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Abstract

The isometric Ramsey number
→

( )IR of a family
→

of

digraphs is the smallest number of vertices in a graph G

such that any orientation of the edges of G contains

every member of
→

in the distance‐preserving way. We

observe that the isometric Ramsey number of a finite

family of finite acyclic digraphs is always finite, and

present some bounds in special cases. For example, we

show that the isometric Ramsey number of the family of

all oriented trees with n vertices is at most n n o n2 + ( ).

KEYWORD S

chromatic number, directed tree, girth, isometric embedding, orien-

tation of a graph

J E L C LA S S I F I C A T I ON

05C20; 05C55; 05C80

1 | INTRODUCTION

In this paper we consider the “isometric” version of the result of Cochand and Duchet [6] who
proved (generalizing a result of Rödl [11]) that for every acyclic digraph

→
H there exists a finite

graph G such that every orientation of G contains an isomorphic copy of
→
H .

First we recall the necessary definitions from Graph Theory. A graph is a pair G V E= ( , )G G

consisting of a set VG of vertices and a set EG of two‐element subsets of VG, called the edges of G.

By a digraph we will mean a pair
→

→ →G V E= ( , )
G G consisting of a set →V

G of vertices and a set
⊂→ → →E V V×

G G G of directed edges, where neither loops x x( , ), nor pairs of opposite arcs x y( , ) and

http://orcid.org/0000-0001-6710-4611
http://orcid.org/0000-0002-9657-4011
http://orcid.org/0000-0003-1518-6234
mailto:t.o.banakh@gmail.com


y x( , ) are allowed. An orientation of a graphG V E= ( , )G G is a function ⋅→ →E V: G G
2 assigning to

each edge ∈e EG an ordered pair → ∈e a b V= ( , ) G
2 such that e a b= { , }. In this case the pair

→ →
∈G V e= ( , { } )G e EG is a digraph called an orientation of G.

A sequence v v( , …, )n0 of distinct vertices of a graphG is called a path inG if for every positive
≤i n the unordered pair v v{ , }i i−1 is an edge of G. The length of the path v v( , …, )n0 is n, that is,

the number of edges. The distance d x y( , )G between two vertices v u, of a graphG is the smallest
length of a path in G connecting the vertices v and u. If u and v cannot be connected by a path,
then we write ∞d x y( , ) =G and assume that∞ n> for all ∈n ω. A graphG is called connected
if any two vertices u v, can be connected by a path in G. A digraph is called connected if its
underlying undirected graph is connected. The distance in a digraph is taken with respect to the
underlying undirected graph.

A sequence v v( , …, )n0 of distinct vertices of a digraph
→
G is called a directed path in

→
G if for

every positive ≤i n the ordered pair v v( , )i i−1 is an edge of
→
G . A directed cycle is a sequence

v v( , …, )n0 of distinct vertices such that ∪ ⊂≤ →v v v v E{( , )} {( , )}n i i i n G0 +1 0 < . A digraph
→
G is acyclic

if it does not contain directed cycles. It is well‐known that each graph G admits an acyclic
orientation

→
G : take any linear order ≤ on the set VG of vertices and for any edge ∈u v E{ , } G put

∈ →u v E( , )
G
if and only if u v< .

Following Rado’s arrow notations, for a graph G and a digraph
→
H let us write →

→
G H if for

every orientation
→
G of G there exists an injective function →→f V V: H G such that an ordered

pair u v( , ) of vertices of
→
H is a directed edge in

→
H if and only if f u f v( ( ), ( )) is a directed edge in

→
G . (Thus we require that f induces an isomorphism of undirected graphs and preserves all edge
orientations.) If, moreover, →d u v d f u f v( , ) = ( ( ), ( ))H G for every pair of vertices ∈ →u v V, H , then

we write ⇒
→

G H and say that f is an isometric embedding of
→
H in

→
G . Since each graphG admits

an acyclic orientation, the arrow →
→

G H implies that the digraph
→
H is acyclic.

Given a graph G and a class
→

of digraphs, we write →
→

G (resp. ⇒
→

G ) if for every

oriented graph
→
∈
→

H we have →
→

G H (resp. ⇒
→

G H ). In this case the family
→

necessarily

consists of acyclic digraphs. For a natural number ∈n  by
→
n we denote the class of oriented

trees on n vertices. By a tree we understand a connected graph without cycles. An oriented tree is
a digraph whose underlying undirected graph is a tree. For ∈n , the directed path

→
In is the

digraph with →V n= {0, …, − 1}In
and →E i i i n= {( − 1, ) : 0 < < }In

. So,
→
In has n vertices and

n( − 1) edges.

For a class
→

of digraphs let
→

( )R (resp.
→

( )IR ) be the smallest number of vertices of a

graphG such that →
→

G (resp. ⇒
→

G ). If no graphG with →
→

G (resp. ⇒
→

G ) exists, then

we put
→

∞( ) =R (resp.
→

∞( ) =IR ). The number
→

( )R (resp.
→

( )IR ) is called the (isometric)

Ramsey number of the family
→

. If the family
→

consists of a unique digraph
→
H , then we write

→
H( )R and

→
H( )IR instead of

→
H({ })R and

→
H({ })IR , respectively.

By Theorem B of Cochand and Duchet [6], for every finite acyclic digraph
→
H the Ramsey

number
→
H( )R is finite. This implies that for every finite family

→
of finite acyclic digraphs the

Ramsey number
→

≤ ∑
→

∈
→→ H( ) ( )

H
R R is finite, too. In Section 2 we shall apply a deep Ramsey

result of Dellamonica and Rödl [7] to prove that the isometric Ramsey number
→

( )IR is finite,
too.

For the family
→
n of oriented trees on n vertices Kohayakawa, Łuczak and Rödl [9] proved

that
→

O n n( ) = ( log )n
4R . In this paper for every ∈n  we construct a graph Gn with < 22n−1
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vertices such that ⇒
→

Gn n, witnessing that
→

( ) < 2n
2n−1

IR . Using Bollobás’ [3] bounds on the
order of graphs of large girth and large chromatic number, we shall improve the upper bounds
→

≤
→

I( ) ( ) < 2n n
2n−1

IR IR to
→
I o n( ) = ( )n

n2IR and
→

o n( ) = ( )n
n4IR . In Theorem 4.5 using random

graphs we improve the latter upper bound to
→

≤ e o n n n( ) (4 + (1)) ( ln ) =n
n n n o n2 2 + ( )IR . The

technique developed for the proof of Theorem 4.5 allows us to improve the upper bound
→

≤ e o n n( ) (2500 + (1)) lnn
8 4R obtained by Kohayakawa et al [9] to the upper bound

K o n n( + (1)) ln4 , where ≈K x x x x= min 16 /(1 − + ln ) 98.8249 …x>1
2 . In Section 5 we search

for long directed paths in arbitrary orientations of graphs. In the final Section 6 we prove that
every infinite graph G admits an orientation containing no directed path of infinite diameter in
G. Some other results and problems related to coloring and orientations in graphs can be found
in [10].

2 | THE ISOMETRIC RAMSEY NUMBER FOR A FINITE
ACYCLIC DIGRAPH

In this section we prove that each finite acyclic digraph
→
H has finite isometric Ramsey number

→
H( )IR . The idea of the proof of this result was suggested to the authors by Yoshiharu

Kohayakawa.

Theorem 2.1. For any finite acyclic digraph
→ →
H V E= ( , ), the isometric Ramsey number

→
H( )IR is finite.

Proof. Clearly, it is enough to the prove the theorem when the digraph
→
H is connected.

Fix any vertex h of
→
H and consider the digraph

→
Γ with

≔
→

≔

∪ ∈

→ → →

→

V V E h h

u v v u u v E

× {0, 1} and {(( , 0), ( , 1))}

{(( , 0), ( , 0)), (( , 1), ( , 1)) : ( , ) }.

H

H

Γ Γ

Observe that the digraph
→
Γ is acyclic, connected, and contains isometric copies of

→
H and

the graph
→
H with the opposite orientation. Being acyclic, the graph

→
Γ admits a linear

ordering < of vertices such that u v< for any directed edge ∈
→
→u v E( , ) Γ .

By Theorem 1.8 of [7], there exists a finite graph G with a linear ordering of vertices
such that for any 2‐coloring of its edges there exists a map →→f V V: GΓ such that

• f is monotone in the sense that for any vertices u v< of
→
Γ we have f u f v( ) < ( ) in G;

• →d f u f v d u v( ( ), ( )) = ( , )G Γ for any vertices u v, of
→
Γ ;

• the set ∈ →f u f v u v E{{ ( ), ( )} : ( , ) }Γ is monochromatic.

In this case we shall say that f is a monochromatic monotone isometric embedding of
→
Γ

into G.

We claim that ⇒
→

G H . Given any orientation
→
G of the graph G, color an edge

∈u v E{ , } G with u v< in green if ∈ →u v E( , )
G
and in red if ∈ →v u E( , )

G
. By the Ramsey

property of G, there exists a monochromatic monotone isometric embedding
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→→f V V: GΓ . If the color of the monochromatic set ∈ →C f u f v u v E= {{ ( ), ( )} : ( , ) }Γ is
green, then the map → ↦→g V V g v f v: , : ( , 0)H G0 0 , is a required isometric isomorphic

embedding of
→
H into

→
G . If the color of C is red, then the map

→ ↦→g V V g v f v: , : ( , 1)H G1 1 , is an isometric isomorphic embedding of
→
H into

→
G . In

both cases we get ⇒
→

G H . □

Corollary 2.2. Any finite family
→

of finite acyclic digraphs has finite isometric Ramsey

number
→

( )IR . □

Corollary 2.3. For every ∈n  the family
→
n of directed trees on n vertices has finite

isometric Ramsey number
→

( )nIR □

The proof of [[7], Theorem 1.8] proceeds by a more general induction involving
amalgamation and hypergraphs, and seems to give very bad bounds on the isometric Ramsey
number

→
( )nIR for the family

→
n of all acyclic digraphs on n vertices. It would be interesting to

get some reasonable upper bound on this function.

3 | SIMPLE BOUNDS FOR THE ISOMETRIC RAMSEY
NUMBERS

→
( )nIR

In this section we prove some simple upper bounds on the isometric Ramsey numbers
→

( )nIR

and
→
I( )nIR . First we present a simple example of a graph witnessing that

→
( ) < 2n

2n−1
IR . The

construction of this graph exploits rectangular products of graphs. By definition, the rectangular
product G H× of two graphs G H, is the graph such that V V V= ×G H G H× and an unordered
pair ⊂g h g h G H{( , ), ( ′, ′)} × is an edge ofG H× if and only if either ∈g g E{ , ′} G and h h= ′ or
g g= ′ and ∈h h E{ , ′} H . It can be shown that for any vertices g h g h( , ), ( ′, ′) of G H× we get

d g h g h d g g d h h(( , ), ( ′, ′)) = ( , ′) + ( , ′).G H G H×

For an (oriented) graphG by G| | we denote the cardinality of the setVG of vertices ofG. For a
cardinal number m by Km we denote the complete graph on m vertices.

Lemma 3.1. Let
→ →

, ′ be two families of finite oriented trees such that for every oriented

tree
→

∈
→

T ′ ′ there is an oriented subtree
→
∈
→

T of
→
T ′ such that

→ →
T T| | = | ′ | − 1. Then for

any graph G with ⇒
→

G we get ⇒
→

G K× ′G| | +1 .

Proof. Let G G K′ = × G| | +1. To prove that ⇒
→

G′ ′, take any oriented tree
→

∈
→

T ′ ′ and
any orientation

→
G ′ of the graph G′. By our assumption, for the tree

→
T ′ there exists an

oriented subtree
→
∈
→

T of
→
T ′ such that

→ →
T T| | = | ′ | − 1. Let t′ be the unique element of the

set → →V V\
T T′

and ∈ →t V T be the unique vertex of
→
T such that t t( ′, ) or t t( , ′) is an edge of

→
T ′.

For every vertex u of the complete graph K G| | +1, identify the graph G with the

subgraph G u× { } and denote by
→
Gu the orientation of the graph G induced by the

orientation of the subgraph G u× { }, inherited from the orientation
→
G ′ of the graph
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G G K′ = × G| | +1. Since ⇒
→

G , there is an isometric embedding
→
→
→

f T G:u u. By the
Pigeonhole Principle, there are two distinct vertices u w, in K G| | +1 such that f t f t( ) = ( )u w .
Now look at the orientation of the edges t t{ , ′} and f t u f t w{( ( ), ), ( ( ), )}u w in the digraphs
→
T ′ and

→
G ′.

If either ∈ →t t E( , ′)
T′

and ∈ →f t u f t w E(( ( ), ), ( ( ), ))u w G′
or ∈ →t t E( ′, )

T′
and

∈ →f t w f t u E(( ( ), ), ( ( ), ))w u G′
, then we define a map

→
→f T G: ′ ′ by f t f t w( ′) = ( ( ), )u and

f τ f τ u( ) = ( ( ), )u for ∈ →τ V T , and observe that f is an isometric embedding of
→
T ′ into

→
G ′.

If either ∈ →t t E( , ′)
T′

and ∈ →f t w f t u E(( ( ), ), ( ( ), ))w u G′
or ∈ →t t E( ′, )

T′
and

∈ →f t u f t w E(( ( ), ), ( ( ), ))u w G′
, then we define a map

→
→f T G: ′ ′ by f t f t u( ′) = ( ( ), )w

and f τ f τ w( ) = ( ( ), )w for ∈ →τ V T , and observe that f is an isometric embedding of
→
T ′

into
→
G ′. □

Corollary 3.2. If for some ∈n  a graph G satisfies the isometric Ramsey relation
⇒
→

G n, then ⇒
→

G K× G n| | +1 +1.

Theorem 3.3. For every ∈n  →
≤

→ →
( ) ( )( ( ) + 1)n n n+1IR IR IR and

→
( ) < 2n

2n−1
IR .

Proof. The inequality
→

≤
→ →

( ) ( )( ( ) + 1)n

n n

+1IR IR IR follows from Corollary 3.2. Indeed,
for every ∈n  we can choose a graph G with

→
G| | = ( )

n
IR vertices and ⇒

→
G n. By

Corollary 3.2, the graph G G K′ = × G| | +1 satisfies the relation ⇒
→

G′ n+1 and hence

→
≤

→ →
G G G( ) | ′ | = | |(| | + 1) = ( )( ( ) + 1).n n n+1IR IR IR

It remains to prove that
→

≤( ) + 1 2n
2n−1

IR for ∈n . For n = 1 we have the equality
→

( ) + 1 = 1 + 1 = 21
20

IR . Assume that for some ∈n  we have proved that
→

≤( ) + 1 2n
2n−1

IR . Then

→
≤

→ →
≤ ≤( ) + 1 ( )( ( ) + 1) + 1 (2 − 1)2 + 1 = 2 − 2 + 1 2 .n n n+1

2 2 2 2 2n n n n n−1 −1 −1
IR IR IR

□

The upper bound
→

( ) < 2n
2n−1

IR can be greatly improved using known upper bounds on the
Erdős function k g¨ ( , )Erdos , which assigns to any positive integer numbers k g, the smallest
cardinality G| | of a graph G with chromatic number ≥χ G k( ) and girth ≥g G g( ) . We recall
that the girth g G( ) of a graph is the smallest cardinality of a cycle in G. If G contains no cycles,
then we put ∞g G( ) = . The chromatic number χ G( ) of a graphG is the smallest number ∈k 
for which there exists a map →χ V k: {1, …, }G such that ≠χ x χ y( ) ( ) for any edge ∈x y E{ , } G.
The following bounds for the Erdős function k g¨ ( , )Erdos were proved by Erdős [8], Bollobás [3],
and Spencer [12], respectively.

Proposition 3.4.

(1) For any k g, we get ≥ ∕k g k¨ ( , ) g( −1) 2Erdos .
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(2) For any ≥k g, 4 we have ≤ ⌈ ⌉k g h¨ ( , ) gErdos where h k k= 6( + 1)ln( + 1).
(3) There exists a constant C such that for any numbers ≥k g, 3 and m k g= ¨ ( , )Erdos we

have the inequality ⋅m m Ckln <g − 2 , which implies that k g o k¨ ( , ) = ( )g−2Erdos as
→ ∞k gmax{ , } .

Write ⇀
→

G if for every orientation
→
G of G and every

→
∈
→

H there is an injective map
→→f V V: H G such that for every directed edge x y( , ) of

→
H the pair f x f y( ( ), ( )) is a directed

edge of
→
G . (Note that we do not require that f induces an isomorphism, that is, G can have

extra edges inside the set →f V( )H .) Another function related to
→

( )IR is Burr’s function
→

( )Burr assigning to every family
→

of oriented trees the smallest number k such that

⇀
→

G for every graphG with chromatic number ≥χ G k( ) . If such number k does not exist,

then we put
→

∞( ) =Burr . By the Gallai‐Hasse‐Roy‐Vitaver Theorem [[13], Theorem 3.13],

the chromatic number χ G( ) of a finite graph G is equal to ∈ ⇀
→

n G Imax{ : }n . This

equality implies that
→
I n( ) =nBurr for every ∈n . In [5] Burr considered the numbers

→
( )nBurr and proved that

→
≤ n( ) ( − 1)n

2Burr . This upper bound was improved to the upper

bound
→

≤ n n( ) (1/2) − (1/2) + 1n
2Burr in [2]. According to (still unproved) Conjecture of

Burr [5], the equality
→

n( ) = 2 − 2nBurr holds for all ≥n 2.

Proposition 3.5. For any ∈n  and a subclass
→
⊂
→
n we get the upper bound

→
≤

→
n( ) ¨ ( ( ), 2 − 2).IR Erdos Burr

Proof. Fix a graph G of cardinality
→

G n| | = ¨ ( ( ), 2 − 2)Erdos Burr with chromatic

number ≥
→

χ G( ) ( )Burr and girth ≥g G n( ) 2 − 2. Let us prove that ⇒
→

G . Take any

orientation
→
G of G and

→
∈
→

H . Since ⇀
→

G , there is an orientation‐preserving
injection

→
→
→

f H G: . Since
→
H is a connected graph with at most n vertices and

≥g G n( ) 2 − 2, the map f is an isometric embedding. So, ⇒
→

G . □

Combining Proposition 3.5 with known upper bounds
→
I n( ) =nBurr and

→
≤( )nBurr

n n(1/2) − (1/2) + 12 we get the following upper bounds for the isometric Ramsey numbers
→
I( )nIR and

→
( )nIR .

Corollary 3.6. For every ∈n  we get the upper bounds

→
≤

→
≤

I n n o n o n

n n n o n n o n

( ) ¨ ( , 2 − 2) = ( ) = ( ) and

( ) ¨
1

2
−

1

2
+ 1, 2 − 2 =

1

2
−

1

2
+ 1 = ( ).

n
n n

n

n
n

2 −4 2

2 2
2 −4

4

IR Erdos

IR Erdos⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

In Theorem 4.5 we shall improve the upper bound o n( )n4 for
→

( )nIR to the upper bound
n n o n2 + ( ).
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Remark 3.7. By Theorem 3 in [9],
→

≥I n( ) /2n
2R for all ∈n . This yields the lower

bound

≤
→

≤
→

≤
→

n I I
1

2
( ) ( ) ( )n n n

2 R IR IR

for the isometric Ramsey numbers
→
I( )nIR and

→
( )nIR .

Remark 3.8. It can be shown that

→ →

→ →

→ →

→
≤

→
≤

I K

I K

I C K K

I C K K K K

( ) = ( ) = 1 = | | ,

( ) = ( ) = 2 = | | ,

( ) = 5 = | | , ( ) = 6 = | × | ,

( ) 30 = | × | , ( ) 42 = | × × | .

1 1 1

2 2 2

3 5 3 2 3

4 5 6 4 2 3 7

IR IR

IR IR

IR IR

IR IR

Question 3.9. What is the exact value of the isometric Ramsey numbers
→
I( )4IR and

→
( )4IR ? Are they distinct?

4 | ISOMETRIC COPIES OF DIRECTED TREES IN
ORIENTATIONS OF RANDOM GRAPHS

In this section we shall apply the technique of random graphs and shall improve the

upper bound
→

o n( ) = ( )n
n4IR established in Corollary 3.6 to the upper bound

→
≤( )nIR

e o n n n(4 + (1)) ( ln ) =n n n o n2 2 + ( ).
First we prove some technical lemmas. The first of them uses the idea of the proof of

Theorem 1 in [9].

Lemma 4.1. A graph G V E= ( , )G G satisfies ⇒
→

G n for some ∈n  if there exist
sequences w( )k k

n
=1
−1 and d( )k k

n
=1
−1 of positive real numbers such that for every ≤ k n2 < the

following conditions hold:

(1) For every set ⊂S s s V= { , …, }k G1 −1 of cardinality k − 1 and every ∈v V S\G , the set
≔ ∈Y y V S y v{ \ : dist ( , ) = 1G G and ≤y s idist ( , )G v i− for some i k< } has cardinality
≤Y d| | k.

(2) Every set ⊂W VG of cardinality ≔ ∈W w m w m| | = ¯ min{ : < }k k spans more than
d k w( + − 1) ̄k k edges in G.

(3) ∑ w V< | |
k

n
k G=1

−1 .

Proof. For a subset ⊂U VG denote by ≔G U U E U[ ] ( , [ ]) the induced subgraph of G
with the set of edges ≔ ∈ ⊂E U u v E u v U[ ] {{ , } : { , } }G . Also, let us write ⇒

→
G U( , ) k,

meaning that, for every
→
∈
→

T k, every orientation
→
G ofG contains an isometric copy of

→
T

which lies inside U .
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We shall inductively prove that for every ≤ ≤k n1 and every set ⊂U VG of size

∑U w| | >
i

k
i=1

−1 , we have ⇒
→

G U( , ) k. The base case k = 1 is trivial. Suppose that this

holds for some positive k n< . Take any ⊂U VG of cardinality ∑U w| | >
i

k
i=1
. Take any

orientation
→
G of the graphG and any directed tree

→
∈
→

T k+1. Fix any vertex u of degree 1

in the tree
→
T . By symmetry, assume that v u( , ) is an arc in

→
T , that is, the arc in

→
T goes

from the unique neighbor v of u to u.
LetW be the set of vertices inU whose out‐degree in G U[ ] is at most d k+ − 1k . We

claim that ≤W w| | k. Suppose not. Then W w| | > k and we can choose a subset ⊂W Wk

of cardinality ≔ ∈W w m w m| | = ¯ min{ : < }k k k . Item 2 guarantees thatWk spans more
than d k w( + − 1) ̄k k edges in G, each edge contributing to out‐degree of some vertex in
Wk. Thus ≥d k w d k W E W d k w( + − 1) ¯ = ( + − 1)| | | [ ]| > ( + − 1) ¯k k k k k k k, which is a
desired contradiction showing that ≤W w| | k.

ThusU U W′ = \ has cardinality ∑ ∑U U W w w w| ′ | = | | − | | > ( ) − =
i

k
i k i

k
i=1 =1

−1 . By the

inductive assumption, ⇒
→

G U( , ′) k, which implies that the digraph
→
G contains an isometric

copy
→
T ′ of the oriented tree

→
T u− such that ⊂→V U′

T′
. Let us identify the tree

→
T u− with its

isometric copy
→
T ′ in

→
G U[ ′]. Let s s{ , …, }k1 −1 be an enumeration of the set ≔ ⊂→S V v U\ { } ′

T′
such that ≤s v idist( , )i for every i k< . Let Y be defined as in Item 1 with respect to v and
s s{ , …, }k1 −1 . By Item 1, ≤Y d| | k. On the other hand, the neighbor ∈ ⊂→v V U′

T′
of u must

have out‐degree inU S\ greater than d k S d+ − 1 − | | =k k. Thus there is an out‐neighbor of
v which is in ∪U S Y\( ). Let u be mapped to this vertex. Then ∈

→
v u E G U( , ) ( [ ]) is oriented

from v to u, as desired. Since d u s i( , ) >G v i− for each i k< , the addition of u cannot violate

theG‐isometry property (since all vertices of
→
T u− are embedded into ∪S v{ }). This gives the

required isometric embedding of
→
T and finishes the proof. □

Our next elementary lemma yields an upper bound on the sum of a geometric progression.

Lemma 4.2. For positive real numbers a c, with c a( − 1) > 1 we get ∑ a <
i

n i
=0

−1

c a(1 + ) n−1 for every ∈n .

Proof. Since ∑ a a a= ( − 1)/( − 1)
i

n i n
=0

−1 , the inequality is equivalent to a − 1 <n

c a a a a ca a(1 + ) ( − 1) = − + ( − 1)n n n n−1 −1 −1 and to a ca a− 1 < ( − 1)n n−1 −1 . The
latter inequality follows from a ca a< ( − 1)n n−1 −1 , which is equivalent to c a1 < ( − 1). □

In the proof of Lemma 4.4 we shall use the following Chernoff‐type bounds; for a proof see,
for example [[1], §A.1].

Lemma 4.3 (Chernoff bounds). Let X X, …, n1 be independent random variables taking
values in {0, 1} and let X be the expected value of their sum ∑X X=

i

n
i=1
. Then

≥ ⋅ ≤ ≥

≤ ≤ ≤

X C X
e

C
X c X

e X c X e

{ } , { (1 + ) }

and { (1 − ) }

C

C

X

c X c X

−1

−( /3) −( /2)2 2

   

 



 

⎛
⎝⎜

⎞
⎠⎟

for every C > 1 and c0 < < 1.
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Lemma 4.4. For positive integers n N, the inequality
→

≤ N( )nIR holds if there exist real
numbers ∈ ∈ ∞c p C, (0, 1), (1, ) satisfying the following inequalities:

(1) c p N N( − 1) > 3 ln(3 )2 ;
(2) C C C p c pN n N c(1 − + ln ) (1 + ) ( ) > ( − 1)ln + ln(1 + ) + ln(3)n n−2 ;
(3) c C c pN N n(1 + ) ( ) > ln 2 + ln(3 )n n2 2 2 2 −4 ;
(4) n n n c p C c n c pN N( − 1) + ( − 1)( − 2)/(1 − ) + (2 /(1 − ))( − 1)(1 + ) ( ) < .n n−2

Proof. Assume that the numbers n N p c C, , , , satisfy the assumptions of the lemma. Let
G G N p= ( , ) be a random graph on N vertices in which an edge ⊂u v V{ , } G appears with
probability p. We shall prove that with nonzero probability the random graph G satisfies

⇒
→

G n.
Let

ℏ ≔ c pN(1 + ) ( ) .n n−2

For every positive integer k n< let

ℏd Cp w
d k

c p
= and =

2( + − 1)

(1 − )
+ 1.k k

k

Chernoff bound implies that any fixed vertex of G has degree ≥ c p N(1 + ) ( − 1) with
probability e< c p N−( /3) ( −1)2

. Consequently, with probability P Ne> 1 − c p N
1

−( /3) ( −1)2
all vertices

ofG have degree c pN< (1 + ) . The condition (1) implies that c p N N− ( /3) ( − 1) < −ln(3 )2

and hence

P Ne Ne> 1 − > 1 − =
2

3
.c p N N

1
−( /3) ( −1) −ln(3 )2

For every k n< , take any pairwise distinct points ∈v s s V, , …, k G1 −1 . If all vertices
of G have degree at most c pN(1 + ) , then for every i k< the ball B s i( , ) =i

∈ ≤x V x s i{ : dist ( , ) }G G i has cardinality

∑≤B s i c pN c c pN| ( , )| ((1 + ) ) < (1 + )((1 + ) ) .i

j

i

j i

=0

The latter strict inequality can be derived from Lemma 4.2 and the inequality
≥ ≥cpN c pN N> 3 ln(3 ) 32 .

By above, the set X of vertices ofG v− at distance at most i k< inG v− from at least
one si has size at most

∑ ∑ ≤ ℏB s i c c pN c pN| ( , )| < (1 + ) ((1 + ) ) < (1 + ) ( ) .
i

k

i

i

k

i k k

=1

−1

=1

−1

+1 −1
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Consider the set Y of neighbors of v that fall into the set X . The definition of X
does not depend on the edges incident to v, so conditioned on X (of size at most ℏ)
the size of Y is dominated by ℏY Bin p′~ ( , ). Chernoff bound shows that the
probability that Y ′ is at least ℏCp C Y= ′ is at most ℏe C( / )C C p−1 . Since the number of
possible choices of v s s, , …, k1 −1 is equal to ≤N N k N!/( − ) ! k, with probability

∑≥
ℏ ℏ

P N
e

C
c N

e

C
1 − > 1 − (1 + ) ,

k

n

k
C

C

p
n

C

C

p

2

=1

−1 −1
−1

−1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

the condition (1) of Lemma 4.1 is satisfied or we have a vertex of degree≥ c pN(1 + ) . We
claim that P > 2/32 . It suffices to prove that

ℏc n N p C C Cln(1 + ) + ( − 1)ln + ( − 1 − ln ) < −ln(3).

But this follows from condition (2).
Next, we prove that with probability > 2/3 the condition (2) of Lemma 4.1 holds. Take

any positive k n< and put ∈w m w m¯ = min{ : < }k k . For any fixed set ⊂W VG of

cardinality W w| | = ¯k, the number of edges it spans is ( )( )Bin p,
w̄

2
k . By Chernoff bound,

the probability that it is less than ( )c p(1 − )
w̄

2
k is less than e c p−(1/2) ( )

wk2 ¯
2 . The probability

P k3, that some set ⊂W VG of cardinality W w| | = ¯k spans less than ( )c p(1 − )
w̄

2
k edges is

( )P e e< < 2k
N

w
c p N c pw w

3, ¯
−(1/2) ( ) −(1/4) ¯ ( ¯ −1)

k

wk
k k

2 ¯
2

2
. We claim that P n< 1/3k3, which will follow

as soon as we show that N c pw w nln 2 − (1/4) ¯ ( ¯ − 1) < −ln (3 )k k
2 . For this it suffices to

check that c pw w N n(1/4) ¯ ( ¯ − 1) > ln 2 + ln(3 )k k
2 .

This follows from the chain of the inequalities

ℏc w w c w c C c C c pN

N n

1

4
̄ ( ̄ − 1) >

1

4
( − 1) > = (1 + ) ( )

> ln 2 + ln(3 ),

k k k
n n2 2 2 2 2 2 2 2 2 2 −4

the last inequality postulated in (3). Therefore, P n< 1/3k3, and the probability P3 that for
every k n< every set ⊂W VG of cardinality W w| | = ¯k spans at least

c p
w

c p w w c p w w d k w(1 − )
¯

2
=

1

2
(1 − ) ( ¯ − 1) ¯ >

1

2
(1 − ) ( − 1) ¯ = ( + − 1) ¯ ,k

k k k k k k⎜ ⎟
⎛
⎝

⎞
⎠

edges is ∑ P n n> 1 − > 1 − (( − 1)/3 ) > 2/3
k

n
k=1

−1
3, . So, with probability > 2/3 the

condition (2) of Lemma 4.1 holds.
Since P P P(1 − ) + (1 − ) + (1 − ) < 11 2 3 , there is a non‐zero probability that the

random graph G G N p= ( , ) satisfies the conditions (1) and (2) of Lemma 4.1.
It remains to show that the condition (3) of Lemma 4.1 holds, too. For this

observe that

184 | BANAKH ET AL



∑ ∑ ∑
ℏ

ℏ

w n
Cp k

c p
n

c p
k

C

c
n

n
n n

c p

C

c
n c pN N

= ( − 1) +
2( + − 1)

(1 − )
= ( − 1) +

2

(1 − )
( − 1)

+
2

1 −
( − 1)

= ( − 1) +
( − 1)( − 2)

(1 − )
+

2

1 −
( − 1)(1 + ) ( ) < .

k

n

k

k

n

k

n

n n

=1

−1

=1

−1

=1

−1

−2

The last inequality follows from the condition (4) of the Lemma.
Now it is legal to apply Lemma 4.1 and conclude that ⇒

→
G n and hence

→
≤ G N( ) | | =nIR . □

Now we are able to prove the promised upper bound
→

≤ e o n n( ) (4 + (1)) ( ln ) =n
n n2IR

n n o n2 + ( ).

Theorem 4.5. For every ∈ε (0, 1) there is ∈nε  such that
→

≤ e ε n n( ) (4 (1 + ) ln )n
n2IR for all ≥n nε.

Proof. Choose any positive ∈δ c, (0, 1) such that

δ c ε δ
c

c
δ(1 + )(1 + ) < 1 + and 4(1 + )

1 −

2 +
> 2 + .

For every ∈n  let N be the smallest integer number, which is greater than

c e

c
n c δ n n

(2 + )

1 −
( − 1)(1 + ) (4(1 + ) ln )

n
n n2 −2

and let

≔p
δ n n

N

4(1 + ) ln
.

2

So, ≥N c e c n c pN N> ((2 + ) /(1 − ))( − 1)(1 + ) ( ) − 1n n n−2 . It is easy to see that

N o e ε n n= ((4 (1 + ) ln ) )n2

and forC e= n the conditions (1), (3) and (4) of Lemma 4.4 hold for all sufficiently large n.
To verify the condition (2), observe that

≥C C C p c pN e e n p
N c

c e n

e n

e n

c

c

N

N
pN

e n

N

N

c

c
δ n n

e n

N

N
δ n n δ o n n

(1 − + ln ) (1 + ) ( ) (1 − + )
( − 1)(1 − )

(2 + ) ( − 1)

=
1 + ( − 1)

( − 1)

1 −

2 +

− 1

= 1 +
1

( − 1)

− 1 1 −

2 +
4(1 + ) ln

> 1 +
1

( − 1)

− 1
(2 + ) ln = (2 + + (1)) ln .

n n n n
n

n

n

n

n

−2

2

2 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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On the other hand, n N c o n n( − 1)ln + ln(1 + ) + ln 3 = (2 + (1)) ln2 . So, the condition
(2) holds for large n. Applying Lemma 4.4, we conclude that

→
≤ ≤N e ε n n( ) (4 (1 + ) ln )n

n2IR

for all sufficiently large n. □

By Corollary 3.6 and Theorem 4.5,
→
I o n( ) = ( )n

n2IR and
→

≤ n( )n n o n2 + ( )IR .

Question 4.6. What is the growth rate of the sequence
→

( )nIR ? Is
→

n( ) =n
o n( )IR ?

The technique developed for the proof of Theorem 4.5 allows us to improve the upper bound

→
≤ e o n n( ) (4(5 ) + (1)) ln ,n

2 4 4R

obtained by Kohayakawa, Łuczak and Rödl in (the proof of) Theorem 1 of [9], and replace the
constant ≈e e4(5 ) = 2500 7452395.96 …2 4 8 by the much smaller constant ≈K 98.82 ….

Theorem 4.7. Let ≔ ≈K x x x xmin 16 /(1 − + ln ) 98.8249 …x>1
2 For any positive ε > 0

there exists ∈nε  such that
→

K ε n n( ) < ( + ) lnn
4R for all ≥n nε. Consequently,

→
n n( ) < 99 lnn

4R for all sufficiently large n.

Proof. We indicate which changes should be made in the proof of Theorem 4.5 to obtain
Theorem 4.7.

In the condition (1) of Lemma 4.1 the inequality ≤d y s i( , )G v i− should be replaced by
≤d y s( , ) 1G v i− .

In the proof of Lemma 4.4 the constant ℏ should be redefined as ℏ ≔ c n pN(1 + )( − 2)

and the conditions (1) to (4) of Lemma 4.4 should be changed to the conditions:
(1′) c pN N> 3 ln(3 )2 ;
(2′) C C C c n p N n N c(1 − + ln )(1 + )( − 2) > ( − 1)ln + ln(1 + ) + ln(3)2 ;
(3′) cC c n pN N n( (1 + )( − 2) ) > ln 2 + ln(3 )2 ;
(4′) n n n c p C c c n n pN N( − 1) + ( − 1)/(1 − ) + (2 (1 + )/(1 − ))( − 1)( − 2) < .
Now we are able to prove Theorem 4.7. Let ≈C 4.92155 … be the unique real number

in ∞(1, ) such that

≔ ≈
C

C C C
K

x

x x x

16

1 − + ln
= min

16

1 − + ln
98.8249 …

x

2

>1

2

1Given any ε > 0, choose real numbers ∈δ c, (0, 1) such that Kδ ε< and

δ
c

c
δ4(1 + )

(1 − )

(1 + )
> 4 + .

2

3

1The approximate values of C and K were found by the online WolframAlpha computational knowledge engine at www.wolframalpha.com
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For every ∈n  let

≔p
c

C c n

1 −

2 (1 + )2 2

and let N be the smallest integer greater than K δ n n(1 + ) ln4 . It is easy to see that the
conditions (1′), (3′), and (4′) are satisfied for all sufficiently large n. To see that (2′) holds,
observe that

≥C C C c n p N
C C C c c

C c n
n

K δ n n

C C C

C

c

c
K δ n n

K

c

c
K δ n n

δ n n δ o n n

(1 − + ln )(1 + )( − 2)
(1 − + ln )(1 + )(1 − )

(2 (1 + ) )
( − 2)

(1 + ) ln

=
1 − + ln (1 − )

4(1 + )
(1 + )( − 2)ln

=
16 (1 − )

4(1 + )
(1 + )( − 2)ln

> (4 + )( − 2)ln = (4 + + (1)) ln .

2
2

2 2 2

4

2

2

3

2

3

On the other hand,

≤n N c n K δ n n c

o n n

( − 1)ln + ln(1 + ) + ln 3 ( − 1)ln(1 + (1 + ) ln ) + ln(1 + ) + ln 3

= (4 + (1)) ln ,

4

so for large n the condition (2′) is satisfied, too.
Applying the modified version of Lemma 4.4, we get

→
≤ ≤N K ε n n( ) ( + ) lnn

4R

for all sufficiently large numbers n. □

5 | LONG DIRECTED PATHS IN ORIENTATIONS OF A
GRAPH

By the Gallai‐Hasse‐Roy‐Vitaver Theorem [[13], Theorem 3.13], each finite graph G has
chromatic number

∈ ⇀
→

χ G n G I( ) = max{ : }.n

Having this characterization in mind, for every graph G consider the numbers

∈ ⇒
→

∈ ⇒
→

χ G n G I χ G n G¯̄ ( ) = sup{ : }, ¯̄ ( ) = sup{ : },I n T n 
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and observe that ≤ ≤χ G χ G χ Ḡ ̄ ( ) ̄ ̄ ( ) ( )T I and

≤χ G G G G¯̄ ( ) sup{diam( ′) + 1 : ′ is a connected component of }.I

Observe that
→
I( )nIR (resp.

→
( )nIR ) is equal to the smallest cardinality G| | of a graph G with

≥χ G n̄ ̄ ( )I (resp. ≥χ G n̄ ̄ ( )T ). So, the characteristics χ ̄Ī and χ ̄T̄ determine the isometric Ramsey

numbers
→
I( )nIR and

→
( )nIR .

We shall show that a graphG has ≤χ Ḡ ̄ ( ) 2I if and only ifG is a comparability graph. We recall

that a graphG is called a comparability graph ifG admits a transitive orientation
→
G (that is, for any

directed edges x y( , ) and y z( , ) of
→
G the pair x z( , ) is a directed edge of

→
G ); equivalently, the setVG of

vertices of G admits a partial order such that a pair u v{ , } of distinct vertices of G is an edge of G if
and only if u and v are comparable in the partial order. By the results of Ghouila‐Houri and of
Gilmore and Hoffman (see [[4], Theorem 6.1.1]), comparability graphs can be characterized as
graphsG whose every cycle of odd length has a triangular chord (more precisely, for every n(2 + 3)‐
cycle on v v( , …, )n0 2 +2 with ≥n 1, there is a residue i modulo n2 + 3 such that ∈v v E{ , }i i G+2 ).
More information on comparability graphs can be found in Chapter 6 of the survey [4].

Proposition 5.1. A graph G has ≤χ Ḡ ̄ ( ) 2I if and only if G is a comparability graph.

Proof. If G is comparability graph, then G has a transitive orientation
→
G . It follows that

for any directed path v v v( , , )0 1 2 in
→
G the pair v v( , )0 2 is an edge of

→
G and hence

≤d v v( , ) 1G 0 2 . This means that ⇒
→

G I̸ 3 and hence ≤χ Ḡ ̄ ( ) 2I .
If G is not a comparability graph, then G contains an odd cycle C without a triangular

chord. It is easy to see that any orientation
→
C of the cycle C contains a directed path

v v v( , , )0 1 2 . SinceC has no triangular chords, d v v( , ) = 2G 0 2 , which means that v v v{ , , }0 1 2 is

an isometric copy of
→
I3 in

→
C and in G. Therefore, ≥χ Ḡ ̄ ( ) 3I . □

Problem 5.2. Characterize graphs G with ≤χ Ḡ ̄ ( ) 3I ( ≤χ G n̄ ̄ ( )I for ≥n 4).

Problem 5.3. Characterize graphs G with ≤χ Ḡ ̄ ( ) 2T ( ≤χ G n̄ ̄ ( )T for ≥n 3).

Remark 5.4. Any cycle C of odd length ≥n 5 satisfies χ C̄ ̄ ( ) = 3I and χ C̄ ̄ ( ) = 2T .

Now we prove a weak 3‐space property for the number χ Ḡ ̄ ( )I . By a weak homomorphism
→f G H: of graphs G H, we understand a function →f V V: G H such that for every edge u v{ , }

of G we have either f u f v( ) = ( ) or f u f v{ ( ), ( )} is an edge of H . For a weak homomorphism
→f G H: and vertex y of H the preimage f y( )−1 is a graph with the set of edges
∈u v E f u y f v{{ , } : ( ) = = ( )}G .

Proposition 5.5. If →f G H: is a weak homomorphism of finite graphs, then

∑≤ ⊂ ≤
∈

χ G χ f y F V F χ H¯̄ ( ) max ¯̄ ( ( )) : , | | ( ) .I

y F

I H
−1

⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭
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Proof. By definition of the chromatic number χ H( ), there exists a coloring
→c V χ H: {1, …, ( )}H of the graph H such that for every edge u v{ , } of H the colors

c u( ) and c v( ) are distinct. For every ∈y H choose an orientation
→
Gy of the graph

G f y= ( )y
−1 such that

→
Gy contains no isometric copy of

→
Ik for k χ G= ̄ ̄ ( ) + 1I y . Let

→
G be the

orientation of the graph G such that for an edge u v{ , } of G the ordered pair u v( , ) is an

edge of
→
G if and only if either c f u c f v( ( )) < ( ( )) or u v( , ) is an edge of

→
Gy for some ∈y H .

We claim that the digraph
→
G contains no isometric copy of the graph

→
Im+1, where

∑ ⊂ ≤
∈

m χ G F V F χ H= max ¯̄ ( ) : , | | ( ) .
y F

I y H⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

Suppose on the contrary that
→
G contains a directed path v v( , …, )m0 such that

d v v m( , ) =G m0 . It follows that c f v c f v( ( ( )), …, ( ( )))m0 is a nondecreasing sequence of
numbers in the interval χ H{1, …, ( )}. Consequently, for every number i in the set
C c f v c f v= { ( ( )), …, ( ( ))}m0 the set ∈J j m c f v i= { {0, …, } : ( ( )) = }i j coincides with some
subinterval ≔ ∈ ≤ ≤a b n a n b[ , ] { : }i i i i of m{0, …, } and the set ∈f v j a b{ ( ) : [ , ]}j i i is a
singleton y{ }i for some vertex ∈y Hi . It follows that v v( , …, )a bi i is a directed path isometric

to
→
I a b|[ , ] |i i

in the graphGyi and hence ≤a b χ G|[ − ]| ¯̄ ( )i i I yi . The choice of the orientation
→
G

guarantees that the set ∈F y i C= { : }i has cardinality ≤F C χ H| | = | | ( ). Then

∑ ∑ ∑≤ ≤
∈ ∈ ∈

m m a b χ G χ G m+ 1 = |[0, ]| = |[ , ]| ¯̄ ( ) = ¯̄ ( ) ,
i C

i i

i C

I y

y F

I yi

which is a desired contradiction. □

6 | INFINITE DIRECTED PATHS IN ORIENTATIONS OF
GRAPHS

Now we discuss the problem of existence of infinite directed paths in orientations of graphs.
Consider the infinite digraphs

→
Iω and

→
I ω− with ∈→ → →V ω V E i i i ω= = , = {( , + 1) : }I I Iω ω ω−

, and
∈→E i i i ω= {( + 1, ) : }I ω−

. Here ∪ω = {0} .
First, observe that Theorem 3.3 implies the following:

Corollary 6.1. There exists a countable graph G such that ⇒
→

G In for every ∈n .

In contrast, we shall prove that each graph G admits an orientation containing no
isometric copy of the digraphs

→
Iω or

→
I ω− and, more generally, no directed paths of infinite

diameter in G. (For a subset ⊂A VG of a graph G its diameter is defined as
∈ ∈ ∪ ∞A d u v u v A ωdiam( ) = sup{ ( , ): , } { }G .)

A sequence ∈∈v V( )n n ω G
ω of distinct vertices of a graphG is called an ω‐path inG if for every

∈n ω the pair v v{ , }n n+1 is an edge ofG. An ω‐path ∈v( )n n ω in a graphG is called ω⃗‐directed (resp.

ω⃖‐directed) in an orientation
→
G of G if for every ∈n ω the pair v v( , )n n+1 (resp. v v( , )n n+1 ) is a

directed edge of
→
G . An ω‐path in G is called directed in an orientation

→
G of G if it is either

ω⃗‐directed or ω⃖‐directed.
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The Ramsey theorem implies that every orientation of the complete countable graph Kω

contains
→
Iω or

→
I ω− . In contrast, we have the following result.

Theorem 6.2. Every graph G has an orientation
→
G containing no directed ω‐paths of

infinite diameter in G. This implies that ⇒
→

G I̸ ω and ⇒
→

G I̸ ω− .

Proof. Without loss of generality, the graphG is connected. Fix any vertex o inG and for
every vertex v of G let v‖ ‖ be the smallest length of a path linking the vertices v and o.
Choose an orientation

→
G of G such that for any edge u v{ , } in G with v u‖ ‖ = ‖ ‖ + 1 the

pair u v( , ) is an edge of
→
G if u‖ ‖ is even and v u( , ) is an edge of

→
G if u‖ ‖ is odd.

We claim that the orientation
→
G contains no directed ω‐paths of infinite diameter. To

derive a contradiction, assume that ∈v( )n n ω is a directed ω‐path of infinite diameter. Fix
any even number ∈n ω such that v n‖ ‖ <0 . Since the ω‐path ∈v( )n n ω has infinite
diameter, there exists a number ∈k ω such that ≥v n‖ ‖k . We can assume that k is the
smallest number with this property. Taking into account that ≤v v|‖ ‖ − ‖ ‖ | 1n n+1 for all
∈n ω, we conclude that v n v‖ ‖ = > ‖ ‖k 0 and v n‖ ‖ = − 1k−1 , and hence v v( , )k k−1 is an

edge of
→
G . Let alsom be the smallest number such that ≥v n‖ ‖ + 1m . For this number we

get v n v n‖ ‖ = + 1, ‖ ‖ =m m−1 and hence v v( , )m m−1 is a directed edge
→
G . Since both pairs

v v( , )k k−1 and v v( , )m m−1 are directed edges of the oriented graph
→
G , the ω‐path ∈v( )n n ω is

not directed in
→
G . Since the graphs

→
Iω and

→
I ω− have infinite diameters, the digraph

→
G

does not contain isometric copies of
→
Iω or

→
I ω− . □

Remark 6.3. Theorem 6.2 implies that every locally finite graphG admits an orientation
containing no directed ω‐paths.
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