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Abstract

Maker and Breaker alternatively select 1 andq previously unclaimed elements of a given matroid
M. Maker wins if he claims all elements of some circuit ofM. We solvethis game for anyM andq,
including the description of winning strategies. In a special case when the matroidM is defined by
a submodular functionf , we find the rank formula, which allows us to express our solution in terms
of f . The resultis applied to positional gameson graphs in which, e.g., Maker tries to create a cycle
or where Maker’s aim is to obtain a subgraph of given integer density.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let E be a finite set andH ⊆ 2E. In the Maker–BreakergameG(E,H, 1, q) two
players, Maker and Breaker, alternately select respectively 1 andq (q ≥ 0) previously
unclaimed elements ofE until all the elements have beenclaimed. Maker wins if and only
if in the final position there isY ∈ H such that every element ofY has been selected by
Maker.

The rules of the gameG∗(E,H, q, 1) are the same except that it is Breaker who starts
the game. Throughout the paper we use the convention that a star in the notation of a game
means that Breaker is the first player; the first and the second numerical parameters of the
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game describe the number of elements selected by, respectively, the first and the second
player. For clarity of language, we refer to Maker as “he” and to Breaker as “she”.

We study Maker–Breaker games in whichE consists of elements of a given matroidM
andH is the family ofM-circuits. We recall basic definitions and facts related to matroids
in Section 2.

Games on matroids were first proposed, to the best of our knowledge, by Lehman [10]
who solved the Shannon Switching Game by using the cycle matroid. His game is related
to but different from ours.

Hamidoune and Las Vergnas [8] observed that Lehman’s strategies, when appropriately
modified, solve unbiased (i.e.q = 1) games on matroids, in which Maker’s aim is to claim
a base of given matroidM. Let usdenote such abase gameby B(M, 1, 1). The authors
formulated conditions onM sufficient and necessary for the existence of a winning strategy
for Breaker and defined effective strategies for the players.

They also pointed out that this solution implies the outcome of the unbiasedcircuit
gameC(M, 1, 1), where Maker’s aim is to claim a circuit of the matroidM. In fact, circuit
and base games are in a sense dual to each other, as we explain inSection 3.

In Section 3we present the solution of the biased circuit gameC(M, 1, q) where
Breaker is allowedq ≥ 1 edges per move. Also, we settleC∗(M, q, 1), the version where
Breaker starts the game. This solves the corresponding dual base games as well.

In Section 4 we study the matroidM f defined by a submodular and increasing
function f : 2E → Z. Such matroids, introduced by Edmonds and Rota [5], have
been systematically studied (Perfect and Pym [14], Nguyen [11, 12], Dawson [3]), but
rather under the additional assumption thatf (∅) = 0. However, quite a few interesting
combinatorial games correspond to functions withf (∅) �= 0. Motivated by this, we
establish some properties ofM f for such generalf . Our generalLemma 4, whichseems
to be a useful tool for studying such matroids, allowed us to determine in terms off
the threshold of the gameC(M, 1, q), i.e. thesmallestq such that Breaker has a winning
strategy.

In Section 5, we presentsome consequences of the results fromSections 3 and 4,
applied to games played on graphs and hypergraphs. Among others, we consider the biased
cycle games, where the players select edges of a graphG and Maker tries to build a cycle,
and thedensity games, in which Maker wants to obtain a subgraph of given density.

Finally, we discuss the algorithmic aspect of the strategies given by our solution of the
circuit games.

2. Matroids: definitions and notation

For an introduction to matroid theory we refer the reader to the texts by Welsh [17] and
Oxley [13]. Here we point out our notation which follows that of Oxley [13]. Some other
notions are introduced in the text as we go along.

A matroid M is a pair(E,I), whereI is anon-empty family of subsets of a finite setE,
which ishereditary, that is

A ∈ I, B ⊆ A ⇒ B ∈ I, (1)
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and satisfies the followingindependence augmentation axiom:

I , J ∈ I, |I | > |J| ⇒ ∃x∈I \J J ∪ {x} ∈ I. (2)

We refer to elements ofE aselementsof the matroid.

Sets inI are calledindependent; sets in 2E\I are calleddependent. Everyone-element
dependent set is called aloop. A circuit is a minimal (in the sense of inclusion) dependent
set. The set of all circuits of a matroidM we denote byC(M). A baseof the matroid is a
maximal independent set. It follows from (2) that for anyX ⊆ E all maximal independent
subsets ofX have the same cardinality. This cardinality, called therankof X, is denoted
by rank(X). For X ⊆ E, the matroid

M\X = (E\X,I ∩ 2E\X),

is obtained bydeleting X from M. Thematroid union∨kM is the matroid on the same set
E suchthat X ∈ 2E is independent if and only ifX is aunion ofk independent sets ofM.
Throughout the paper[n] denotes the set{1, . . . , n}.

3. Circuit games on matroids

The problem of solving a biased gameG(E,H, 1, q) can be approached in two
equivalent ways. We can either fixq and ask what conditions onH assure the existence
of a winning strategy for, say, Breaker, or for givenH try to find q0, the minimum q,
such that Breaker has a winning strategy. We refer toq0 as to thethreshold of the game
G(E,H, 1, q). To make the definition of the threshold complete, we assume that ifH is
empty thenq0 = 0 and if there is noq for which Breaker can win the game then we put
q0 = ∞.

Let us mention that the problem of finding the threshold for the positional games on
graphs and hypergraphs originates from papers by Chv´atal and Erd˝os [2] and Beck [1] and
was extensivelyexplored by the latter author afterwards.

We are going to compute the threshold for the circuit gamesC(M, 1, q) and
C∗(M, q, 1). For thatpurpose we state the following lemma which ford = 0 specialises
to a theorem of Edmonds [4].

Lemma 1. We can cover all but at most d elements of a matroid M= (E,I) by k
independent sets if and only if

k × rank(X) ≥ |X| − d for every X ⊆ E.

Proof. The required partial covering is possible if and only if the rank of∨kM is at least
|E| − d. By theunion rank formula [13, Theorem 12.3.1] we have

rank(∨kM) = min{k × rank(X) + |E| − |X| : X ⊆ E}. (3)

The claim easily follows. �
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Let ind(M) be the smallest number of independent sets partitioningE. An immediate
consequence ofLemma 1is that

ind(M) = max
∅�X⊆E

⌈
X

rank(X)

⌉
.

(If M has a loop then we put ind(M) = ∞.)
Now we are ready to prove our main theorem.

Theorem 2. Let M = (E,I) be a matroid. For the circuit gameC(M, 1, q) the threshold
is

q0 = ind(M) − 1 = max
∅�X⊆E

⌈ |X|
rank(X)

⌉
− 1,

and the threshold for the circuit gameC∗(M, q, 1) is

q0 = max
x⊆E

⌊ |X|
rank(X) + 1

⌋
.

Proof. Let us deal withC(M, 1, q) first. We can assume thatM has no loops for otherwise
Maker wins in his first move and the claim is true. The claim also holds if ind(M) = 1, i.e.
M contains no circuit.

Let k = ind(M) ≥ 2 and suppose thatq ≤ k−2. ByLemma 1(with d = 0) there exists
X ⊆ E with

(q + 1) × rank(X) < |X|. (4)

A simple winning strategy for Maker is to select elements ofX that are as long as possible.
He can do this at least|X|/(q+1) times. By (4) this is strictly bigger than rank(X). Hence,
at the end of the game, Maker’s set must be dependent. Thusq0 ≥ k − 1.

Suppose now thatq ≥ k − 1. We demonstrate a strategy of Breaker which prevents
Maker from building a dependent set. ByLemma 1we can findI1, . . . , Ik ⊆ E suchthat

I1, . . . , Ik are independent sets coveringE. (5)

We will show that the matroidM and these sets can be changed dynamically during the
game so that (5) alwaysholds as well as the fact that

∩k
i=1 Ii contains all elements selected by Maker. (6)

Let Maker choosex ∈ E, sayx ∈ I j . The response of Breaker is to select, for each
i ∈ [k]\{ j } suchthat Ii ∪{x} is dependent, some available elementxi in the (unique) circuit
C ⊆ Ii ∪ {x}. As the circuit C cannot be a subset of the independent setI j � x, such anxi

exists by (6).
Note that such a reply of Breaker requires at mostk − 1 ≤ q elements to be chosen.

Let B stand for the set ofall the elementsxi she has picked. For simplicity of description,
we assume that Breaker can decline to choose the remaining (if any) ofq − |B| possible
elements. This assumption does not affect ourthesis, since Breaker takes no advantage in
selecting fewerelements than she is allowed to.
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After this turn we modifyM by deleting B, and changing the setsIi into

I ′
1 = (I1 ∪ {x})\B, . . . , I ′

k = (Ik ∪ {x})\B.

It is not hard to see that the new matroidM\B and the new independent sets satisfy the
required conditions (5) and (6).

Maker’s set remains independent by (6) and the induction argument shows that Breaker
winsC(M, 1, q). Thereby we have proved thatq0 = k − 1.

Let us consider the gameC∗(M, q, 1). Recall that Breaker is the first player here. By
the first part of the theorem,she hasa winning strategy inC∗(M, q, 1) if and only if it is
possible to delete a setB of q (or less) elements fromM so that the remaining elements of
M can be covered byq + 1 independent sets. ByLemma 1, thisholds if and only if

q ≥ max
Y⊆E

|Y| − rank(Y)

rank(Y) + 1
,

which gives the required threshold. �

By usingTheorem 2one can solve also the base gameB(M, q, 1), in which it is Maker
who choosesq elements per move and his aim is to build a base ofM. In thatcase, “to
solve a game” means to computeq∗

0, the smallestq such that Maker has a winning strategy.
The base games aredual to the circuit games in the following sense. We have recourse

to thedual matroid M∗ of M. It has the same element setE and, which can be taken as
a possible definition,I ⊆ E is independent inM∗ if and only if E\I contains a base
of M. Observe that claiming a base ofM is the same aspreventingthe opponent from
constructing a circuit ofM∗. Thereby a winning strategy of Maker, respectively Breaker,
in B(M, q, 1) is a winning strategy of Breaker, respectively Maker, inC∗(M∗, q, 1).

Theorem 3. For any matroid M= (E,I) the threshold for the base gameB(M, q, 1) is

q∗
0 = max

X⊆E

⌊ |X|
|X| + rank(E\X) − rank(E) + 1

⌋
,

and the threshold forB∗(M, 1, q) is

q∗
0 = max

∅�X⊆E

⌈ |X|
|X| + rank(E\X) − rank(E)

⌉
− 1.

Proof. The gameB(M, q, 1) is dual to C∗(M∗, q, 1), and B∗(M, 1, q) is dual to
C(M∗, 1, q), so the claim follows fromTheorem 2and the standard formula for the rank
of the dual matroidM∗:

rankM∗(X) = |X| + rankM (E\X) − rankM (E), X ⊆ E. �
Unfortunately, it seems that our methods, good for finding the solution ofB(M, q, 1)

andC(M, 1, q), do not apply in general to the biased gamesB(M, 1, q) andC(M, q, 1).
For example, let us consider a special case of the gameB(M, 1, q), whenM is thecycle
matroidof the complete graphKn. (A subsetI of edges ofKn is independent inM if and
only if I is a forest.) Equivalently, Maker and Breaker select respectively 1 andq edges
of Kn, and Maker wins if he claims all edges of a spanning tree. It is easy to compute the
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parameters ofM, for example, rank(M) = n − 1, ind(M) = �n/2�, but it is hard to relate
them to the thresholdq0 which, according to the results of Chv´atal and Erd˝os [2], is of
ordern/ logn.

4. Matroids defined by submodular functions

The following construction, introduced by Edmonds and Rota [5], supplies us with
many interesting matroids.

Let E be a non-empty finite set and let a functionf : 2E → Z (into integers) be
increasing,that is,

f (X) ≤ f (Y), for anyX ⊆ Y ⊆ E, (7)

andsubmodular, that is,

f (X ∪ Y) + f (X ∩ Y) ≤ f (X) + f (Y), for anyX, Y ⊆ E. (8)

Then we can define a matroidM f on E so that independent sets are∅ and those non-empty
X ⊆ E for which

|Y| ≤ f (Y), for every non-emptyY ⊆ X.

This indeed defines a matroid; see [13, Proposition 12.1.1] for the proof.
Every matroidM can be represented in the formM f : take therank function rankM f

for f . In fact, the extra restriction 0 ≤ f (X) ≤ |X|, for ∅ ⊆ X ⊆ E, would ensure that
f equals the rank function ofM f . One advantage of this construction is that there are
matroids which can be represented asM f for some simple transparent functionf while
their rank function is very complicated.

This construction was studied by Perfect and Pym [14], Nguyen [11, 12], and
Dawson [3]. However, all these papers additionally require that the submodular function is
normalised, that is, f (∅) = 0. (Oxley [13, Section 12.1] does not assume thatf (∅) = 0
but hedoes not studyM f in detail.)

Therefore, we prove some properties ofM f , for f not necessarilysatisfying f (∅) = 0,
which we need inSection 5.

Given a matroidM, definex ∼ y for x, y ∈ E if x = y or there is anM-circuit
containing bothx andy. Onecan check that∼ is an equivalence relation [13, Proposition
4.1.2]. The equivalence classes of∼ are called thecomponentsof the matroid and if M
consists of only one component then we sayM is 2-connectedor, simply, connected.
Notice that every loop creates a one-element component.

Lemma 4. Let f : 2E → Z be increasing and submodular. If a component A of the
matroid Mf has at least two elements thenrank(A) = f (A).

Proof. Let M = (E,I) = M f . For every componentA of M, the function f truncated
to A defines the matroidM ′ such that rankM ′ is the truncation of rankM , so it is enough to
prove the lemma for connected matroids only. Thus we assume further thatM is connected
and|E| > 1.



M. Bednarska, O. Pikhurko / European Journal of Combinatorics 26 (2005) 271–285 277

Let I be a base ofM, that is,|I | = rank(E). Let D = E\I . Observe thatM contains
a circuit so D �= ∅. By themaximality of I , for everyx ∈ D there is the(unique)Jx ⊆ I
suchthat Jx ∪ {x} is a circuit in M. By independence ofJx and monotonicity off , the
following chain of inequalities is valid for anyx ∈ D:

f (Jx) ≥ |Jx| = |Jx ∪ {x}| − 1 ≥ f (Jx ∪ {x}) ≥ f (Jx).

Hence,

f (Jx ∪ {x}) = f (Jx) = |Jx|, for everyx ∈ D. (9)

Let t ≥ 1 and suppose thatt distinct elements ofD form a sequencex1, . . . , xt with the
property

Jxi+1 ∩
i⋃

j =1

Jxj �= ∅, for everyi ∈ [t − 1]. (10)

For simplicity we write
⋃i

j =1 Jxj by J[i ] and putx[i ] = {x1, x2, . . . , xi }. We prove by
induction onm that for everym ≤ t

f (J[m] ∪ x[m]) = f (J[m]) = |J[m]|. (11)

The claim form = 1 follows from (9). Form ≥ 2, we have

f (J[m] ∪ x[m]) ≤ f (J[m−1] ∪ x[m−1]) + f (Jxm ∪ {xm}) − f (J[m−1] ∩ Jxm)

≤ |J[m−1]| + |Jxm| − |J[m−1] ∩ Jxm|
= |J[m]| ≤ f (J[m]) ≤ f (J[m] ∪ x[m]),

which implies (11). We used the submodularity off , the induction argument, the fact that
J[m−1] ∩ Jxm is independent and non-empty, and the monotonicity off .

Pulling maximal sequences satisfying (10) out of D, we obtain partitions
{D1, D2, . . . , Dk} of the setD and {I0, I1, . . . , Ik} of I for somek ≥ 1, such that
I0 = I \⋃

x∈D Jx, Jx ⊆ Ii for everyx ∈ Di and, by (11),

f (Ii ∪ Di ) = |Ii | = rank(Ii ∪ Di ), for everyi ≤ k.

Clearly, for every baseB

|B ∩ I0| ≥ rank(E) −
k∑

i=1

rank(Ii ∪ Di ) = |I | −
k∑

i=1

|Ii | = |I0|,

that is,B ⊃ I0. This means thatI0 consists ofisthmuses(M∗-loops). For any matroid the
isthmuses form one-element components, so in our case (M is connected)I0 = ∅. In view
of that, puttingAi = Ii ∪ Di for i ≤ k, we haveE = ∪k

i=1Ai .
Now we show thatk = 1. Recall that every two distinct elements ofE lay on a circuit.

Hence, we are done if we prove that no circuitC can intersect more than oneAi .
Suppose on the contrary that suchC exists. Moreover assume that|C∩ D| is as small as

possible. Choosex ∈ C, sayx ∈ Dk. By definition of Dk there is a circuitC′ ⊆ Ik ∪{x}, so
we have two different circuitsC′, C suchthatx ∈ C ∩ C′. Thus, by the circuit elimination
axiom, there exists a circuitC′′ ⊆ (C∪C′)\{x}. Notice thatC′′ intersects more than oneAi
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and|C′′ ∩ D| < |C ∩ D|, which contradicts the minimality of|C ∩ D|. Therefore E = A1

and the proof is complete.�

Note thatM f is loopless if and only if

f (X) ≥ 1, for every non-emptyX ⊆ E. (12)

Lemma 5. Let f : 2E → Z be increasing, submodular and satisfy(12). Then for any
dependent X⊆ E(M f ) there is a non-empty Y⊆ X such that

|X|
rank(X)

≤ |Y|
f (Y)

. (13)

Also, for every integer d≥ 0 and any dependent X⊆ E there are non-empty, pairwise
disjoint Y1, Y2, . . . , Yk ⊆ X such that

|X| + d

rank(X) + 1
≤

∑k
i=1 |Yi | + d∑k

i=1 f (Yi ) + 1
.

Proof. Observe that it is enough to prove the first part of the lemma forX �= ∅ suchthat

|X|
rank(X)

>
|Y|

rank(Y)
, for every∅ � Y � X. (14)

We alsoassume thatX is dependent, so|X| > rank(X).

Let M = (X,I) be the matroid defined by the functionf truncated to the set 2X,
and let{A1, . . . , Ak} be the set of all components ofM. Our assumption (12) implies that
rank(Ai ) ≥ 1 for every componentAi . Then straightforward calculations show that

|X|
rank(X)

=
∑k

i=1 |Ai |∑k
i=1 rank(Ai )

≤ max

{ |Ai |
rank(Ai )

: i ∈ [k]
}

,

which is acontradiction to (14) unlessk = 1. ThusX = A1. Since|X| > rank(X), we
have|A1| ≥ 2 andfrom Lemma 4we obtain

f (X) = f (A1) = rank(A1) = rank(X),

soY = X satisfies (13), as required.

In order to prove the second claim of the lemma, we consider all componentsY1, . . . , Yk

of X, which have size at least 2, and putY0 = X\⋃k
i=1 Yi . ThenY0 is independent and

|Yi | ≥ rank(Yi ) + 1 for everyi ≥ 1, which together withLemma 4give

|X| + d

rank(X) + 1
= |Y0| + ∑k

i=1 |Yi | + d

|Y0| + ∑k
i=1 rank(Yi ) + 1

≤
∑k

i=1 |Yi | + d∑k
i=1 f (Yi ) + 1

. �

As the inequality|X|/rank(X) ≥ |X|/ f (X) is obvious for every non-emptyX, we
obtain the following formula for ind(M f ).
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Corollary 6. Let E �= ∅ and f : 2E → Z be increasing and submodular. If there is x∈ E
with f ({x}) ≤ 0, thenind(M f ) = ∞. Otherwise,

ind(M f ) = max
∅�X⊆E

⌈ |X|
rank(X)

⌉
= max

∅�X⊆E

⌈ |X|
f (X)

⌉
. �

The following theorem is of independent interest. It is another illustration of the useful-
ness ofM f : the formula giving the rank function of∨kM is more complicated, cf. (3).

Theorem 7. Let E �= ∅ and f : 2E → Z be increasing and submodular. Then, for any
integer k≥ 1,

∨kM f = Mk f .

Proof. Clearly,∨kM f andMk f have the same set of loops. Hence, it is enough to consider
looplessM f only.

Let X be independent in∨k M f . Then any non-emptyI ⊆ X can be represented as
I1 ∪ · · · ∪ Ik with Ii ∈ I(M f ); we can additionally request that eachIi �= ∅. Hence,

k f (I ) ≥
k∑

i=1

f (Ii ) ≥
k∑

i=1

|Ii | ≥ |I |,

and we conclude thatX is independent inMk f .
On the other hand, suppose thatX is not independent in∨kM f . By Lemma 1there is

Y ⊆ X suchthat|Y|/rank(Y) > k. By Lemma 5we can find non-emptyZ ⊆ Y suchthat
|Z|/ f (Z) > k. Thus,X cannot be independent inMk f , as required. �

5. Applications of Theorem 2

In this section we present some consequences ofTheorem 2combined with the results
of Section 4.

Theorem 8. Let E �= ∅, f : 2E → Z be increasing and submodular, and let L be the set
of loops of Mf , i.e. L = {x ∈ E : f ({x}) ≤ 0}.

(i) If L = ∅ then the threshold for the circuit gameC(M f , 1, q) is

q0 = max
∅�X⊆E

⌈ |X|
f (X)

⌉
− 1.

(In the case L�= ∅ Maker wins in his first move.)
(ii) The threshold for the gameC∗(M f , q, 1) is

q0 = max

{
|L|, max

Y∈Π
�g(Y)�

}
,

whereΠ is the set of all familiesY of non-empty, pairwise disjoint subsets of E\L

and g(Y) =
∑

x∈Y |X|+|L|∑
x∈Y f (X)+1.
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(iii) If f (∅) ≥ 0 then the threshold for the gameC∗(M f , q, 1) is

q0 = max
X⊆E

⌊ |X|
f (X) + 1

⌋
.

Proof. The claim aboutC(M f , 1, q) follows fromTheorem 2andCorollary 6.
Let l be the number of loops ofM f and let us considerC∗(M f , q, 1), in the non-trivial

case ofX �= L. Then, byTheorem 2

q0 = max
X⊆E

⌊ |X|
rank(X) + 1

⌋
= max

{
l , max

I ��X⊆E\L

⌊ |X| + l

rank(X) + 1

⌋}
. (15)

Since f truncated to 2E\L satisfies (12), we can apply here the second part ofLemma 5
and obtain

q0 ≤ max

{
l , max

Y∈Π
�g(Y)�

}
with g andΠ defined in the thesis of part (ii). The opposite inequality is obvious in view
of (15) and the fact that rank(X) ≤ f (X) for every non-emptyX ⊆ E\L. Thus we get the
desired formula onq0.

The third part of our thesis follows from the part (ii), since if additionallyf (∅) ≥ 0
then for anyY ∈ Π

∑
X∈Y

f (Y) ≥ f


 ⋃

X∈Y
X




and f (X ∪ L) = f (X) for everyX ⊆ E, by submodularity and monotonicity off . �
The above theorem is a useful tool for calculating the threshold for games played on

graphs, in which Maker tries to build a subgraphF with the propertye(F) > av(F) + b,
for given integersa, b. By e(F) we denote the number of edges ofF and byv(F) the
number of vertices covered by the edges ofF . Such games are equivalent to the games
played on count matroids, constructed in the following way.

With a given graphG = (V(G), E(G)) and integers

a ≥ 1 and b ≥ 1 − 2a

we can associate thecount matroidNa,b(G) which is the matroidM f on E(G) defined by
the submodular and increasing function

f (F) = av(F) + b, F ⊆ G.

From now on, for brevity of notation, we do not distinguish a graphF from its edge set
E(F) and write|F | instead ofe(F). Note the restrictionb ≥ 1 − 2a: otherwiseNa,b

consists of loops only. This construction was introduced by White and Whiteley [18] (see
also Whiteley [19]).

For example, the matroidN1,−1 is thecycle matroidthat we met; its circuits are formed
by cycles ofG. In the matroidN1,0 the independent sets are vertex-disjoint unions of trees
and unicyclic graphs.
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Theorem 8gives formulae for computing the threshold in the circuit games on count
matroids. Sometimes the corresponding maximum is easy to compute. Here are just a few
examples; we computeq0 for games played on the complete graphKn and on the complete
bipartite graphKn,n.

Theorem 9. For integers n≥ 2 and2a + b ≥ 1, let M = Na,b(Kn). Then, the threshold
for thegameC(M, 1, q) is

q0 =
⌈

n(n − 1)

2(an+ b)

⌉
− 1, (16)

and the threshold forC∗(M, q, 1) is

q0 =
⌊

n(n − 1)

2(an+ b + 1)

⌋
. (17)

Proof. To solveC(M, 1, q) we apply Theorem 8. Given f (F), the maximum of |F | is
attained whenF is a clique. Hence

q0 + 1 = max
2≤i≤n

�g(i )�, whereg(i ) =
( i
2

)
ai + b

.

It is routine to calculate that�g(i )� is maximal for i = n, whichgives the threshold (16).
ForC∗(M, q, 1) it is enough to compute the maximum of the function

g(F1, . . . , Fk) =
∑k

i=1 |Fi |∑k
i=1(av(Fi ) + b) + 1

over allk ≤ n and sequences(F1, . . . , Fk) of pairwise edge-disjoint subgraphsFi ⊆ Kn

with |Fi | ≥ 1.
Suppose that thegmax is the maximum value ofg and is obtained by a sequence

G1, . . . , Gk ⊆ Kn. Then

(n
2

)
an+ b + 1

= g(Kn) ≤ gmax = g(G1, . . . , Gk) =
∑k

i=1 |Gi |∑k
i=1(av(Gi ) + b) + 1

< max
1≤i≤k

|Gi |
av(Gi ) + b

≤
(m

2

)
am+ b

(18)

for somem ≤ n.
If m = 2 then the above implies thatgmax < 1/(2a + b) ≤ 1 andhence�gmax� ≤

�g(Kn)�.
In the case of 3≤ m ≤ n, standard calculationsshow that if 2a + b ≥ 1 then(n

2

)
/(an + b + 1) <

(m
2

)
/(am + b) only for m = n. Therefore |Gi | = (n

2

)
for some

i ≤ k and sogmax = g(Kn).
Thus, in any case,�g(Kn)� is the maximum of�g�, which implies the formula (17). �
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Corollary 10. Suppose that Maker and Breaker select respectively1 and q edges of
Kn(n ≥ 2) and Maker wants to build a cycle. Then Maker wins the game (no matter
who starts)if and only if q< �n/2� − 1. �

Let us add that the above result, with the assumption that Maker is the first player, can be
obtained directly fromTheorem 2: Kn is aunion of�n/2� trees, so for the corresponding
matroidM = N1,−1(Kn) we have ind(M) = �n/2�.

Theorem 11. For integers n≥ 1 and2a+b ≥ 1, let M = Na,b(Kn,n). Then, the threshold
for thegameC(M, 1, q) is

q0 =
⌈

n2

2an+ b

⌉
− 1,

and the threshold forC∗(M, q, 1) is

q0 =
⌊

n2

2an+ b + 1

⌋
.

Proof. Let us solve the gameC∗(M, q, 1) only, since the calculating of the corresponding
maximum forC(M, 1, q) is much simpler.

The analysis ofC∗(M, q, 1) is similar to that presentedin the proof of the second part
of Theorem 9. We define the functiong analogously and compute the maximum ofg by
the following modification of formula (18):

n2

2an+ b + 1
= g(Kn,n) ≤ gmax = g(G1, . . . , Gk) =

∑k
i=1 |Gi |∑k

i=1(av(Gi ) + b) + 1

< max
1≤i≤k

|Gi |
av(Gi ) + b

≤ �m/2��m/2�
am+ b

for somem ≤ 2n. Then we conclude that eitherm = 2 and�gmax� = 0 ≤ g(Kn,n) or
3 ≤ m ≤ 2n and the above holds only ifm = 2n. Thus�g(Kn,n)� maximises�g� and by
Theorem 8we obtainq0 as desired. �

Corollary 12. Suppose that Maker and Breaker select respectively1 and q edges of
Kn,n(n ≥ 1) and Maker wants to build a cycle. Then Maker wins the game (no matter
who starts)if and only if q< �n/2�.

Pikhurko [15] generalised count matroids tor -graphs. By anr -graph we mean a subset
of

([n]
r

) = {X ⊆ [n] : |X| = r }. In ordernot to mess with details, we state a special case
which admits a nice solution.

For non-negative integersa0, . . . , ar−1 define

f (H ) = a0 +
r−1∑
i=1

ai pi (H ), H ⊆
([n]

r

)
, (19)

where pi (H ) is the number of i -sets covered by at least one edge ofH . For example,
p1(H ) = | ∪e∈H e| and pr (H ) = |H |.
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It is easy to prove thatf satisfies (7) and (8) andhence defines a matroidM f on
([n]

r

)
.

(In general,a0 could be negative; see [15, Section 3].)

Corollary 13. Let a0, . . . , ar−1 be non-negative integers, n≥ 1, and f be defined by(19).
The threshold for the gameC(M f , 1, q) is

q0 =
⌈ (n

r

)
∑r−1

i=0 ai
(n

i

)
⌉

− 1.

Proof. By Theorem 8it is enough to show that

|H |∑r−1
i=0 ai pi (H )

≤
(n
r

)
∑r−1

i=0 ai
(n

i

) , for everyH ⊆
([n]

r

)
.

This can be rewritten as

r−1∑
i=0

ai

(
pi (H )

(
n

r

)
− |H |

(
n

i

))
≥ 0.

One can verify that

pi (H )

(
n

r

)
= pi (H )

(
n

i

)(
n − i

r − i

)/ (
r

i

)
≥ |H |

(
n

i

)
,

where the last inequality followsfrom double-counting of all pairs(A, B) such that
A ∈ ([n]

i

)
, B ∈ H and A ⊆ B. Thus each term in the previous sum is non-negative,

giving the required result. �

Finally, let us propose adensity gameDa(Kn, 1, q), played onKn, in which Maker’s
aim is to claim a graphH of density|H |/v(H ) ≥ a, for givena > 0. If a is integer then
by Theorem 9the threshold for that game is

q0 = (1 + o(1))
n

2a
. (20)

However, the matroid approach breaks down ifa is not an integer. The lower bound
(1 + o(1)) n

2a on q0 still holds: if q + 1 ≤ n−1
2a then the game lasts at leastan turns, so

Maker wins playing arbitrarily.Theorem 9implies only thatq0 ≤ (1 + o(1)) n
2�a� . Also,

note that (20) is not generally true fora < 1; e.g. fora ≤ 2/3 Maker wins in two moves
unlessq ≥ 2n − 4. Nevertheless, we conjecture that (20) holds for everya ≥ 1.

Conjecture 14. For any real a ≥ 1, the threshold of the density gameDa(Kn, 1, q) is
q0 = (1 + o(1)) n

2a.

6. Computational considerations

An important question is whether there are good algorithms realising the strategies given
by the proof ofTheorems 2and3. A moment’s thought reveals that we have to find an
algorithmdemonstratingwhether
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rank(∨kM) ≥ r (21)

for a given matroidM and integersk andr , that is, producing eitherk independent sets
whose union has at leastr elements or a setY which disproves (21) via (3).

There are quite a few such algorithms (e.g. the proof of Edmonds [4] givesone). The
algorithm of Kelmans and Polesskii [9] runs in polynomial-in-|E| time and makesO(|E|2)
calls to theindependence oracle, that is, the subroutine which tests whether a setY ⊆ E
is independent or not. Note that the casesk > |E| or r > |E| are trivial, so we choose
|E| as the sole parameter for measuring efficiency. Thus, if the independence oracle runs
in polynomial time, then Breaker’s/Maker’s winning strategy inTheorems 2and3 can be
computed in polynomial time.

For the matroid M f defined by a submodular functionf , which weconsidered in the
previous sections, one can always devise an independence oracle which runs in polynomial
time. Indeed, a non-empty setX is independent if and only if for anyx ∈ X we have

min{g(Y) : Y ⊆ X\{x}} ≥ 0, (22)

whereg(Y) = f (Y∪{x})−|Y∪{x}|. The functiong is submodular so its minimum can be
computed in polynomial time by the ellipsoid method as was shown by Gr¨otschel, Lovász
and Schrijver [6, 7]. (Schrijver [16] presents another, more combinatorial, minimisation
algorithm.)
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