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Abstract

Maker and Breaker alternatively select 1 apgreviously unclaimed elements of a given matroid
M. Maker wins if he claims all elements of some circuitMf We solvethis game for anyM andq,
including the description of winning stegies. In a spcial case when the matroM is defired by
a uubmodular functionf , we find the rak formula, which allows us to express our solution in terms
of f. The resulis applied to positional gamem graphs in which, e.g., Maker tries to create a cycle
or where Maker’s aim is to obtain a subgraph of given integer density.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Let E be a finite set and{ < 2F. In the Maker-Beakergame®(E, H, 1, q) two
players, Maker and Breaker, alternately select respectively lgad > 0) previously
unclaimed elements d until all the elements have beetaimed. Maker wins if and only
if in the final position there i¥ € H such tlat every element of has been selected by
Maker.

The rules of the gamé&*(E, H, g, 1) are the same except that it is Breaker who starts
the game. Throughout the paper we use the convention that a star in the notation of a game
means that Breaker is the first player; the first and the second numerical parameters of the
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game describe the number of elements selected by, respectively, the first and the second
player. For clarity of language, we refer to Maker as “he” and to Breaker as “she”.

We stuidy Maker—Breaker games in whiéhconsists of elements of a given matrdid
andH is the family of M-circuits. We recall basic definitions and facts related to matroids
in Section 2

Games on matroids were first proposed, to the best of our knowledge, by Leli@jan |
who snlved the Shannon Switching Game by using the cycle matroid. His game is related
to but different from ours.

Hamidoune and Las Vergna8][observed that Lehman'’s strategies, when appropriately
modified, solve unbiased (i.g.= 1) games on matroids, in W¢th Maker’s aim is to claim
a base of giegn matroidM. Let usdenote such @ase gaméy %5B(M, 1, 1). The adhors
formulated conditions oM sufficient and necessary for the existence of a winning strategy
for Breaker and defined effective strategies for the players.

They also pointed out that this solution implies the outcome of the unbicisadt
gamec¢(M, 1, 1), where Make's aimis to claim a circuit of the matroit¥. In fact, circuit
and base games are in a sense dual to each other, as we exdaution 3

In Section 3we present the solution of the biased circuit gaéé, 1, q) where
Breaker is allowed| > 1 edges per move. Also, we settlé*(M, g, 1), the veron where
Breaker starts the game. This solves the corresponding dual base games as well.

In Section 4we study the matroidM¢+ defined by a submodular and increasing
function f : 2 — Z. Such matroids, introduced by Edmonds and Rdj have
been systematically studied (Perfect and Pydfi,[Nguyen [L1, 12], Dawson B]), but
rather under the additional assumption ti&®) = 0. However, quite a few interesting
combinatorial games correspond to functions witt¥) # 0. Motivated by this, we
establish some properties bfs for such generaf . OurgeneralLemma 4 which seems
to be a useful tool for studying such matroids, allowed us to determine in ternis of
the threbold of the gameZ(M, 1, q), i.e. thesmallestg such that Breaker has a winning
strategy.

In Section 5 we presensome onsequences of the results frddectbns 3 and 4,
applied to games played on graphs and hypergraphs. Among others, we consider the biased
cycle gameswhere the fayers select@ges of a grapls and Maker tries to build a cycle,
and thedensity gamesn which Maker wants to obtain a subgraph of given density.

Finally, we discuss the algorithmic aspect of the strategies given by our solution of the
circuit games.

2. Matroids; definitions and notation

For an introduction to matroid theory we refer the reader to the texts by Wélgtahd
Oxley [13]. Here we point out our notation which follows that of Oxley3]. Some other
notions are introduced in the text as we go along.

A matroid Mis a pair(E, 7), whereZ is anon-empty family of subsets of a finite 98t
which ishereditary that is

AcT, BCA=BeT, (1)
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and satisfies the followingndependence augmentation axiom

1LJeZ, |I]> 3] = Ixenng JU{X} € T. )

We reer to elements o aselement®f the matoid.

Sets inZ are calledndependensets in F\Z are calleddependentEveryone-element
dependent set is called@op. A circuit is a minimal (in the seresof inclusbn) dependent
set. The set of all circuits of a matrold we denote byC(M). A baseof the matoid is a
maximal independent set. It follows fror)(that for any X C E all maximal independent
subsets ofX have the same cardinality. This cardinality, called ttzak of X, is denoted
by rank X). For X € E, the maroid

M\X = (E\X, Z n2E\X),

is obtained bydelging X from M. Thematroid unionvkM is the matroid on the same set
E suchthat X e 2F is indgpendent if and only iX is aunion ofk independent sets oA
Throughout the papégn] denotes the sddl, .. ., n}.

3. Circuit gameson matroids

The problem of solving a biased gan®E, H, 1,q) can be approached in two
equivalent ways. We can either fixand ask what conditions o assure the existence
of a winning strategy for, say, Breaker, or for givéhtry to find go, the mhimum g,
such that Breaker has a winning strategy. We refeqgoas to thethreshold of the game
B(E, H, 1, q). To make the definition of the threshold complete, we assume ttdtisf
empty thengo = 0 and ifthere is nog for which Breaker can win the game then we put
(o = o0.

Let us mention that the problem of finding the threshold for the positional games on
graphs and hypergraphs originates from papers bya€heand Erd$ [2] and Beck [1] and
was extensivelgxplored by the latter author afterwards.

We are going to compute the threshold for the circuit gam@éeM, 1,q) and
¢*(M, q, 1). For thatpurpose we state thelfowing lemma which ford = 0 specialises
to a theorem of Edmond#].

Lemmal. We can cwer all but at most d elements of a matroid M (E,Z) by k
independent sets if and only if

k x rankX) > |X| —d for every XC E.

Proof. The required partial covering is possible if and only if the rank/bM is at least
|E| — d. By theunion rank formula3, Theorem 12.3.1] we have

rankvVKM) = min{k x rank X) + |E| — |X| : X € E}. 3)

The claim easily follows. [
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Let ind(M) bethe smallest number of independent sets partitioftnd\n immediate
consequence dfemma 1is that

X
ind(M) = max_ | ———|.
(0 PCXCE [rank(X)—‘
(If M has a loop then we put ilit) = c0.)
Now we are ready to prove our main theorem.

Theorem 2. Let M = (E, Z) be a matroid. For the circuit gamé&(M, 1, q) the thieshold
is

. [X]
=ind(M) —1= -1
Go = Ind(M) (ZJg]XaQXE Lank(X)—‘ ’

and the threshold for the circuit gan®& (M, g, 1) is

_ IX]
o= TgaEXLanI(X) + 1J '

Proof. Letus deal witht(M, 1, q) first. We can assume thkt has no loops for otherwise
Maker wins in his first move and the claim is true. The claim also holds {fMd= 1, i.e.
M contains no circuit.

Letk = ind(M) > 2 and suppose that < k—2. By Lemma 1(with d = 0) there exists
X C E with

q+ 21 x rankX) < |X|. 4)

A simple winning strategy for Maker is to select elements<that are as long as possible.
He can do this at lea$X|/(q+ 1) times. By @) this is stictly bigger han rankX). Herce,
at the end of the game, Maker’s set must be dependent.dohak — 1.

Suppose now that) > k — 1. We demonstrate a strategy of Breaker which prevents
Maker from building a dependent set. Bgmma 1we can findly, .. ., Ix € E suchthat

I1, ..., Ik are independent sets coverilg (5)

We will show that the matroidM and these sets can be changed dynamically during the
game so that) alwaysholds as well as the fact that

ﬂikzlli contains all elementseécted by Maker (6)

Let Maker choos € E, sayx € |j. The response of Breaker is to select, for each
i € [KI\{]} suchthatl; U{x} is dgpendent, some available elem&nin the (unique) circuit
C C Ij U {x}. As the cicuit C cannot be a subset of the independent get x, such arx;
exids by ©).

Note that such a reply of Breaker requires at most 1 < g elements to be chosen.
Let B stand for tle set ofall the elements; she has miked. For simplicity of description,
we assume that Breaker can decline to choose the remaining (if ay}-0fB| possible
elements. This assumption does not affectthesis, since Breaker takes no advantage in
selecting feweelements than she is allowed to.
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After this turn we modifyM by delding B, and clanging the set§ into
1= (1 U{XD\B, ..., Ix = (Ik U {x})\B.

It is not hard to see that the new matrdith B and the new independent sets satisfy the
required conditionss) and ©).

Maker’s set remains independent Iy &nd the induction argument shows that Breaker
wins&(M, 1, q). Therdy we have proved thaj = k — 1.

Let us consider the gam&* (M, g, 1). Recall that Breaker is the first player here. By
the first pat of the theoremshe has winning strategy ir€*(M, g, 1) if and only if it is
possible to delete a s& of g (or less) elements froil so that theemaining elements of
M can be covered by + 1 independent sets. Byemma 1 thisholds if and only if

Y| — rank(Y)
> max————-,
YCE rankY) +1
which gives the rquired threshold. [

By usingTheorem 2ne can solve also the base gaB@M, g, 1), in which itis Maker
who chooseq) elements per move and his aim is to build a bas#ofin thatcase, “to
solve a gane” means to compuig;, the snallestq such trat Maker has a winning strategy.

The base games adeial to the circuit games in the follwing sense. We have recourse
to thedual matroid M* of M. It has tle same element s& and, which can be taken as
a possible definition] < E is independent inM* if and only if E\l contains a base
of M. Observe tht claiming a base o is the same apreventingthe opponent from
constructing a circuit oM*. Therdoy a winning strategy of Maker, respectively Breaker,
in B(M, q, 1) is a winning strategy of Breaker, respectively MakegitM*, q, 1).

Theorem 3. For any matroid M= (E, Z) the thre#old for the base gan®(M, q, 1) is

. X
% = xmg""é(bm ¥ rankE\X) — rankE) + 1J ’
and the threshold fo#3*(M, 1, q) is
= max X] -1
gCXC<E | |X| + rank E\ X) — rank E)

*

o

Proof. The game®B(M, q,1) is dual to €*(M*,q,1), and %6*(M, 1,q) is dual to
¢(M*, 1, q), so the chim follows fromTheorem 2and the standard formula for the rank
of the dual matroidv*:

ranky«(X) = | X| 4+ ranky (E\ X) — ranky (E), XCE. 0O

Unfortunately, it seems that our methods, good for finding the soluticB@1, g, 1)
and¢(M, 1, q), donot apply in general to the biased gan¥®6eM, 1, q) and¢€(M, q, 1).
For example,dt us consider a special case of the g&{d/, 1, q), whenM is thecycle
matroid of the complete grapKy,. (A subsetl of edges oK, is indgpendent inM if and
only if | is a forest.) Equivalently, Maker and Breaker select respectively lgaedijes
of Ky, and Maker winsfihe clams all edges of a gmning tree. It is easy to compute the
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parameters oM, for exanple, ranKM) = n — 1, ind(M) = [n/2], but itis hard to relate
them to the thresholdp which, according to the results of Catal and Erd$ [2], is of
ordern/logn.

4. Matroidsdefined by submodular functions

The following construction, introduced by Edmonds and R&fa gupplies us with
many irteresting matroids.

Let E be a non-empty finite set and let a functibn: 28 — Z (into integers) be
increasingthat is,

f(X) < f(Y), foranyX C Y C E, @)
andsubmodularthat is,
f(XUY)+ f(XNY) < f(X)+ f(Y), foranyX,Y C E. (8)

Then we can define a matroM; on E so that hdependent sets afeand those non-empty
X C E for which

Y] < f(Y), for every non-empty C X.

This indeed defines a matroid; sds[ Proposition 121.1] for the proof.

Every matroidM can be represented in the forlkhs: take therank function ranlg
for f. In fact, the exta restiction 0 < f(X) < |X], for@ € X C E, would ensure that
f equalsthe rank function oM. One advatage of this construction is that there are
matroids which can be representedMs for some simple transparent functidnwhile
their rank function is ery complicated.

This construction was studied by Perfect and Pym],[ Nguyen [L1, 12], and
Dawson B]. However, all these papers additionally require that the submodular function is
normalised that is, f (#) = 0. (Oxley [L3, Sedion 121] does not assume thdt@) = 0
but hedoes not study ¢ in detail.)

Therefore, we prove some propertiesdf, for f not necessarilgatisfying f (4) = 0,
which we need irSection 5

Given a matroidM, definex ~ y for X,y € E if x = y or there is anM-circuit
containing bothx andy. Onecan check that~ is an equivalence relatiol 8, Proposition
4.1.2]. The equivalence classes-ofare called theeomponentsf the matrad and if M
consists of only one component then we ddyis 2-connectedr, simply, connected
Notice that every loop creates a one-element component.

Lemmad4. Let f : 28 — Z be increasing and submodular. If a component A of the
matroid M; has at least two elements theamk(A) = f(A).

Proof. Let M = (E,Z) = M;. For every componenf of M, the function f truncated
to A defines the matroitl” such that ranky is the truncation of ranj, so it is enough to
prove the lemma for connected matroids only. Thus we assume furthéd tisatonnected
and|E| > 1.
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Let | be a base oM, thatis,|I| = rankE). Let D = E\I. Obseve thatM contains
a circut so D # (. By themaximdlity of |, for everyx € D there is thgunique)Jx < |
suchthat Jx U {x} is a circuit in M. By independence aJx and monotonicity off, the
following chain of inequalities is valid for any € D:

F(X) = |kl=1KU{X}-1= f(IxU{x}) = ().

Hence,
f(IU XD = () =|l, for everyx € D. (9)
Lett > 1 and suppose thatdistinct elements ob form a sequencey, ..., X with the
property
[
Jaa N J I #0.  foreveryi e[t —1]. (10)

j=1
For sinplicity we write Uij —1 Jx; by Jiij and putxi; = {X1, X2, ..., Xi}. We prove by
induction omrm that far everym < t
f(J[m] U X[m]) = f(J[m]) = |J[m]|. (11)
The claim form = 1 follows from (9). Form > 2, we have

f(Jm U Ximp) < T (Jm—1g Y Xim—11) + T (Ixyy U Xm}) — T Im—13 N Ixy)
< [ Jm-11 + [ x| — [Im—11 N x|
= [Jml < Fmp) < F(Jmy YU Xm),

which implies 1). We used the submodularity df, the induction argument, the fact that
Jm=11 N Jx,, isindependent and non-empty, and the monotonicity.of

Pulling maximal sequences satisfyindlOf out of D, we obtain partitions
{D4, Do, ..., Dk} of the setD and {lg, I, ..., Ik} of | for somek > 1, such that
lo =1\ Uyep I I C li foreveryx e Dj and, by (1),

f(l; UDj) = |lj] =rank(l; U D), for everyi <k.
Clearly, for every bas&
k k
BN ol = rankE) — ) rank(li UDy) = [1] = > [lil = [lol,
i=1 i=1

thatis,B O lp. This means thatg consists oisthmusegM*-loops). For any matroid the
isthmuses form one-element components, so in our ddsis Connected)o = @. In view
of that, puttingA; = I; U D; fori < k, we haveE = UikzlAi.

Now we shav thatk = 1. Recall that every two distinct elementsBiflay on a circuit.
Hence, we are done if we prove that no circ@itan intersect more than org.

Suppose on the contrary that suCtexigs. Moreover assume thg N D| is as small as
possible. Choose € C, sayx € Dg. By definition of Dy there is a circui€’ C IxU{x}, so
we have two different circuit€’, C suchthatx € C N C’. Thus, by the circdielimination
axiom, there exists a circut” € (CUC’)\{x}. Natice thatC” intersects rmare than oné);
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and|C” N D| < |C N D|, which contradicts the minimality dC N D|. Therdore E = A;
and the proof is complete.(]

Note thatM ¢ is loopless if and only if

f(X) > 1, for every non-empty C E. (12)

Lemmabs. Let f : 2F — Z be increasing, submodular and satigfy2). Then br any
dependent XZ E(M+) there is a non-empty Y= X sud that

[X] - Y]
rank X) — f(Y)’

(13)

Also, for every integer & 0 and any dependent XC E there are non-empty, pairwise
disjoint Y, Yo, ..., Yk € X sud that

X|+d Y (Yil+d
rankX) +1 = K (Y 4+ 1

Proof. Obseve that it is enough to prove the first part of the lemmaXos ¢ suchthat

[X] - [Y]
rank X) =~ rank(Y)’

foreveryd C Y C X. (14)

We alsoassume thak is degpendent, s¢X| > rank(X).
Let M = (X,Z) be the matroid defined by the functidntruncated to the set’2

and let{Aq, ..., A¢} be the set of all components bf. Our asumption {2) implies that
rank(A;j) > 1 for every componend;. Then straghtforward calculations show that
X YA Al

= (e [Klg,
rankX) YK rank A) = {rank(Ai) el ]}

which is acontradiction to {4) unlessk = 1. ThusX = Aj. Since|X| > rank(X), we
have|A1| > 2 andfrom Lemma 4we obtain
f(X) = f(A1) =rank(A1) = rank(X),

soY = X satisfies 13), as required.

In order to prove the second claim of the lemma, we consider all compovients, Y
of X, which have size at least 2, and p@§ = X\ U:‘zlYi. ThenYp is indgpendent and
IYi| > rank(Y;) + 1 for everyi > 1, which tog¢her withLemma 4give

X[+d Yo+ YR Mi+d SVl +d
rankX) +1 Yol + YK jrankY) +1 = YK, f(Yi) +1

As the inequality| X|/rank(X) > |X]|/f(X) is obvious for every non-empt¥X, we
obtain the following formula for intM ).
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Corollary 6. Let E+ @ and f: 2F — Z be increasing and submodular. If there isexE
with f({x}) <0, thenind(M¢) = oco. Otherwise,

ind(M¢) = max X = max I—X| .
pCX<E | rank(X) pCxce| f(X)
The following theorem is of independent interest. It is another illustration of the useful-
ness ofM ¢ : the famula giving the rank function o#KM is more complicated, cf3j.

Theorem 7. Let E # ¢ and f : 28 — Z be increasing and submodular. Then, for any
integer k> 1,

\/ka = My;.

Proof. Clearly,vKM; and Mg; have the same set of loops. Hence, it is enough to consider
looplessM ¢ only.

Let X be independent inkM¢. Then any non-empty € X can be represented as
I U---Ulgwith I; € Z(M¢); we can additionally request that eath# . Herce,

k k
SIOES B IEDWNINESIE
i=1 i=1

and we conclude thaX is indgpendent inVi; .

Onthe ather hand, suppose th¥t is not independent ivKMy . By Lemma 1there is
Y € X suchthat|Y|/rankY) > k. By Lemma 5we can find non-empty. C Y suchthat
|Z|/f(Z) > k. Thus, X cannot be independent My, , as reuired. [

5. Applicationsof Theorem 2

In this section we present some consequencdhebrem Zzombined with the results
of Section 4

Theorem 8. Let E # ¢, f : 25 — Z be increasing and submodular, and let L be the set
of loops of M, i.e. L={x € E: f({x}) <0}.

(i) If L = @ then the threshold for the circuit gandgM+, 1, q) is
Jo= max ﬂ -1
pCxce| f(X)

(In the case L# ¢ Maker wirs in his first move.)
(ii) The threkold for the gam&*(M¢,q, 1) is

Jo = m«’ch{ILI, 5}1:}%([9(37”} ;

wherell is the set of all familie§’ of non-empty, pairwise disjoint subsets ofLE

Y oxey |XI+IL]
and g) = m
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(iii) If f () > Othen the theshold for the gamé*(M+¢, g, 1) is
0= XCe f(X)y+1]"

Proof. The claim abou€(M+, 1, q) follows from Theorem 2andCorollary 6.
Letl be the number of loops d¥l 1 and let us considet*(M+, q, 1), in the non-trivial
case ofX # L. Then, by Theorem 2

= max li)(' = maxi{l, max M (15)
o= XcE | rankX) +1| "TyxcE\L | rankX) +1 |}
Since f truncated to 2\' satisfies {2), we can apply here the second part.einma 5
and obtain

Qo < maX{l , eree};Lg(y)J}

with g and I defined in the thesis of part (ii). The opposite inequality is obvious in view
of (15) and tke fact that rankX) < f (X) for every non-emptX C E\L. Thus we get the
desired formula onp.

The third part of our thesis follows from the part (ii), since if additionallgy) > 0
then for anyy € I1

Zf(Y)zf(UX)

XeY Xey
andf (XU L) = f(X) foreveryX C E, by submodularity and monotonicity of. [

The above theorem is a useful tool for calculating the threshold for games played on
graphs, in which Maker tries to build a subgraptwith the propertye(F) > av(F) + b,
for givenintegersa, b. By e(F) we denote the number of edges &f and byv(F) the
number of vertices covered by the edged~ofSuch gamas are equivalent to the games
played on count matroids, constructed in the following way.

With a given grapltG = (V(G), E(G)) and integers

a>1 and b>1-2a

we can associate tlunt matroidV; p(G) which is the matroidM ¢ on E(G) defined by
the submodular and increasing function

f(F)=av(F)+b, FCG.

From now on, for brevity of notation, we do not distinguish a gr&pfrom its edge set
E(F) and write|F| instead ofe(F). Note he restrictionb > 1 — 2a: otherwiseMN, p
consists of loops only. This construction was introduced by White and Whité&ydee
also Whiteley 19)).

For example,ie matroid\V1, _1 is thecycle matroicthat we met; its circuits are formed
by cycles ofG. In the maroid A1 o the independent sets are vertex-disjoint unions of trees
and unicyclic graphs.
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Theorem 8gives formulae for computing the threshold in the circuit games on count
matroids. Sometimes the corresponding maximum is easy to compute. Here are just a few
exampes; we computegp for games played on the complete grafhand on the complete
bipartite graphKn n.

Theorem 9. For integers n> 2and2a+b > 1, let M = Nz p(Kpn). Then, the threshold
for thegamed(M, 1, q) is

[ nin—-1) B
©=| Zansey| 1)
and the threshold fo€*(M, q, 1) is
_ nin—1)
©=|zani 15 an

Proof. To solve@(M, 1, q) we gply Theorem 8 Given f (F), the maimum of |F| is
attained wherf is a clique. Hence

~ . L0
Q+1= Zgzgfg(lﬂ, whereg(i) = A +Db

It is routine to calculate thaftg(i)] is maximal fori = n, whichgives the thresholdl@).
For¢*(M, q, 1) it is enough to compute the maximum of the function

k
S F
9(F1, ... F) = — i IRl
Yis(@(F) +b)+1
over allk < n and sequenced, ..., Fx) of pairwise edge-disjoint subgrapks C Ky
with |Fi| > 1.

Suppose that themax is the maximum value ofy and is obtained by a sequence
G1,...,Gk € K. Then

Z:(=1 |Gi|
YK (@v(Gi) +b) +1

(2)

an+b+1

= g(Kn) < gmax=9(Gy, ..., Gy =

< max Gil < (rg)
1<i<k av(Gj)+b ~ am+b

(18)

for somem < n.

If m = 2 then he alove imgdies thatgmax < 1/(2a + b) < 1 andhence|gmax] <
L9(Kn)].

In the case of 3< m < n, standard calculationshow that if 2+ b > 1 then
(B)/@n+b+1) < (3)/(@m+ b) only for m = n. Therdore |G;| = (5) for some
i < kandsogmax = g(Kn).

Thus, in any caseg(Ky) ] is the maximum of g|, which implies the formulal7). O
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Corollary 10. Suppose that Maker and Breaker select respectiveland q edges of
Kn(n > 2) and Maker wants to build a cycle. Then Maker wins the game (no matter
who starts)f and only ifq< [n/2] — 1. O

Let us add that the above result, with the assumption that Maker is the first player, can be
obtained directly fronTheorem 2 Ky, is aunion of [n/2] trees, so for the corresponding
matroidM = N7 _1(K,) we have indM) = [n/2].

Theorem 11. Forintegers n> 1and2a+b > 1,let M = N3 b(Kn n). Then, the threshold
for thegame¢(M, 1, q) is

-
= -1
Go 2an+b ’

and the threshold fo€*(M, q, 1) is

n2
o= 2an+b+1 |’

Proof. Let us solve the gam@&*(M, g, 1) only, since the calculating of the corresponding
maximum for€(M, 1, q) is much smpler.

The analysis o£*(M, g, 1) is similar to that presentdd the pioof of the second part
of Theorem 9We define tle functiong analogously and compute the maximumgoby
the following modification of formulaX8):

n? pyle]
- = K < = G 3 e ey G = =1 :
santbr1 - JHnn) = Omac=9(G1 k) K (@(Gi) +b) +1

|Gil Lm/2][m/2]
= 1@@& av(Gj)+b = am-+b

for somem < 2n. Then we onclude that eithem = 2 and|gmax] = 0 < g(Kn,n) Or
3 < m < 2n and the above holds only i = 2n. Thus|g(Kn n)] maximises/ g| and by
Theorem 8wve obtainqgg as desired. (]

Corollary 12. Suppose that Maker and Breaker select respectiveland q edges of
Knn(n > 1) and Maker wants to build a cycle. Then Maker wins the game (no matter
who starts)f and only if < |n/2].

Pikhurko [15] generalised count matroidstegraphs By anr -graph we mean a subset
of ([’r‘]) = {X C [n] : |X] = r}. In ordernot to mess \th details, we state a special case
which admits a nice solution.

For non-negative integei®, . . ., a,—1 define
r—1 [n]
f(H)y=ao+ ) api(H), H§<r>, (19)

i=1
where p;(H) is the nunber ofi-sets covered by at least one edgetbf For example,
P1(H) = | UecH €l andpr (H) = [H|.
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It is easy to prove thaf satisfies 7) and 8) andhence defines a matroM ¢ on ([?]).
(In generalgg could be negative; se&}, Sedion 3].)

Corollary 13. Leta, ..., a1 be non-negative integers,;n 1, and f be defined b§19).
The threbold for the game&(M+, 1, q) is

Proof. By Theorem 8t is enough to show that
H n
r—1| | < r—(1r) ~ for everyH < <[n]>.
i—o @i pi(H) i—oai(}) r
This can be rewritten as

5 (pen(f) (7)) =0

One can verify that

()= me () €)= )

where the last inequality follow&rom double-counting of all pairgA, B) such that

A e (),B € H and A C B. Thus each term in the previous sum is non-negative,

giving the required result. [

Finally, let us propose density game,(Kp, 1, ), played onKy, in which Maker’s
aim is to claim a grapld of density|H |/v(H) > a, for givena > 0. If a is integer then
by Theorem @he threkold for that game is

do = (1+0(1) . (20)

However, the matroid approach breaks dowa i not an integer. The lower bound
1+ 0(1))2% on o still holds: ifg + 1 < ”Z;al then the game lasts at least turns, so
Maker wins playing arbitrarilyTheorem 9implies only thatqo < (1 + o(1))ﬁ. Also,
note that 20) is not generally true foa < 1; e.g. fora < 2/3 Maker wins in two moves

unlessg > 2n — 4. Nevertheless, we conjecture thad) holds for everya > 1.
Conjecture 14. For any real a > 1, the thresold of the density gam®,(Kn, 1, q) is
do = (14 0(1) 5.

6. Computational considerations

Animportant question is whether there are good algorithms realising the strategies given
by the proof ofTheorems Zand3. A moment’s thought reveals that we have to find an
algorithmdemonstratingvhether
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rank VM) > r (22)

for a given matroidM and integerk andr, that is, producing eithek independent sets
whose union has at leaselements or a séf which disprovesZ1) via (3).

There are quite a few such algorithms (e.g. the proof of Edmofidsifesone). The
algorithm of Kelmans and Polesské][runs in polynomial-intE | time and make®(|E|?)
calls to theindependence oracléhat is, tle subroutine which tests whether a sétC E
is independent or not. Note that the cades- |E| orr > |E| are trivial, so we choose
|E| as the sole parameter for measuring efficiency. Thus, if the independence oracle runs
in polynomial time, then Breaker's/Maker’s winning strategylimeorems 22nd3 can be
computed in polynomial time.

For the m#&roid M defined by a submodular functioih, which weconsidered in the
previous sections, one can always devise an independence oracle which runs in polynomial
time. Indeed, a non-empty sitis indgpendent if and only if for anx € X we have

min{g(Y) : Y € X\{x}} > 0, (22)

whereg(Y) = f(YU{x}) —|YU{x}|. The functiong is submodular so its minimum can be
computed in polynomial time by the ellipsoid method as was shown bysGmél, Lowesz
and Schrijver §, 7]. (Schrijver [16] presents aother, more combinatorial, minimisation
algorithm.)
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