Cm′-degree at least n/3. We have

|Y |(n/3) ≤ 2m; thus |Y | ≤ 24c2n. Every edge xy of H has to intersect Y for otherwise the number of available colors
at xy, even at Round m′, is at least (2 − ε)d − n/3 − n/3 > n/3, a contradiction. Since each color class is a matching,
the number of color-a edges inside H is at most |Y |. It follows that if B3a = 1, then the first m entries of X contain at least
37c2n−24c2n = 13c2n ones. By the Chernoff bound this has probability exponentially small in n. Hence

∑k
a=1 E(B

3
a) = o(1).

3.4. The fourth family

Let 0 ≤ m ≤ e(G).
The event B4m, occurs if and only if |Sm| > c1m + c3n

2. (Recall that Sm consists of Alice’s S-moves made in the first m
rounds.) Since the probability of increasing the current |Sr | in any round is at most c1, the Chernoff bound easily implies that∑e(G)
m=0 E(B

4
m) = o(1).

3.5. Putting all together

Let us show that if none of the above bad events occurs, then Alice surely wins. Let us assume on the contrary that the
game ends when an edge xy ∈ E(G) cannot be properly colored. If there are a few choices for xy, pick one arbitrarily. (Recall
that we stop the game as soon as an uncolorable edge appears.)
This means that x, y ∈ D and each of x and y is incident to at least (1 − ε)d colored edges. Thus r(x) and r(y) are well-

defined. Let r = max(r(x), r(y)). Assume r(x) ≥ r(y). Thus r = r(x) and 0 ≤ |Cr(x)| − c2d < 2. Since xy cannot be properly
colored at the end of the game, Inequality (12) is false, that is,

|Cr(x) ∩ Cr(y)| < εd. (20)

Since B1x,r,0 = 0 and |Cr(x)| ≤ c2d+ 2 < 4c2d, we have by (10) applied to the first r rounds that

c2d+ 2 ≥ |Ar(x)| ≥
r(2− 4c1)

n
− c5n.

It follows from c5, c2 � c1 that, for example,

r ≤
(1+ 3c1)c2nd

2
. (21)

Claim 1. max(|Z(x,y)|, |Z(y,x)|) ≥ c3d.

Proof of Claim. Suppose that the claim is not true. Let l = |Cr(y)|. Then, by the definition of Z(x,y), there are at least

dG(x)− |Cr(x)| − |Z(x,y)| ≥ (1− 2ε)d− (c2d+ 2)− c3d ≥ (1− 2c2)d,

vertices of G such that, after the r-th round, each sees at least l− c3d colors from Cr(y). Likewise, there are at least

dG(y)− l− |Z(y,x)| ≥ (1− 2ε)d− l− c3d ≥ (1− 2c3)d− l

vertices of G, each seeing at least |Cr(x)| − c3d ≥ c2d− c3d colors from Cr(x). This requires at least

1
2

(
(1− 2c2)d(l− c3d)+ ((1− 2c3)d− l)(c2d− c3d)

)
≥
dl
2
+ c2
−3dl+ d2

2
− c22n

2 (22)

edges of Cr , each colored by a color in Cr(x) ∪ Cr(y). By (20) and since each color class contains at most n/2 edges, we
double-count at most

|Cr(x) ∩ Cr(y)| × (n/2) ≤ εdn/2 ≤ c22n
2 (23)

edges. Moreover, by (21) we have r ≤ 4c2n2 and since no bad event B3a occurs, Ar can contribute at most

|Cr(x) ∪ Cr(y)| × (37c2n) ≤ (c2d+ 2+ l)× (37c2n)
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to (22). Since B4r does not occur, Sr contributes at most c1r+ c3n
2 to (22). Finally, |Br | ≤ r . From (22) and (23), we obtain that

dl
2
+ c2
−3dl+ d2

2
− 2c22n

2
≤ (c2d+ 2+ l)× (37c2n)+ c1r + c3n2 + r.

Using (21), we obtain (after routine simplifications) that

l
(
d
2
−
3c2d
2
− 37c2n

)
≤ −c2

d2

2
+ c2

nd
2
+ 3c1c2n2. (24)

This is a contradiction to l = |Cr(y)| ≥ c2d, d ≥ ( 12 + µ)n, and µ� c1 � c2. The claim is proved. �

So we can define {u, v} = {x, y} as it is done after (14). Let m = r + bc4dnc. The game cannot end before Round m for
then B2xy = 1 (as xy is responsible for the end of the game). Again, since B

2
xy = 0, we conclude that (16) holds. This means

that, after Round m, x and y share at least εd colors, so there will always be a choice of color for xy. This contradicts our
assumption and proves that Alice wins. This completes the proof of Theorem 4. �
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