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Abstract
Motivated by the work of Razborov about the minimal density of triangles in graphs we study the minimal
density of the 5-cycle C5. We show that every graph of order n and size (1− 1/k)

(n
2

)
, where k� 3 is an

integer, contains at least (
1
10
− 1

2k
+ 1

k2
− 1

k3
+ 2

5k4

)
n5 + o(n5)

copies of C5. This bound is optimal, since a matching upper bound is given by the balanced complete k-
partite graph. The proof is based on the flag algebras framework.We also provide a stability result. An SDP
solver is not necessary to verify our proofs.

2010 MSC Codes: 05C35

1. Introduction
It is believed that extremal graph theory was started by Turán [29] when he proved that any graph
on n vertices with more than

r− 2
2(r− 1)

n2

edges must contain a copy of Kr (i.e. a clique with r vertices). The case r= 3 was earlier proved by
Mantel [17]. The general Turán problem is to determine the minimum number ex(n,H) of edges
in an n vertex graph that guarantees a copy of a graph H, and has been very widely studied. The
Erdős–Stone theorem [6] was a major breakthrough which asymptotically determined the value
of ex(n,H) for all non-bipartite H. For such H we have

ex(n,H)= χ(H)− 2
2(χ(H)− 1)

n2 + o(n2).
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The natural quantitative question that arises is how many copies of H must be contained in a
graphG on n vertices withm> ex(n,H) edges. This question has also been well studied. Obviously
the number of edgesm can be expressed as a density parameter p such thatm= p

(n
2
)
. Therefore, we

will use the following notation. LetG be a (large) graph of order n andH a small one. Define νH(G)
to be the number of unlabelled copies (not necessary induced) of H in G and the corresponding
density as

dH(G)= νH(G)
|V(G)||V(H)| .

Furthermore, for a given number p ∈ [0, 1] let
dH(p)= lim

n→∞min
G

dH(G),

where the minimum is taken over all graphs G of order n and size (p+ o(1))
(n
2
)
. It is not hard to

show by double-counting that the limit exists; see e.g. [23, Lemma 2.2].
When H =K3 (that means it is a triangle), Moon and Moser [18] and also independently

Nordhaus and Stewart [20] determined dK3 (p) for any p= 1− 1/k, where k is a positive inte-
ger. We call such p= 1− 1/k a Turán density. Some other partial results for the general r-clique
H =Kr were established by Lovász and Simonovits [14]. However, for arbitrary p these problems
remained open for over 50 years.

Then Razborov in his seminal paper [25] introduced the so-called flag algebras and, using them,
determined dK3 (p) for any p in [26]. Subsequently, Pikhurko and Razborov [22] characterized all
almost extremal graphs. Very recently, Liu, Pikhurko and Staden [12] found the precise minimum
number of triangles among graphs with a given number of edges in almost all ranges. Nikiforov
[19] determined dK4 (p) for all p, and then Reiher [27] determined dKr (p) for all r and p.

In this paper we address the minimum density of the 5-cycle, C5, in a graph with given edge
density. We chose to investigate C5 instead of C4 since it is known due to Sidorenko [28] that
for any fixed constant edge density p, the minimum C4-density is achieved asymptotically by the
random graph Gn,p. It is worth mentioning some other research related to 5-cycles. Specifically,
Grzesik [8] and independently Hatami, Hladký, Král’, Norine and Razborov [9] proved that the
maximum density of 5-cycles in a triangle-free graph that is large or its number of vertices is
a power of 5 is achieved by the balanced blow-up of a 5-cycle. The extension to graphs of all
sizes, with one exception on 8 vertices, was done by Lidický and Pfender [10]. This settled in
the affirmative a conjecture of Erdős [5]. On the other hand, Balogh, Hu, Lidický, and Pfender
[2] studied the problem of maximizing induced 5-cycles, and proved that this is achieved by the
balanced iterated blow-up of a 5-cycle. This confirmed a special case of a conjecture of Pippinger
and Golumbic [24].

The main result of this paper is as follows.

Theorem 1.1. Let k� 3 be an integer. Define

p= 1− 1
k

and λ= 1
10
− 1

2k
+ 1

k2
− 1

k3
+ 2

5k4
. (1.1)

Then

dC5 (p)= λ.

We also have the following stability result. Let the Turán graph Tn
k be the complete k-partite

graph on n vertices with part sizes as equal as possible.
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46 P. Bennett, A. Dudek, B. Lidický and O. Pikhurko

Theorem 1.2. For every integer k� 3 and real δ > 0 there is ε > 0 such that every graph G with
n� 1/ε vertices, at least (p− ε)(n2) edges and at most (λ+ ε)n5 copies of C5 is within edit distance
δn2 from the Turán graph Tn

k , where p and λ are as in (1.1).

Observe that the above theorems (as stated) also hold in the case k= 2 for which dC5 (1/2)=
0. However, their validity in this case easily follows from known standard results. Although the
proofs of Theorems 1.1 and 1.2 are based on the flag algebras framework, their verification does
not require using any SDP solver.

Theorems 1.1 and 1.2 are proved in Sections 2 and 3 respectively. Finally, in Section 4, we
discuss the general edge density and provide an upper bound on dC5 (p) for any p ∈ [0, 1].

2. Proof of the main theorem
2.1 Upper bound
By considering the sequence of graphs Tn

k as n→∞, we get

dC5 (Tn
k )=

[ 1
10 (k)5 + 1

2 (k)4 + 1
2 (k)3

]
(n/k)5

n5
+ o(1),

where (k)� = k(k− 1) · · · (k− �+ 1) is the falling factorial. To justify the numerator, we count the
number of C5 copies with vertices in parts V1,V2,V3,V4,V5 of the partition. These parts may not
all be distinct: for example we may have V1 =V3. However Tn

k has no edges within these parts
and so we know Vi �=Vi+1. We count copies of C5 by grouping them according to how many
distinct parts there are among V1, . . . ,V5. Now there are asymptotically 1

10 (k)5(n/k)
5 copies that

hit 5 different parts (label 5 distinct parts, choose one vertex in each part, and divide by 10 for
overcounting). Also, there are asymptotically 1

2 (k)4(n/k)
5 copies hitting 4 parts, and 1

2 (k)3(n/k)
5

copies hitting 3 parts.
Simplifying, we get that dC5 (Tn

k )= λ+ o(1), which implies the upper bound in Theorem 1.1.

2.2 Lower bound
2.2.1 Preliminaries

The proof of the lower bound in Theorem 1.1 relies on the celebrated flag algebra method intro-
duced by Razborov [25]. Here we briefly discuss the main idea behind this approach, referring
the reader to [25] for all details. Alternatively, our lower bound is rephrased at the beginning of
Section 3 by means of a combinatorial identity (namely (3.2)) whose statement does not use any
flag algebra formalism.

Let (Gn)n∈N be a sequence of graphs, such that order of Gn increases. Such a sequence is called
convergent if, for every fixed graph H, the density of H in Gn converges, that is, for every H there
exists some number φ(H), such that

lim
n→∞ p(H,Gn)= φ(H),

where p(H,G) is the probability that |H| = |V(H)| vertices chosen uniformly at random from
V(G) induce a copy of H. (Here, it will be more convenient to count induced copies of H; see e.g.
equations (5.19)–(5.21) in [13], which show how to switch between induced and non-induced ver-
sions.) Notice that any sequence of graphs whose orders increase has a convergent subsequence.
Thus, without loss of generality we assume Gn is convergent. Note that φ cannot be an arbitrary
function since it must satisfy many obvious identities such as φ(edge)+ φ(non-edge)= 1.

Interestingly, these φ exactly correspond to homomorphisms that we now describe. Denote by
F the set of all graphs and by F� the set of graphs of order �, up to an isomorphism. Let RF be
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the set of all finite formal linear combinations of graphs in F with real coefficients. It comes with
the natural operations of addition and multiplication by a real number. LetK be a linear subspace
generated by all linear combinations

F−
∑
H∈F�

p(F,H) ·H, (2.1)

where � > |F|. Notice that φ evaluated at any element ofK gives 0. Finally, letA beRF factorized
byK. It is possible to definemultiplication onA, which we do in Section 2.2.3. It can be proved that
A is indeed an algebra. Now limits of convergent graph sequences correspond to homomorphism
φ from A to R such that φ(F)� 0 for all F ∈F . Denote the set of all such homomorphisms by
Hom+ (A,R).

Let OPT be the following linear combination, which counts the C5 copies using induced
subgraphs:

OPT= + + + 2 + 2 + 4 + 6 + 12 ,

where the coefficient of each graph is the number of copies of C5 it contains. Thus,
φ( OPT )= 120 lim

n→∞ dC5 (Gn). (2.2)

The factor 120= 5! comes from the fact that p(F,Gn) for F ∈F5 is the number of copies of F
divided by

(n
5
)
whereas our scaling for dC5 was chosen as n−5. Notice that OPT can be written as a

linear combination of all 34 graphs on 5-vertices, where 26 graphs have coefficient 0. Namely,

OPT=
∑
F∈F5

cOPTF F, (2.3)

where the non-zero entries cOPTF are as above.
Our goal is to prove a good lower bound on

min
φ∈Hom+ (A,R)

φ( OPT ),

given that that the edge density is p, that is, we have

φ

( )
= p. (2.4)

For this we find suitable A ∈A, such that φ(A)� 0 for all φ ∈Hom+ (A,R) with φ(K2)= p,
and use it in calculations. In particular, we will use it as

φ( OPT )� φ( OPT )− φ(A)= φ( OPT−A)� c,
where c is the smallest coefficient cF when we express OPT−A as

∑
F∈F� cFF. Note that A may

contain both positive and negative coefficients, and these coefficients combine with coefficients in
OPT.

When p= 1− 1/k for integer k� 3, it is possible to prove the sharp lower bound as above
by considering graphs of order 5 with only one labelled vertex. Similarly to defining the algebra
A and limits of convergent graph sequences, one can define limits of sequences from the set F1

which consists of graphs with exactly one labelled vertex up a label-preserving isomorphism. This
gives an algebraA1 and homomorphisms Hom+ (A1,R). In the following, we depict the labelled
vertex by a square.

Let X be the following column vector:

X= (X1, . . . , X6)T =
(

, , , , ,
)T

. (2.5)
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48 P. Bennett, A. Dudek, B. Lidický and O. Pikhurko

Notice that X is the vector of all graphs on 3 vertices with exactly one labelled vertex (the yellow
square). For isomorphism, the labelled vertex must be preserved but the remaining two vertices
may be swapped. IfM is a positive semidefinite matrix inR6×6, then for every φ1 ∈Hom+ (A1,R)
it holds that

φ1(XTMX)= φ1(XT)Mφ1(X)� 0,

where by φ1(X) we mean the vector that results from applying φ1 to each coordinate of X.
Also, there is a linear operator �·�1:RF1→RF (which, roughly speaking, ‘unlabels’ each F ∈

F1) such that for all φ ∈Hom+ (A,R) we have φ(�XTMX�1)� 0. Furthermore, we have

�XTMX�1 =
∑
F∈F5

cMF · F. (2.6)

See Section 2.2.3 for more details, in particular on how to calculate coefficients cMF .
Also, the relation (2.1) for cliques K2 and K1 gives that respectively K2 =∑

H∈F5 p(K2,H) ·H
and 1=K1 =∑

H∈F5 H. Thus (2.4) can be written as an identity involving densities of 5-vertex
graphs.

Next, we take the sum of equations (2.3), (2.4) multiplied by some α, and φ(�XTMX�1)� 0
expanded using (2.6), and obtain

φ( OPT )� φ( OPT )+ α
(
p− φ

( ))
− φ(�XTMX�1)

= φ
(
OPT+αp− α − �XTMX�1

)

= φ
( ∑
F∈F5

(cOPTF + αp− α · p(K2, F)− cMF ) · F
)

(In Appendix A we provide cOPTF and p(K2, F) for each F ∈F5.) For F ∈F5, define

cF = cOPTF + αp− α · p(K2, F)− cMF . (2.7)

With this notation

φ( OPT )� φ
( ∑
F∈F5

cF · F
)
� min

F∈F5
cF · φ

( ∑
F∈F5

F
)
= min

F∈F5
cF , (2.8)

where cF is a number that depends on the choice of M and α. Let us transfer this back to our
extremal graph problem.

Lemma 2.1. For every p ∈ [0, 1], M� 0 and α ∈R, with cF = cF(p,M, α) as in (2.7), we have

dC5 (p)�
1
120

min
F∈F5

cF .

Proof. Suppose on the contrary we can find an increasing sequence of graphsGn with edge density
p+ o(1) such that d5(Gn) stays strictly below the stated bound. Take a convergent subsequence
and let φ ∈Hom+ (A,R) be its limit. It satisfies (2.4) so the bound in (2.8) applies to φ. However,
this contradicts (2.2). �
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2.2.2 Finding the optimum

Let an integer k� 3 be fixed. Let p and λ be as in (1.1). By Lemma 2.1, in order to finish the proof
of Theorem 1.1, it is enough to present someM� 0 and α ∈R with cF � 5! λ for every F ∈F5. Let

α = 1
k3

(60k3 − 240k2 + 360k− 192).

In order to define the matrixM we define first two matrices A and B as follows:

A=

⎛
⎜⎜⎝
32k2 − 96k+ 96 0 4k2 − 16k

0 10k4 − 30k3 − 8k2 + 96k− 96 −10k4 + 35k3 − 4k2 − 80k+ 96
4k2 − 16k −10k4 + 35k3 − 4k2 − 80k+ 96 10k4 − 40k3 + 24k2 + 64k− 96

⎞
⎟⎟⎠

and

B=

⎛
⎜⎜⎝
k− 1 1 k− 2 0 k− 3 −1
0 2 k− 2 0 2k− 4 −2
0 0 k− 1 −1 2k− 2 −2

⎞
⎟⎟⎠.

It is easy to verify (by checking principal minors) that A is positive definite for any k� 3.
Therefore, the matrix

M= 3
2k4

BTAB (2.9)

is positive semidefinite. In Section 2.2.4 we briefly describe how we determined matrices A and B.
With this choice of M and α, one can verify using for example Maple (see Appendix B) that
coefficients cF satisfy:

c = c = c = c = c = c = c = c = c = c = c = c =
c = c = c = c = c = c = 1

5k4
(60k4 − 300k3 + 600k2 − 600k+ 240)

c = c = c = c = 1
5k4

(66k4 − 300k3 + 600k2 − 600k+ 240)

c = 1
5k4

(68k4 − 300k3 + 600k2 − 600k+ 240)

c = c = c = c = 1
5k4

(64k4 − 300k3 + 600k2 − 600k+ 240)

c = 1
5k4

(65k4 − 300k3 + 600k2 − 600k+ 240)

c = c = c = c = 1
5k4

(62k4 − 300k3 + 600k2 − 600k+ 240)

c = c = 1
5k4

(61k4 − 300k3 + 600k2 − 600k+ 240).

Since the entries only ever disagree in the k4 coefficient, it is easy to see that the smallest cF are
in the first two rows and are equal to 5! λ, as desired. (Recall that this proves the lower bound on
dC5 (p) of Theorem 1.1 by Lemma 2.1.)

2.2.3 Products of graphs and determining cMF coefficients

First, we define the product of unlabelled graphs. Recall that for a graph G we denote |V(G)|
by |G|. Let F1, F2, F in F be such that |F1| + |F2|� |F|. Choose uniformly at random two disjoint
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50 P. Bennett, A. Dudek, B. Lidický and O. Pikhurko

subsets X1 and X2 ofV(F) of sizes |F1| and |F2|, respectively. Denote by p(F1, F2; F) the probability
that F[X1] is isomorphic to F1 and F[X2] is isomorphic to F2. Finally, the product of F1 and F2 is
defined as

F1 × F2 =
∑

F∈F|F1|+|F2|
p(F1, F2; F) · F.

The product can be extended to linear combinations of graphs and gives a multiplication
operation inA.

The product in A1 is defined along the same lines as in A but the intersection of X1 and X2
is exactly the labelled vertex. A more precise definition follows. Let F1, F2, F in F1 such that
|F1| + |F2|� |F| − 1. Choose uniformly at random subsets X1 and X2 of V(F) of sizes |F1| and
|F2|, respectively whose intersection is exactly the one labelled vertex. Denote by p(F1, F2; F) the
probability that F[X1] is isomorphic to F1 and F[X2] is isomorphic to F2, where isomorphism
preserves the labelled vertex. Finally, the product of F1 and F2 is defined as

F1 × F2 =
∑

F∈F|F1|+|F2|−1
p(F1, F2; F) · F.

Next we define the unlabelling operator �·�1:F1→RF . We extend �·�1 to a linear function
RF1→RF which we also call �·�1. Let F ∈F1. Denote by G ∈F the graph obtained from F by
unlabelling the labelled vertex. Let v be a vertex in G chosen uniformly at random. Let q be the
probability that G with labelled v is isomorphic to F. Then

�F�1 = q ·G.
Recall that X is the vector of all 3-vertex labelled graphs from F1:

X= (X1, X2, X3, X4, X5, X6)T =
(

, , , , ,
)T

.

In Appendix A we list all coefficients for products in F1
3 , after unlabelling and multiplying by a

scaling factor of 30 to clear denominators. Then we obtain that

�XTMX�1 =
6∑

i=1

6∑
j=1

Mi,j�Xi × Xj�1 =
∑
F∈F5

cMF · F,

since each �Xi × Xj�1 is a linear combination of graphs in F5.

2.2.4 Guessingmatrices A and B

In this paragraph we describe how we obtained the matrices A and B. First, we used semidefinite
programming to find a matrixM for several small odd values of k. Notice that if (2.8) is applied to
the extremal construction, then the left-hand side is equal to the right-hand side. That means that
all inequalities used are actually equalities. In particular, φ(�XTMX�1)= 0. Since M is a positive
semidefinite matrix, X evaluated on our extremal example (the limit of Tn

k as n→∞) must give
an eigenvector ofM corresponding to the eigenvalue 0. The matrix B was obtained by projecting
onto the space orthogonal to three zero eigenvectors of M. As noted before, we had one zero
eigenvector to start with. By looking at all eigenvectors of M, we managed to guess another zero
eigenvector. We tried projection with the two zero eigenvectors and found the third one in the
projection. After having obtained matrices B, we observed that a suitable A exists even if we set
the coordinate [1, 2] and [2, 1] to 0. With proper scaling of the objective function, we were getting
nice matrices from the CSDP [3] solver with all entries integers. By using the solutions for several
values of k, we calculated a polynomial function of k fitting each entry in matrix A. Finally we
observed that the same matrices A and B also work for even values of k.
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3. Stability
In this section we prove Theorem 1.2. For this purpose it will be convenient to rewrite our lower
bound as an asymptotic identity valid for an arbitrary graph. Fix k� 3. Let p and λ be as in (1.1).
Let the matrixM� 0, α ∈R, and the reals cMF , cOPTF , cF , indexed by F ∈F5, be as previously.

Recall that X= (X1, . . . , X6)T is the vector of 3-vertex rooted graphs defined in (2.5). For a
graph G= (V , E) of order n� 5 and a vertex r ∈V , let Yr be the column vector whose ith com-
ponent is the number of unordered 2-sets {u, v} ⊆V \ {r} such that the induced graph G[{r, u, v}]
rooted at r is isomorphic to Xi. Define

Y = 4
5!

∑
r∈V

YT
r MYr � 0.

Let us argue that

Y =
∑
F∈F5

cMF P(F,G)+O(n4), (3.1)

where for F ∈F� we let P(F,G)=
(n
�

)
p(F,G) be the number of �-sets inducing a copy of F in G.

Indeed, the ith entry of Yr can be written as a double sum 1
2

∑
u∈V

∑
v∈V of the indicator function

that r, u, v are distinct and the graph G[{r, u, v}] when rooted at r is isomorphic to Xi. Using this
representation ofYr and expanding everything, we canwriteY as a sum over all (r, u, v, u′, v′) ∈V5

of some function that depends only on the graph induced by the (multi)set (r, u, v, u′, v′) inside
G. Apart of O(n4) terms when some of the vertices coincide, the remaining ones can be grouped
by the isomorphism type F ∈F5 of G[{r, u, v, u′, v′}]. For F ∈F5, each unordered 5-set spanning
an induced copy of F in G contributes the same amount (depending only on F and M) and the
coefficient cMF was in fact defined by us to be equal to this common value. Thus (3.1) holds.

Likewise, P(K2,G)
(n−2

3
)
and

(n
5
)
can be written as fixed linear combinations of P(F,G) over F ∈

F5. Also, dC5 (G)n5 =
∑

F∈F5 c
OPT
F P(F,G) is the number of 5-cycles in G. Putting it all together,

we obtain the following identity valid for an arbitrary graph G:

dC5 (G) n5 +
α

5! (2P(K2,G)n3 − pn5)− Y +O(n4)=
∑
F∈F5

cFP(F,G), (3.2)

where cF for F ∈F5 was defined to be exactly the contribution of each induced copy of F inG to the
left-hand side while all combinations when some vertices in the underlying 5-fold sum coincide
are absorbed into the error term O(n4).

Note that if we multiply (3.2) by
(n
5
)−1 then the scaled terms in (3.2) will be asymptotically

the same as in (2.8) when n→∞. Since
∑

F∈F5 P(F,G)=
(n
5
)
, the right-hand size of (3.2) can be

lower-bounded by
(n
5
)
minF∈F5 cF , giving the required lower bound in Theorem 1.1 since each cF

is at least 5! λ.
Let us turn to stability. Take any sequence of graphs Gm of strictly increasing orders such that

|E(Gm)|�
(
p− 1

m

)(|Gm|
2

)
and dC5 (Gm)� λ+ 1

m
, for allm ∈N. (3.3)

Observe that if cF >λ for some F ∈F5, then the right-hand side of (3.2) is at least (λ+ (cF −
λ)p(F,G))

(n
5
)
. Thus we have that p(F,Gm)= o(1) as m→∞ for every such F. By looking at the

explicit formulas for cF near the end of Section 2.2.2, we see that there are 16 such graphs. They
are collected into the list L in Figure 1, and are denoted by L1, . . . , L16 in this order.

Let the co-cherry P2 be the complement of the 2-edge path P2, that is, P2 is the graph with 3
vertices and 1 edge. Next, we show that its density in Gm must also be o(1). Note that there are
5-vertex graphs not in the list L that contain the co-cherry. Thus the naive approach does not
work and a slightly more involved argument is needed.
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Figure 1. The listL= (L1, . . . , L16).

Lemma 3.1. For every sequence of graphs Gm as in (3.3), we have that

lim
m→∞ p(P2,Gm)= 0.

Proof. Let m be sufficiently large, G=Gm, V =V(G) and n= |V|. For i ∈ {0, 1, 2}, let Fi be the
(unique) graph of order 4 with i disjoint edges. Let L′ =L∪ {F0, F1, F2}.

Apply the induced removal lemma (see e.g. [1, 4]) to G to destroy all induced graphs in L′
whose density is o(1). Formally, let f = n−1 +max{p(L,Gm) : L ∈L} (and let initially G=Gm). As
long as there is at least one F ∈L′ with 0< p(F,G)� f , change as few as possible adjacencies in G
to destroy all copies of all such F so that, additionally, no graph in L′ absent from G is introduced.
Since f tends to 0 asm→∞ and the above iteration is applied at most |L′| times (in fact, at most
|L′ \L| + 1= 4 times), we change o(n2) edges in total by the induced removal lemma. Also, the
final graphG contains no graph from the listL since the first iteration destroyed all such subgraphs
by our choice of f .

Claim 3.2. G contains no induced F1 (i.e. 4 vertices spanning exactly one edge).

Proof. Take a copy of F1 and add one new vertex x of degree d. If d ∈ {0, 1, 2, 3}, then the sets
of possible obtained graphs up to isomorphism are respectively {L1}, {L2, L5}, {L4, L6, L8}, and
{L7, L9}. We see that each 1-vertex extension of F1 is inL except when d= 4 (i.e.when x is adjacent
to every vertex of F1). This means that for every copy of F1, say on A⊆V , the set A is complete to
V \A in G. It follows that every two distinct induced copies of F1 are vertex-disjoint and thus G
has at most n/4 such copies. This is at most f

(n
4
)
, so G has no copy of F1 at all. �

Claim 3.3. G contains no induced F2 (which is the matching with two edges).

Proof. If we extend a copy of F2 by adding a vertex x of degree d ∈ {0, 1, 2, 3}, then we obtain
graphs in respectively {L5}, {L8}, {L11, L14} and {L15}. Thus the only extension that does not lead
to a graph in L is to connect x to every vertex of F2. This gives that every two distinct induced
copies of F2 in G are vertex-disjoint. Thus we have at most O(n)� f

(n
4
)
copies of F2, that is, none

at all. �

Consider the edgeless 4-vertex graph F0. If we add a vertex x of degree d ∈ {1, 2, 3}, then we get
respectively L1, L2 and L3. The only remaining ways are to have x empty or complete to F0. Now,
consider any copy of F0 in G, say with vertex set A0 ⊆V(G). By above, every vertex outside of A0
is empty or complete to A0. Let A⊇A0 consist of all vertices of G that send no edges to A0. Note
that A is an independent set: if we had an edge xy inside A then x, y plus some two extra vertices
from A0 would span a copy of F1 in G, contradicting Claim 3.2. Moreover, A is complete to V \A.
Indeed, for every pair (a, b) ∈A× (V \A), the subgraph ofG induced by a and some further three
vertices of A0 has no edges; thus the vertex b �∈Amust be complete to it.

It follows that we can find disjoint independent sets Ai, i ∈ I, in V such that each Ai is complete
to V \Ai while every copy of F0 in G is inside one of these sets Ai. Define B=V \ (∪i∈IAi).
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By the definition of B and the above claims, we have that H =G[B] is {F0, F1, F2}-free. This
means that the complement H of H cannot have a (not necessarily induced) 4-cycle C4 because
for any way of filling its diagonals we get F0, F1 or F2 in H. Thus |E(H)| is at most the Turán
function ex (n, C4)=O(n3/2), that is, H is O(n3/2)-close in the edit distance to being a complete
graph. We see that G is O(n3/2)-close to the complete partite graph G′ with parts Ai, i ∈ I, and {x},
x ∈ B. As every co-cherry in G has to contain at least one pair where E(G) and E(G′) differ, G has
at most O(n5/2) co-cherries.

Since the original graph Gm and G differ in o(n2) adjacencies, the co-cherry density in Gm is
o(1), as required. �

Thus, another application of the induced removal lemma gives that we can change o(1)-fraction
of adjacencies inGm andmake it P2-free, that is, complete partite. Thus, in order to finish the proof
of Theorem 1.2, it is enough to argue that each of the k largest parts of Gm has (1/k+ o(1))|Gm|
vertices. We present two proofs of this. The first proof is more direct but longer. The second one
is shorter but assumes some known facts about graphons.

3.1 First proof
We need the following auxiliary result.

Lemma 3.4. Suppose a graph J on n vertices has a subgraph X such that

(i) X has x vertices where ε′n� x� (1− ε′)n and edge density q� 1/2,
(ii) X is complete to V(J) \ X,
(iii) X contains at least 1

2x
4q3 + ε′x4 copies of P4.

Then there exists a graph J′ on n vertices with asymptotically the same edge density as J and

dC5 (J′)� dC5 (J)−
1
2
(ε′)6.

Proof. Note first that conditions (i) and (ii) imply that J is dense since it has at least ε′(1− ε′)n2
edges. We make J′ by replacing X with a X′, which is a random balanced bipartite graph with edge
probability 2q. We will not change the rest of the graph, so J′ − X′ = J − X. With high probability
X′ has edge density asymptotically q and so J′ has asymptotically the same edge density as J. We
will argue that J′ has much fewer copies of C5 than J has, by considering several possible types of
C5 copies.

We will compare the copies according to how they intersect X (for counting copies of C5 in the
graph J) or X′ (in J′). Specifically, since X is complete to the rest of J we have

νC5 (J)=
∑
H

mHνH(X) · νC5−H(J − X),

where the sum is over all induced subgraphs H ⊆ C5, and the coefficient mH is the number of
C5 copies contained in the graph formed by taking a copy of H and a copy of C5 −H with every
possible edge in between. Recall that νH(G) counts the number of (not necessarily induced) copies
of H in G. Similarly, we have

νC5 (J′)=
∑
H

mHνH(X′) · νC5−H(J′ − X′)=
∑
H

mHνH(X′) · νC5−H(J − X),

since J′ − X′ = J − X. So we will compare νH(X) with νH(X′) for each H. Specifically we will
show that νH(X′)� (1+ o(1))νH(X) for each H, and that this inequality holds with some room
for H = P4.
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Some easy cases: when H has no vertices, νH(X)= νH(X′)= 1. When H is a single vertex,
νH(X)= νH(X′)= x. When H is just an edge, νH(X)= (1+ o(1))νH(X′)= (1+ o(1))

(x
2
)
q. When

H has 2 vertices and no edge we have νH(X′)= νH(X)=
(x
2
)
. When H is the graph on 3 vertices

consisting of an edge and an isolated vertex, we have νH(X′)= (1+ o(1))νH(X)= (1+ o(1))x
(x
2
)
q.

When H = P3 (the path of length 2) we have

νP3 (X′)= 2
(
x/2
2

)
x
2
(2q)2 = (1+ o(1))

1
2
x3q2,

which we compare to

νP3 (X)=
∑
v∈X

(|N(v)∩ X|
2

)
� x ·

(
(2q

(x
2
)
)/x

2

)
= (1+ o(1))

1
2
x3q2.

Finally we consider the case H = P4. We have

νP4 (X′)= 2
(
x/2
2

)
· 2

(
x/2
2

)
(2q)3 = (1+ o(1))

1
2
x4q3

which we compare to

νP4 (X)=
1
2
x4q3 + ε′x4.

Taking all possible H into account, we see that

νC5 (J)− νC5 (J′)=
∑
H

[νH(X)− νH(X′)] · νC5−H(J − X)

� [νP4 (X)− νP4 (X′)] · νC5−P4 (J − X)
� (1+ o(1))ε′x4 · (n− x)

>
1
2
(ε′)6n5

and so

dC5 (J′)� dC5 (J)−
1
2
(ε′)6.

Proof of Theorem 1.2. Let Gm be as in (3.3). Let m→∞. By the induced graph removal lemma
and Lemma 3.1 we can eliminate all co-cherries in the graph G=Gm of order n→∞ by adding
or removing at most αn2 edges, for some α = α(ε)→ 0 as ε→ 0. Call this new graph G′, which
has edge density p′, where p− 2α � p′ � p+ 2α. Moreover, G′ is a complete k′-partite graph for
some k′. Say the parts of G′ are X1, . . . , Xk′ . Also, note that since adding (or removing) one edge
to G creates (or destroys) at most n3 copies of C5, we have

dC5 (G)= dC5 (G′)+O(α),
and

dC5 (p)= dC5 (p′)+O(α)
(recall that we use big-O notation to replace quantities that are bounded in absolute value, and the
quantity being replaced may be negative). Now

dC5 (G′)� dC5 (G)+O(α)� dC5 (p)+ ε+O(α)� dC5 (p′)+O(ε+ α) (3.4)
and so G′ has nearly the minimum C5-density among graphs with edge density p′.

In the following, we will need a parameter β = β(ε)= (ε+ α(ε))1/100.

Claim 3.5. We are done unless we have the following. For any i �= j, |Xi| + |Xj|� (1− β)n.
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Proof. Without loss of generality, suppose for contradiction that |X1| + |X2|� (1− β)n, so the
number of edges in G′ is at most(

n
2

)
−

(|X1|
2

)
−

(|X2|
2

)
�

(
n
2

)
− 2

(
((1− β)n)/2

2

)

� 1
2
n2 − 1

4
(1− β)2n2

=
(
1
4
+O(β)

)
n2

and so we must have k= 2 since throughout the proof we assume ε (and therefore α and β) are
sufficiently small. Now if ||X1| − |X2||>β1/3n, say without loss of generality |X1|> |X2| + β1/3n
then the number of edges in G′ is at most

|X1||X2| + βn(|X1| + |X2|)+
(
βn
2

)
�

(
n
2
+ 1

2
β1/3n

)(
n
2
− 1

2
β1/3n

)
+ βn2 +

(
βn
2

)

=
(
1
4
− 1

4
β2/3 +O(β)

)
n2,

which is a contradiction for small ε since G′ has at least
(n
2
)
p− αn2 edges (where p= 1/2 since

k= 2) and 1
4β

2/3 +O(β)>α for small ε. To summarize, G′ is a complete partite graph that has
two large parts X1, X2 which differ in size by at most β1/3n, and together the rest of the parts make
up at most βn vertices. It is easy to see then that G′ can be changed into a balanced complete
bipartite graph by editing O(β1/3n2) edges. �

Thus, we henceforth assume that for any i �= j, |Xi| + |Xj|� (1− β)n.

Claim 3.6. For all i, j, if |Xi|, |Xj|� βn, then ||Xi| − |Xj||� βn.

Proof. Suppose for contradiction that there are two parts (without loss of generality say X1, X2)
such that |X1|, |X2|� βn and ||X1| − |X2||>βn. We will derive a contradiction by arguing thatG′
can be modified by Lemma 3.4 to form another graph G∗ of asymptotically the same edge density
but with significantly smaller C5-density than G′.

We apply Lemma 3.4 with J =G′, X= X1 ∪ X2, ε′ = 1
2β

6 and

q= x1x2(x
2
) = (1+ o(1))

2x1x2
x2

,

where |Xi| = xi and x= x1 + x2. Let us check the conditions of the lemma. Clearly we have

βn� x� (1− β)n,
and X is complete to the rest of the graph (since X is composed of two parts of a complete partite
graph). Finally, the number of copies of P4 in X is

νP4 (X)= 2
(
x1
2

)
· 2

(
x2
2

)
= (1+ o(1))x21x

2
2,

which we compare to

1
2
x4q3 = (1+ o(1))

1
2
x4

(
2x1x2
x2

)3
= (1+ o(1))

4x31x
3
2

x2
.
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From here we can see that

νP4 (X)−
1
2
x4q3 � (1+ o(1))

(
x21x

2
2 −

4x31x
3
2

x2

)

� 1
2
· x

2
1x

2
2

x2
(x2 − 4x1x2)

= 1
2
· x

2
1x

2
2

x2
(x1 − x2)2

� 1
2
(βn)4

n2
(βn)2

= 1
2
β6n4

� 1
2
β6x4

and so Lemma 3.4 applies, implying that J =G′ must have C5-density at least

dC5 (p′)+
1
2

(
1
2
β6

)6
= dC5 (p′)+

1
128

β36.

But then from (3.4), we have

dC5 (p′)+
1
128

β36 � dC5 (G′)� dC5 (p′)+O(ε+ α),
a contradiction for small ε since β = (ε+ α)1/100. �

Without loss of generality say that |X1|, . . . , |X�|� βn and |Xi|<βn for any i> �. By
Claim 3.6, there is some value x such that |Xi| ∈ [(x− β)n, (x+ β)n] for 1� i� �. Then the
number of edges in G′ is at most(

n
2

)
−

∑ (|Xi|
2

)
�

(
n
2

)
− �

(
(x− β)n

2

)
= 1

2
n2(1− �x2 +O(β)).

We will now show a lower bound matching the above upper bound. Since for any numbers a� b
and δ > 0, we have (a+ δ)2 + (b− δ)2 > a2 + b2, the following holds. Since

∑
i>� |Xi|� n, and

for i> � we have |Xi|� βn, the maximum possible value of
∑

i>� |Xi|2 occurs when all the terms
are either 0 or (βn)2, meaning that the number of positive terms would be at most 1/β , so we have∑

i>�
|Xi|2 � 1

β
· (βn)2 = βn2,

the number of edges in G′ is then at least(
n
2

)
−

∑ (|Xi|
2

)
�

(
n
2

)
− �

(
(x+ β)n

2

)
− 1

2
βn2 = 1

2
n2(1− �x2 +O(β)).

But we know G′ has edge density
p′ = 1− 1

k +O(α)= 1− �x2 +O(β),
so we get

x= 1√
k�
+O(β)

and in particular �� k since otherwise
|X1| + · · · + |X�|� (�x+O(β))n> n.
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To summarize, at this point we know that the graph must have �� k ‘large’ parts which each have
about (1/

√
k�)n vertices, and the rest of the parts are ‘small’ and each have at most βn vertices.

We would like to show that �= k, so assume for contradiction that � < k.

Claim 3.7.
∑

i>� |Xi|>βn.

Proof. Observe that∑
i>�
|Xi| = n−

∑
i��
|Xi| = n− �

(
1√
k�
+O(β)

)
n=

(
1−
√
�√
k
+O(β)

)
n>βn

since � < k and we may assume β > 0 is arbitrarily small. �

Now we will use Lemma 3.4 on J =G′ and X being X1 together with several of the small Xi,
which will finish the proof. Recall we have |X1| of size(

1√
kl
+O(β)

)
n.

We know |Xi|<βn for all i> � and at the same time | ∪i>� Xi|>βn. Hence there exists an integer
z such that βn� | ∪z�i>� Xi|� 2βn. Let Y =∪z�i>�Xi. In order to apply Lemma 3.4 to X= X1 ∪
Y , we need to count the number of copies of P4 in X, the other assumptions of Lemma 3.4 are
clearly satisfied. Notice that νP4 (X) is bounded from below by the number of copies of P4 that
alternate vertices in X1 and in Y , which gives

νP4 (X)� |X1|2|Y|2 � |X1|2(βn)2 = β
2

kl
n4 +O(β3)n4. (3.5)

Denote |X| by x. Notice that

x= |X1| + |Y| =
(

1√
kl
+O(β)

)
n.

Let e be the number of edges inX. It can be bounded from above by pretending thatY is a complete
graph, which gives

e� |X1| · |Y| + |Y|2/2� 2βn2√
kl
+O(β2)n2.

This gives

q= 2e
x2

� 4β
√
kl+O(β2).

Hence X satisfies Lemma 3.4(iii) with ε′ = β2kl/2, since
1
2
x4q3 � 32β3√

kl
n4 +O(β4)n4

is significantly smaller than νP4 (X) (see (3.5)) and

ε′x4 � β2

2kl
n4 +O(β4)n4

is about 1
2νP4 (X). Hence Lemma 3.4 implies

dC5 (G′)� dC5 (p′)+
β12(kl)6

27
> dC5 (p′)+ β19.
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Combining this with (3.4) gives the final contradiction

dC5 (p′)+ β19 � dC5 (G′)� dC5 (p′)+O(ε+ α)
for a small ε since β = (ε+ α)1/100.

Summarizing, we just showed that G can be transformed into the Turán graph Tk
n by adding or

deleting at most o(n2) edges.

3.2 Second proof
Here we use some notions related to graphons. An introduction to graphons and further details
can be found in the excellent book by Lovász [13]. In general, a graphon is a quadruple Q=
(�, B,μ,W), where (�, B,μ) is a standard probability space andW :�×�→ [0, 1] is a symmet-
ric measurable function; see [13, Section 13.1]. For a graph F on [k], its induced homomorphism
density in Q is

tind(F,Q)=
∫
�k

∏
ij∈E(F)

W(xi, xj)
∏

ij∈E(F)
(1−W(xi, xj)) dμ(x1) . . . dμ(xk).

Here we identify two graphons Q and Q′ if tind(F,Q)= tind(F,Q′) for every graph F, calling them
equivalent.

The relevance of graphons comes from the result of Lovász and Szegedy [15] that positive
homomorphisms φ: Hom+ (A,R)→R are in one-to-one correspondence with graphons Q (up
to equivalence) so that, for every graph F, we have φ(F)= p(F,Q), where we let

p(F,Q)= |F|!
| aut (F)| tind(F,Q)

with aut (F) being the group of automorphisms of F. Also, let

dC5 (Q)=
1
5!

∑
F∈F5

cOPTF p(F,Q).

For any graph G= (V , E) there is a corresponding graphon QG = (V , 2V ,μ,A), where μ is
the uniform measure and A :V ×V→{0, 1} is the adjacency function of G. Then, for example,
tind(F,QG) is the probability that a uniform random map f :V(F)→V(G) is an induced homo-
morphism, that is, for all i, j ∈V(F), {i, j} ∈ E(F) if and only if {f (i), f (j)} ∈ E(G). We say that a
sequence of graphons Qn converges to Q if, for every graph F, we have limn→∞ tind(F,Qn)=
tind(F,Q). In particular, if Qn =QGn for some increasing sequence of graphs Gn, then this gives
the same convergence of graphs that we used.

Since, by Lemma 3.1, we will be seeing only the limits of (almost) complete partite graphs,
the following more restrictive class P of ‘complete partite’ graphons will suffice for our purposes.
Namely, from now on, we fix� to be the set {0, 1, 2, . . .} of non-negative integers with the discrete
topology (thus all subsets of � or �2 are measurable) and fix W(i, j) to be 0 if i= j� 1 and be 1
otherwise (i.e. if i �= j or if i= j= 0). Only the measure μ will vary, and the measures that we
consider are as follows. Let

R=
{
ρ ∈ [0, 1]N : ρ1 � ρ2 � · · · ,

∞∑
i=1

ρi � 1
}
.

For ρ = (ρ1, ρ2, . . . ) ∈R, define the probability measure μρ on (�, 2�) by μρ({i})= ρi for i� 1.
Thus μρ({0})= ρ0, where ρ0 is always a shorthand for 1−∑∞

i=1 ρi (but is not an entry of the
vector ρ = (ρ1, ρ2, . . . )). Also, define

Pρ = (�, 2�,μρ ,W), for ρ ∈R
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and let P = {Pρ : ρ ∈R} consist of all graphons that arise in this way.
For example, a complete partite graph G gives a graphon PG ∈P as follows. Order the parts

V1, . . . ,Vs ofG non-increasingly by their size, let ρG = (|V1|/|G|, . . . , |Vs|/|G|, 0, 0, . . . ), and take
PG = (�, 2�,μρG ,W). Since all vertices inside a part Vi are twins in G, we have that tind(F,QG)=
tind(F, PG) for every F ∈F . Thus QG and PG are equivalent graphons.

One should think of Pρ as the limit of complete partite graphs where, for i� 1, ρi is the fraction
of vertices in the ith largest part while ρ0 is the total fraction of vertices in parts of relative size o(1).

Lemma 3.8. If a sequence of vectors ρn ∈R converges to ρ ∈ [0, 1]N in the product topology (that
is, pointwise), then ρ ∈R and the corresponding graphons Pρn converge to Pρ .

Proof. If
∑∞

i=1 ρi > 1, then
∑m

i=1 ρi > 1 for some m and thus
∑m

i=1 ρn,i > 1 for sufficiently large
n, a contradiction. Thus ρ ∈R.

We have to show that the graphons Pn = (�, 2�,μn,W) converge to Pρ , whereμn =μρn . Take
any F ∈F and ε > 0. Let k= |F| and fix an integerm> 3

(k
2
)
/ε.

For any Q= (�, 2�,μ,W) ∈P , define Q′ = (�, 2�,μ′,W) ∈P , where μ′ is the push-forward
of the measure μ under the map that sends each i>m to 0 and is the identity otherwise. (In
theR-domain, this corresponds to truncating x ∈R to x′ = (x1, . . . , xm, 0, . . . ) ∈R.) Let us show
that

|tind(F,Q)− tind(F,Q′)|� ε

3
, for every Q ∈P . (3.6)

This inequality becomes more obvious if we allow general graphons and observe that the graphon
Q′ is equivalent to (�, 2�,μ,W′), whereW′(i, j) is defined to be 0 if 1� i= j�m and 1 otherwise.
Thus when we pass fromW toW′ on the same probability space (�, 2�,μ), then for every i ∈�
the measure of j withW(i, j) �=W′(i, j) is always at most

1
m+ 1

� ε

3

(
k
2

)
.

By Tonelli’s theorem, this also upper-bounds the μ2-measure of the set Z of pairs in�2 whereW
and W′ differ. Now, tind(F, ·) is an integral of a [0, 1]-valued function over �k and, by the union
bound, the probability that some pair hits Z is at most(

k
2

)
μ2(Z)� ε

3
,

giving the desired.
Note that μ′n({i})=μn({i}) converges to μ′ρ({i})=μρ({i}) for each i ∈ [m]. It follows that

μ′n({0}) converges to μ′ρ({0}), since the support of probability measures μ′ρ and any μ′n is a subset
of {0} ∪ [m]. For such measures tind(F, ·) is a polynomial (and thus continuous) function of the
measures of singletons 0, . . . ,m. Thus, for all large n, we have that |tind(F, P′n)− tind(F, P′ρ)|� ε/3;
then it holds by (3.6) that |tind(F, Pn)− tind(F, Pρ)|� ε. Since ε > 0 and F were arbitrary, Pn→ Pρ
as required. �

Remark. Using some standards facts about graphons, one can prove the converse implication of
Lemma 3.8 (namely that the graphon convergence Pρn→ Pρ implies that ρn→ ρ); see [11] where
the space P is studied in more detail.

Note that the limit of the Turán graphs Tk
n as n→∞ is QKk (or, equivalently, Pρ for ρ =

(1/k, . . . , 1/k, 0, . . . ) ∈R).

Lemma 3.9. For every k� 3, every sequence of graphs as in (3.3) converges to QKk .
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Proof. Let us first show that (Gn)∞n=1 has a subsequence convergent toQKk . By Lemma 3.1 and the
induced removal lemma, we can make each Gn complete partite, without changing the conver-
gence of any subsequence. Recall that ρGn ∈R is the vector encoding the part ratios of Gn. Since
the product space [0, 1]N is compact, some subsequence of ρGn ∈ [0, 1]N converges to some ρ. By
Lemma 3.8, we have that ρ ∈R and the corresponding subsequence of graphs Gn converges to
Q= Pρ . Thus the graphon Q satisfies that p(K2,Q)= p and dC5 (Q)= λ.

The identity in (3.2) can be rewritten as an identity valid for every graphon. Since we need to
analyse it only for Q, let us state a version that uses the (very special) structure of graphons in P .
We need a few definitions first.

For a graph F ∈F1 on [k] rooted at 1 and j ∈�, define the rooted density of F in (Q, j) as

tind(F, (Q, j))=
∑
f

k∏
i=2

ρf (i),

where f in the sum ranges over all maps V(F)→� such that f (1)= j and, for all distinct u, v ∈
V(F), we have that W(f (u), f (v))= 1 if and only if {u, v} ∈ E(F). Equivalently, this is the limit as
n→∞ of the probability of the following event E . Suppose we choose k− 1 independent uniform
vertices in Gn together with another vertex we call the root which we make adjacent to everybody
else if j= 0 or Gn has fewer than j parts, and otherwise we put the root in the jth largest part of Gn.
Thenwe let E be the event that these chosen vertices together with the root induce a vertex-labelled
homomorphic copy of F. For example, if H ∈F is the unrooted copy of F, then

tind(H,Q)=
∞∑
j=0

tind(F, (Q, j)) ρj. (3.7)

The version for unlabelled non-roots is

p(F, (Q, j))= (k− 1)!
| aut (F)| tind(F, (Q, j)),

where aut (F) is the group of root-preserving automorphisms of F. We also define a column vector

Yj = (p(X1, (Q, j)), . . . , p(X6, (Q, j)))T ∈R6,

where X= (X1, . . . , X6)T was defined in (2.5). With this notation, the limit version of (3.2) is

5!dC5 (Q)−
∑
F∈F5

cFp(F,Q)+ α(p(K2,Q)− p)=
∞∑
j=0

YT
j MYj ρj. (3.8)

Recall that each cF in (3.8) is at least 5!λ and that p(K2,Q)= p for our Q (which is the limit of
some Gn); thus the left-hand size of (3.8) is non-positive. Also, recall that M� 0; thus xTMx� 0
for every x ∈R6 with equality if and only ifMx= 0. As the 3× 3matrixA in the factorization (2.9)
is non-singular, the null-spaceN ofM is the same as that of B. Calculations (see e.g. theMaple code
in Appendix B) show that the three-dimensional vector space N can be spanned by z1, z2, z3 ∈R6

where ⎛
⎜⎜⎜⎝
zT1
zT2
zT3

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝
1 0 0 2(k− 1) k− 1 k2 − 3 k+ 2

0 1 0 −2 0 1

0 0 1 k− 1
k− 2
2

k2 − 3k+ 2
2

⎞
⎟⎟⎟⎟⎠. (3.9)

By the previous paragraph, Yj ∈R6 belongs toN for every j ∈�with ρj > 0. SinceN is a (finite-
dimensional and thus closed) linear subspace, it also contains the mean Y =∑∞

j=0 Yj ρj. By (3.7),
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we have that, in particular, Y2 = tind(P2,Q) and Y3 = 1
2 tind(P2,Q) are both 0. Since the entries in

each Yj are non-negative, we conclude that Yj has its second and third coordinates zero for every
j ∈� with ρj > 0. The row-reduced matrix in (3.9) shows that such Yj must be collinear to z1.
Since the sum of entries of Yj is 1, we have Yj = (1/k2)z1. In particular, its first coordinate is 1/k2.
On the other hand, it is p(X1, (Q, j)) which is the density of K3 rooted at j in Q, that is, it is ρ2j if
j� 1 and 0 if j= 0. Thus ρ0 = 0 and ρj = 1/k for every j in the support of μ, so indeed Q=QKk is
the limit of Turán graphs.

Finally, if we assume on the contrary to the lemma that the whole sequence (Gn)∞n=1 does
not converge to QKk , then by the compactness of the space of all graphons, some subsequence
converges to a graphon non-equivalent to QKk . But then this violates the first claim of the
proof. �

Second proof of Theorem 1.2. Lemma 3.9 and the fact that each graphon is the limit of some
sequence of finite graphs imply that the limit version of the C5-minimization problem has the
unique solution QKk whose functionW, moreover, happens to be {0, 1}-valued. These are exactly
the assumptions of [21, Theorem 15] which directly gives the required stability property.

In order to give the reader some idea of what is going on, let us slightly unfold the proof of [21,
Theorem 15] for this particular case. Suppose on the contrary that, for some integer k� 3 and δ >
0, a sequence Gn of graphs as in (3.3) violates the stability property. By passing to a subsequence,
it converges to some graphon Q with p(K2,Q)= p and dC5 (Q)= λ. By Lemma 3.9, we can assume
that Q=QKk . While the convergence of Gn to some graphon does not identify Gn within edit
distance o(|Gn|2) in general, it does if the function W of the graphon assumes only values 0 and
1; see [16, Lemma 2.9] or [21, Theorem 17]. Thus, the convergence Gn→QKk implies that Gn is
o(|Gn|2)-close to T|Gn|

k in the edit distance, contradicting our assumption.

Another possible derivation of Theorem 1.2 from Lemma 3.9 is to use the known properties of
the so-called cut-distance via the argument in [22, page 146], where the description of all extremal
graphons for the triangle-minimization problem was used to describe all almost extremal graphs.

4. Remarks on the case p �= 1− 1/k
Our general upper bound construction is as follows. Suppose that p is a constant satisfying
1− 1/k< p< 1− (1/k+ 1). Partition the vertices into k− 1 sets X1, . . . , Xk−1 of size xn and one
more set Y of size yn. Each Xi is an independent set. For 1� i �= j� k− 1 we have that Xi is com-
plete to Xj. Y is also complete to each Xi. Finally, G[Y] is any graph such that for some parameter
0<ρ < 1/2 we have

(i) G[Y] has asymptotically 1
2y

2n2ρ edges, 1
2y

3n3ρ2 paths of length 2 (that means on 3
vertices), and 1

2y
4n4ρ3 paths of length 3;

(ii) G[Y] has o(n5) copies of C5.

(See the end of this subsection for discussion on which graphs are suitable for G[Y].) We assume

(k− 1)x+ y= 1

so we have a total of n vertices. The edge density in this construction is(k−1
2

)
(xn)2 + (k− 1)(xn)(yn)+ (1/2+ o(1))y2n2ρ(n

2
) ,
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which tends to

g(x, y, ρ)= (k− 1)2x2 + 2(k− 1)xy+ ρy2
as n→∞. So we also assume that the parameters x, y, ρ satisfy g(x, y, ρ)= p.

Now we consider the ratio

f (x, y, ρ)= lim
n→∞

νG(C5)
n5

.

We claim that

f (x, y, ρ)=
[
1
10

(k− 1)5 + 1
2
(k− 1)4 + 1

2
(k− 1)3

]
x5

+
[
1
2
(k− 1)4 + 3

2
(k− 1)3 + 1

2
(k− 1)2

]
x4y

+
[(

1
2
+ 1

2
ρ

)
(k− 1)3 +

(
1+ 1

2
ρ

)
(k− 1)2

]
x3y2

+
[(

1
2
ρ + 1

2
ρ2

)
(k− 1)2 + 1

2
ρ(k− 1)

]
x2y3

+ 1
2
ρ3(k− 1)xy4.

Note that we have grouped the terms of f (x, y, ρ) according to powers of x and y, and then accord-
ing to falling factorials of (k− 1). To understand our formula, it helps to think of the powers of x, y
as specifying how many vertices come from sets of size xn, yn, and the falling factorial (k− 1) as
specifying howmany distinct sets of size xn are involved. For example, the first term 1

10 (k− 1)5 x5

is there because there are 1
10 (k− 1)5(xn)5 many copies of C5 having vertices v1, . . . , v5 all in dif-

ferent parts of size xn. Now let us justify a more complicated term like say the second term in the
third line, (1+ 1

2ρ)(k− 1)2 x3y2. This term counts the copies of C5 that have vertices v1, . . . , v5
such that v1 and v2 come from Y , v3 and v4 are in the same set of size xn, and v5 is in some
other set of size xn (and v1, . . . , v5 may be in any order on the cycle). The case where v1 and
v2 are consecutive in the cycle contributes 1

2 (k− 1)2ρ(yn)2(xn)3, and the other case contributes
(k− 1)2(yn)2(xn)3.

Now for a given integer k� 2 and a real number 1− 1/k< p< 1− 1/(k+ 1) we define an
optimization problem (P):

minimize f (x, y, ρ)

subject to (k− 1)x+ y= 1,

g(x, y, ρ)= p,

x, y� 0.

Let us denote its solution by fmin(p)= f (x0, y0, ρ0). Clearly, dC5 (p)� fmin(p). For some certain val-
ues of k and p we verified that 120 · fmin(p) numerically matches the lower bound on dC5 (p) given
by the flag algebras. In particular, when we calculated with unlabelled flags of order �, we were get-
ting numerically matching bounds for p� 1− 1/(�− 2) and we observed a gap in the bounds for
p> 1− 1/(�− 2) different from Turán densities. Since computer calculations can be performed
with current computers in a reasonable time only for �� 8, a simple straightforward use of com-
puter is unlikely to provide a numerical match of dC5 (p) and fmin(p) for all p. Unfortunately, we
were unable to convert the numerical match to a formal proof. Themain problem is that (P) has no
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(a) (b)

(c)

Figure 2. (a) A graph of fmin(p) based on numerical calculations. Blue points correspond to the Turán densities (i.e.
p= 1− 1/k). (b) Secant lines between Turán densities. (c) A graph of fmin(p)− L(p).

closed solution. For example, for k= 2 and 1/2< p< 2/3 we can plug into the objective function
y= 1− x and ρ = (p− x2 − 2xy)/y2 obtaining

f (2, x, 1− x, (p− x2 − 2xy)/y2)= x(2x2 − 2x+ p)(3x4 − 5x3 + (1+ 4p)x2 + (1− 4p)x+ p2)
2(x− 1)2

.

Now it is not difficult to show that there exists a local minimum for some 1/3< x< 1/2.
Unfortunately, it looks like this minimum can be only found numerically. There might be a
different parametrization of the problem that would make it possible to solve (P) and formally
show a match with flag algebra calculations for some range of p. In Figure 2 we present the shape
of fmin(p). We conjecture that dC5 (p)= fmin(p) for any p.

We now address what graphs are suitable for G[Y], that is, what graphs satisfy (i) and (ii).
Note first that some such choice of G[Y] exists, for example it can be a random bipartite graph
with two parts of size 1

2yn and edge probability 2ρ. Now we claim that G[Y] satisfies (i) if and
only if G[Y] is almost ynρ-regular, or more formally, all but o(n) vertices in G[Y] have degree
(1+ o(1))ynρ. Indeed, if G[Y] is almost ynρ-regular then it is easy to verify the edge and path
counts in (i). Conversely, suppose (i) holds, and let the random variable Z represent the degree
of a random vertex in G[Y]. Then we have E[Z]= (1+ o(1))ynρ and since

∑
v∈Y

(deg (v)
2

)
is the

number of paths of length 2 we can calculate
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E[Z2]= 1
yn

∑
v∈V(Y)

deg (v)2 = 1
yn
· 2(1+ o(1))

1
2
y3n3ρ2 = (1+ o(1))y2n2ρ2 = (1+ o(1))E[Z]2,

so Z is concentrated by Chebyshev’s inequality (see e.g. Lemma 20.3 in [7]). In other words, G[Y]
is almost ynρ-regular.

We believe that we have described all almost optimal graphs. Specifically, we believe that any
graph with edge density p and C5-density dC5 (p)+ o(1) can be transformed by adding or deleting
at most o(n2) edges into a graph with a vertex partition X1, . . . , Xk−1, Y where |Xi| = xn, |Y| = yn,
all Xi are independent, all Xi and Y are complete to each other, and G[Y] is ynρ-regular where
x, y, ρ are a solution to the optimization problem (P).
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Appendix B
This Maple code computes cF coefficients. Matrices A, B andM are defined in Section 2.2.2. X is a
matrix of size 21× 34 and it is defined in Appendix A (rows correspond to �Xi × Xj�1). Vectors
cFOPT, pF, cFM and cF (each of size 34) correspond to cOPTF , p(K2, F), cMF and cF , respectively.
Constant a corresponds to α.

restart:
with(LinearAlgebra):
A := Matrix([[32*k^2-96*k+96, 0, 4*k^2-16*k],
[0, 10*k^4-30*k^3-8*k^2+96*k-96, -10*k^4+35*k^3-4*k^2-80*k+96],
[4*k^2-16*k, -10*k^4+35*k^3-4*k^2-80*k+96, 10*k^4-40*k^3+24*k^2+64*k-96]]):
B := Matrix([[k-1, 1, k-2, 0, k-3, -1],
[0, 2, k-2, 0, 2*k-4, -2],
[0, 0, k-1, -1, 2*k-2, -2]]):
M:= (3/(2*k^4))*Matrix(Multiply(Transpose(B), Multiply(A, B))):
X:=(1/30)*Matrix([[30,12,4,0,0,0,4,2,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,3,4,3,0,6,0,1,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,6,4,3,0,0,8,2,0,6,2,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,2,6,12,0,0,2,2,0,3,4,0,0,0,2,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,2,0,0,1,0,4,0,1,0,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,3,0,0,2,0,0,2,0,2,0,1,0,2,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,2,2,2,0,0,0,4,4,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,4,2,1,4,2,0,0,0,2,2,0,0,0,0,0,6,2,1,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,2,2,2,0,0,2,2,2,2,0,0,0,0,1,2,3,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,0,1,0,0,0,0,0,1,0,0,0,5,2,0,1,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,2,1,0,4,0,1,2,0,1,0,0,0],
[0,0,4,0,0,12,0,4,4,4,0,0,0,0,6,2,0,0,0,0,0,12,4,0,0,0,10,2,0,0,0,0,0,0],
[0,0,0,0,0,0,0,2,2,0,2,4,8,4,2,0,4,2,0,0,0,0,4,2,0,8,0,2,2,0,0,0,0,0],
[0,0,0,3,0,0,0,0,2,0,2,0,0,2,0,2,1,0,0,0,0,0,2,2,0,0,0,2,0,2,0,0,0,0],
[0,0,0,0,0,0,0,0,1,0,0,0,0,4,0,2,0,2,0,0,12,0,0,3,6,0,0,0,2,0,2,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,4,4,12,12,0,0,0,0,0,0,10,6,4,4,4,0,0,0],
[0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,2,2,1,6,0,0,0,0,2,0,0,0,2,2,4,0,4,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,0,0,2,2,6,4,8,6,0],
[0,0,0,0,6,0,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,0,0,4,0,0,2,0,0,2,0,0],
[0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,2,0,6,0,0,0,0,3,0,0,0,1,0,4,0,3,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,2,0,4,4,12,30]]):
cFM := Vector(34):
k_ind := 0:
printlevel := 2:
for i to 6 do

for j from i to 6 do
k_ind := k_ind+1;
if i = j then cFM := cFM+M(i, j)*Transpose(Row(X, k_ind));

else cFM := cFM+2*M(i, j)*Transpose(Row(X,k_ind));
end if;

end do;
end do:
cFOPT := Vector([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,4,6,12]):
pF := (1/10)*Vector([0,1,2,3,4,3,2,3,4,3,4,5,4,5,4,5,5,6,6,7,6,4,5,6,7,6,5,6,7,7,8,8,9,10]):
a := (1/(k^3))*(60*k^3 - 240*k^2 + 360*k - 192):
cF := Vector(34):
for i to 34 do

cF(i) := cFOPT(i)-a*pF(i)-cFM(i)+(k-1)*a/k
end do:
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for i to 34 do
printf("5*k^4*cF(%d) = %s\n", i, convert(expand(5*k^4*cF(i)), string))

end do:
kernel := NullSpace(B):
kernelMatrix := Matrix(convert(kernel, list)):
ReducedRowEchelonForm(Transpose(kernelMatrix))
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