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We show that for every sufficiently large n, the number of monotone subsequences of length
four in a permutation on n points is at least

(
⌊n/3⌋

4

)
+

(
⌊(n + 1)/3⌋

4

)
+

(
⌊(n + 2)/3⌋

4

)
.

Furthermore, we characterize all permutations on [n] that attain this lower bound. The
proof uses the flag algebra framework together with some additional stability arguments.
This problem is equivalent to some specific type of edge colourings of complete graphs
with two colours, where the number of monochromatic K4 is minimized. We show that all
the extremal colourings must contain monochromatic K4 only in one of the two colours.
This translates back to permutations, where all the monotone subsequences of length four
are all either increasing, or decreasing only.
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T3(12) T 3(12)τ3(12)

Figure 1. Permutation τ3(12) and its representation graph (introduced in Section 2) T3(12).

1. Introduction

Our work was inspired by a famous result of Erdős and Szekeres [11] that every

permutation on [n] = {1, . . . , n}, where n ! k2 + 1, contains a monotone subsequence of

length k + 1. If n ≫ k2, one expects that the number of monotone subsequences of length

k + 1 is more than just one, which is guaranteed by [11]. According to Myers [22], the

problem of determining the minimum number of monotone subsequences of length k + 1

in permutations on [n] was first posed by Atkinson, Albert and Holton. As in [22], we use

mk(τ) to denote the number of monotone subsequences of length k + 1 in a permutation

τ. The minimum of mk(τ) over all permutations τ ∈ Sn is denoted by mk(n).

Myers [22] described a permutation τk(n) which gives an upper bound on mk(n).

It consists of k increasing sequences K whose sizes differ by at most one and every

monotone sequence of length k + 1 is entirely contained in one of the K sequences. In

other words, with tj = ⌊jn/k⌋, an example of such a permutation is

τk(n) = ( tk−1 + 1, tk−1 + 2, . . . , n − 1, n,

tk−2 + 1, tk−2 + 2, . . . , tk−1 − 1, tk−1,

. . .

1, 2, . . . , t1 − 1, t1 ).

See Figure 1 for τ3(12).

Let r ≡ n (mod k), where 0 " r < k. It is easy to see that

mk(τk(n)) = r

(
⌈n/k⌉
k + 1

)
+ (k − r)

(
⌊n/k⌋
k + 1

)
≈ 1

kk

(
n

k + 1

)
.

Myers [22] proved that m2(n) = m2(τ2(n)) holds and he described all permutations

τ ∈ Sn where m2(τ) = m2(n). He conjectured that the same formula actually holds for

every k ∈ N.

Conjecture 1.1 (Myers [22]). Let n and k be positive integers. In any permutation of [n]

there are at least mk(τk(n)) monotone subsequences of length k + 1.



660 J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari and J. Volec

Notice that any permutation (a1, . . . , an) and its reverse (an, . . . , a1) contain the same

number of monotone subsequences, only the increasing subsequences change to decreasing

subsequences and vice versa. In particular, mk(τk(n)) = mk(τRk (n)), where τRk (n) denotes the

reverse of τk(n). Moreover, there might be other permutations τ such that mk(τ) = mk(τk(n)).

As mentioned earlier, Myers showed the conjecture is true for k = 2, which is actually

a consequence of Goodman’s formula [15]. Very recently, Samotij and Sudakov [32]

confirmed the conjecture if n " k2 + ck3/2/ log k for some absolute positive constant c,

provided k is sufficiently large.

Subject to the additional constraint that all the monotone subsequences of length k + 1

are either all increasing or all decreasing and n ! k(2k − 1), Myers proved that every such

permutation contains at least the conjectured number of monotone subsequences of length

k + 1. He also gave the list Wk
n of all such permutations τ of [n] that satisfy mk(τ) =

mk(τk(n)). Every permutation from Wk
n can be decomposed into k disjoint monotone

subsequences s1, . . . , sk that are either all increasing or all decreasing and their sizes differ

by at most one. Moreover, every monotone subsequence of length k + 1 is a subsequence

of sj for some j. These permutations look similar to τk(n) or τRk (n). It turns out that there

are 2
(

k
nmod k

)
C2k−2
k of them, where Ck is the kth Catalan number.

The interested reader can find the precise definition of Wk
n for general k in [22]. Here,

we study the number of monotone subsequences with k = 3. Hence we give a simpler

alternative definition for W3
n , where n ! 15.

First we describe a method to get any permutation from W3
n with no increasing

subsequence of length 4.

(1) Start with the identity permutation.

(2) Divide it into 3 blocks such that the size of each block is ⌊n/3⌋ or ⌊n/3⌋ + 1. More

formally, choose elements b1 and b2 such that b1, b2 − b1 and n − b2 are all from the

set {⌊n/3⌋, ⌊n/3⌋ + 1}. Then the three blocks are

(1, 2, . . . , b1), (b1 + 1, b1 + 2, . . . , b2), (b2 + 1, b2 + 2, . . . , n).

(There are 1 or 3 choices for the pair (b1, b2), depending on the remainder of dividing

n by 3.)

(3) Reverse the blocks. At this point we have the permutation

(b1, b1 − 1, . . . , 2, 1, b2, b2 − 1, . . . , b1 + 2, b1 + 1, n, n − 1, . . . , b2 + 2, b2 + 1).

(4) Change the subsequence (2, 1, b2, b2 − 1) to one of the following:

(2, 1, b2, b2 − 1), (2, b2, 1, b2 − 1), (2, b2, b2 − 1, 1),

(b2, 2, 1, b2 − 1), (b2, 2, b2 − 1, 1).

(5) Make a similar replacement for the subsequence (b1 + 2, b1 + 1, n, n − 1).

(6) Change the subsequence (b1, b1 − 1, b1 + 2, b1 + 1) to one of the following:

(b1, b1 − 1, b1 + 2, b1 + 1), (b1 + 1, b1 − 1, b1 + 2, b1), (b1 + 2, b1 − 1, b1 + 1, b1),

(b1 + 1, b1, b1 + 2, b1 − 1), (b1 + 2, b1, b1 + 1, b1 − 1).

(7) Make a similar replacement for the subsequence (b2, b2 − 1, b2 + 2, b2 + 1).
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Figure 2. Permutation (6,5,3,13,2,1,10,9,8,17,7,4,16,15,14,12,11).

Each above permutation (as well as its reverse) belongs to W3
n since it has m3(τ3(n))

monotone subsequences of length 4, all of which are decreasing. For n ! 15, we exhaust

all of W3
n , as the number of obtained permutations, 2 · 54

(
3
r

)
, where r is the remainder of

dividing n by 3, coincides with the value of |W3
n | obtained by Myers.

To illustrate the above process, let n = 17. We start with (1, 2, . . . , 17). Let b1 = 5, b2 = 11.

After the reversal of the blocks, we have (5, 4, 3, 2, 1, 11, 10, 9, 8, 7, 6, 17, 16, 15, 14, 13, 12).

Now we can change, one by one in the given order, the subsequences (2, 1, 11, 10),

(7, 6, 17, 16), (5, 4, 7, 6), (11, 10, 13, 12) to (11, 2, 1, 10), (17, 7, 6, 16), (6, 5, 7, 4), (13, 10, 12, 11)

respectively, to get

(6, 5, 3, 13, 2, 1, 10, 9, 8, 17, 7, 4, 16, 15, 14, 12, 11).

This permutation is depicted in Figure 2.

In his paper, Myers [22] also conjectured a weaker asymptotic version.

Conjecture 1.2 (Myers [22]). Let k be positive integer and let n → ∞. In any permutation

of [n] there are at least (1 + o(1))( n
k+1

)/kk monotone subsequences of length k + 1.

First, we prove Conjecture 1.2 for k = 3.

Theorem 1.3. Any permutation of [n] contains at least (1/27 + o(1))( n
4
) monotone sub-

sequences of length 4.

Our main result is proving Conjecture 1.1 for k = 3 and n sufficiently large.

Theorem 1.4. There exists n0 such that if n ! n0, then every permutation τ on [n] contains

at least
(

⌊n/3⌋
4

)
+

(
⌊(n + 1)/3⌋

4

)
+

(
⌊(n + 2)/3⌋

4

)

monotone subsequences of length 4, with equality if and only if τ ∈ W3
n .
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Our results are proved using the flag algebra framework and the stability method.

Although Theorems 1.3 and 1.4 are stated in terms of permutations, we translate them to

the language of graph theory since the resulting computations and arguments are simpler.

In graph theory language, we minimize the number of copies of K4 and K4 over graphs

from permutations on [n]. Let us note that the question of minimizing the number of

copies of K4 and K4 over all graphs on n vertices is open. The best upper bound ≈ 1/33

is due to Thomason [36]. The first known lower bound ≈ 1/46 is due to Giraud [13].

It was improved using flag algebras to 0.0287 . . . by Sperfeld [34] and independently by

Nieß [23], and then further improved by Flagmatic [37] to 0.0294 . . . ≈ 1/34.

We also had a computer program, developed originally by Dan Krá
,
l, doing flag algebra

computations for permutations directly. It was easy to modify this program to compute

upper bounds on densities of other subsequences instead of lower bounds for monotone

subsequences. The results we obtained will be explained in the next paragraph.

The packing density of a permutation τ ∈ Sk is the limit for n → ∞ of the maximum

density of τ in σ over all σ ∈ Sn. We denote the limit by δ(τ). The packing density is

well understood [1] for the so-called layered permutations.1 Up to symmetry, this includes

all permutations in S3 and all but two permutations, 1342 and 2413, from S4. Albert,

Atkinson, Handley, Holton and Stromquist [1] proved that 0.19657 " δ(1342) " 2/9 and

51/511 " δ(2413) " 2/9. Presutti [27] improved the lower bound for δ(2413) to 0.1024732.

Further improvement on the lower bound was obtained by Presutti and Stromquist [28],

who showed that

0.1047242275767320904 . . . " δ(2413),

and conjectured that it is the correct value. A direct application of the semidefinite

method from the flag algebra framework for permutations on S7 gave upper bounds

δ(1342) " 0.1988373 and δ(2413) " 0.1047805. Since our upper bounds do not match the

lower bounds, we will not discuss these bounds any further in this paper.

This paper is organized as follows. In the following section, we translate the problem

of determining the density of monotone subsequences in permutations to determining

densities of particular induced subgraphs in permutation graphs. In Section 3, we describe

how we use the framework of flag algebras and we will prove Theorem 1.3. Our proof

of the density result actually provides some additional information about the extremal

structures, which leads to a proof of a stability property for this problem. This is discussed

in Section 4. Finally, in Section 5, we use the stability property to prove Theorem 1.4.

We utilize the semidefinite method from flag algebras to formulate our question about

subgraph densities as an optimization problem, more precisely, as a semidefinite pro-

gramming problem. With computer assistance, we generate this semidefinite programming

problem and then we use CSDP [8], an open-source semidefinite programming library,

to find a numerical (approximate) solution to the problem. In order to obtain an exact

result, the numerical solution needs to be rounded. This was again done with computer

1 A permutation τ ∈ [n] is layered if there exist positive numbers n1, . . . , nr summing to n, such that τ starts
with the n1 first positive integers in reverse order, followed by the next n2 positive integers in reverse order
and so on. For example τRk (n) is a layered permutation.
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assistance, in the computer algebra software SAGE [35]. We had trouble finding a detailed

description of rounding in other papers. Hence we decided to include more details about

our rounding procedure in the Appendix.

Our computer programs, their outputs, and their description for the flag algebra part of

this paper can be downloaded at http://www.math.uiuc.edu/˜jobal/cikk/permutations/.

2. Graph densities

Given a graph G, we use V (G) and E(G) to denote its vertex and edge sets, respectively, and

let v(G) = |V (G)|, e(G) = |E(G)|. For a vertex v of G, we denote the set of its neighbours

by ΓG(v). We omit a subscript if G is clear from the context. Given two graphs G and G′,

an isomorphism between them is a bijection f : V (G) → V (G′) satisfying f(v1)f(v2) ∈ E(G′)

if and only if v1v2 ∈ E(G). Two graphs G and G′ are isomorphic (G ∼= G′) if and only if

there is an isomorphism between them. For a graph G and a vertex set U ⊆ V (G), denote

by G[U] the induced subgraph of G on vertex set U. Suppose H and G are graphs on l

and n vertices, respectively. Let P (H,G) be the number of l-subsets U of V (G) such that

G[U] ∼= H , and define the density of H in G to be

p(H,G) =
P (H,G)(

n
l

) .

Given a permutation τ of [n], define its representation graph to be a graph on vertex

set [n] where ij with i < j is an edge if and only if τ(i) > τ(j). Call an n-vertex graph G

admissible if there is a permutation of [n] whose representation graph is isomorphic to G,

so the vertex set of G may not be [n]. Denote by Ml the set of admissible graphs on l

vertices, up to isomorphism. It is easy to see that if G is admissible, then so are G and all

induced subgraphs of G.

Given a permutation τ of [n], let G be its representation graph. Then the number of

monotone subsequences of length 4 in τ is equal to the number of K4 and K4 in G, i.e.,

m3(τ) = P (K4, G) + P (K4, G). Let

F(G) = P (K4, G) + P (K4, G) and f(G) = p(K4, G) + p(K4, G).

Instead of proving Theorem 1.3 directly, we prove its reformulation to the language of

graphs and densities.

Theorem 2.1. If G is an admissible graph on n vertices, then f(G) ! 1/27 + o(1), where

o(1) → 0 as n → ∞.

It is easy to see that

f(G) =
∑

H∈Ml

f(H)p(H,G) for 4 " l " n. (2.1)

Therefore minH∈Ml
f(H) provides a lower bound on f(G) (since 0 " p(H,G) " 1 and∑

H∈Ml
p(H,G) = 1), although this bound is unsurprisingly weak for small l.
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Denote by T3(n) the 3-partite Turán graph on n vertices (i.e., complete 3-partite graph

on n vertices with sizes of parts differing by at most one). We can see that T3(n) is the

representation graph of τ3(n). See Figure 1 for an example, where n = 12.

Theorem 2.2. There exists for consistency n0 such that if G is an admissible graph on n ! n0

vertices minimizing F over all admissible graphs on n vertices, then G is obtained from T3(n)

by removing edges or G is obtained from T3(n) by adding edges.

Remark. Let G be an extremal graph. By Theorem 2.2, G can be transformed into T3(n)

or T3(n). We may assume without loss of generality that G is obtained from T3(n) by

removing edges. Since T3(n) does not contain any copy of K4 and removing edges does

not introduce new copies of K4, there are no K4 in G. Moreover, since G is extremal

and removing edges does not destroy any copy of K4, the numbers of copies of K4 in

G and T3(n) are equal. Hence we know that in an extremal permutation τ, monotone

subsequences of length 4 are either all increasing or all decreasing. Thus τ belongs to the

family W3
n constructed by Myers (and Theorem 1.4 follows from Theorem 2.2). In fact, it

is not hard to see that τ ∈ W3
n directly. Indeed, τ can be decomposed into three monotone

subsequences s1, s2, s3, that correspond to the parts of the Turán graph, and all monotone

4-subsequences are entirely contained in them. Then it follows that the domains of s1, s2, s3
form three consecutive intervals of [n], except for some possible intertwining at their ends

that involves at most two elements from each interval, which leads to the desired structure

of τ.

3. Flag algebra settings

The flag algebra method, invented by Razborov [29], is very general machinery and has

been widely used in extremal graph theory. See [30] for a recent survey of flag algebra

applications. To name just some of them, flag algebra was used for attacking the Caccetta–

Häggkvist conjecture [19, 31], determine induced densities of graphs [10, 16, 18, 25, 26], of

hypergraphs [5, 12, 14, 24], of oriented graphs [33], of subhypercubes in hypercubes [3, 7],

of coloured graphs in a coloured environment [6, 9, 17, 20], and to attack some problems

in geometry [21].

We apply this method to the family of admissible graphs. A type σ is an admissible

graph on vertex set [k] for some non-negative integer k, where k is called the size of σ,

denoted by |σ|. We use 0 and 1 to denote (the unique) types of size 0 and 1 respectively.

A σ-flag F is a pair (M, θ) where M is an admissible graph and θ : [k] → V (M) induces

a labelled copy of σ in M. In other words, we use [k] to label k vertices of an unlabelled

graph M, and the labelled vertices induce a labelled copy of σ. Two σ-flags F1 = (M1, θ1)

and F2 = (M2, θ2) are isomorphic (denoted as F1
∼= F2) if there exists a graph isomorphism

f : V (M1) → V (M2) such that fθ1 = θ2. Such a function f is called a flag isomorphism

from F1 to F2. Given an admissible graph M, if all σ-flags with the underlying graph M

are isomorphic, then we use Mσ to denote this unique σ-flag; see Figure 3 for an example

where M ∈ {K4, K4}. Denote by Fσ
l the set of σ-flags on l vertices, up to isomorphism.

Note that F0
l is just Ml and Fσ

|σ| = {σ}.
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1

K1
4

1

K
1
4

Figure 3. 1-flags K1
4 and K

1
4.

In Section 2, we defined graph density p(H,G), which extends to flag density in a

straightforward way. Given σ-flags F ∈ Fσ
l and K = (G, θ) ∈ Fσ

n for l " n, define P (F,K)

to be the number of l-subsets U of V (G) such that Im(θ) ⊆ U and (G[U], θ) ∼= F .

Additionally, define p(F,K), the density of F in K , as

p(F,K) =
P (F,K)
(
n−|σ|
l−|σ|

) .

By convention, we set P (F,K) = 0 if n < l. More generally, given flags F ∈ Fσ
l , F ′ ∈ Fσ

l′

and K = (G, θ) ∈ Fσ
n , where n ! l + l′ − |σ|, we define a joint density p(F, F ′;K) as the

probability that if we choose two subsets U,U ′ of V (G) uniformly at random, subject to the

conditions |U| = l, |U ′| = l′ and U ∩ U ′ = Im(θ), then (G[U], θ) ∼= F and (G[U ′], θ) ∼= F ′.

In this paper, whenever we use p(F,K) or p(F, F ′;K), we assume that the size of K is

large enough.

It is not very hard to show that (see Lemma 2.3 in [29])

p(F,K)p(F ′, K) = p(F, F ′;K) + o(1), (3.1)

where o(1) tends to 0 as n tends to infinity. Let X = [F1, . . . , Ft] be a vector of σ-flags with

Fi ∈ Fσ
li
. For any such X and a σ-flag K , define XK = [p(F1;K), . . . , p(Ft;K)]. It follows

that for any t-by-t positive semidefinite matrix Q = {Qij}, we have

0 " XT
KQXK =

∑

ij

Qijp(Fi;K)p(Fj;K) =
∑

i,j

Qijp(Fi, Fj;K) + o(1). (3.2)

In the definition of p(F,K) and p(F, F ′;K), we require F, F ′ and K to be σ-flags, but the

definition itself extends to the case where F, F ′ are σ-flags but K is not. In this case, by

the definition, we have p(F,K) = p(F, F ′;K) = 0. Let Θ(k, G) be the set of all injective

mappings from [k] to V (G), where G is an admissible graph.

We can extend (3.2) to any θ ∈ Θ(|σ|, G):

0 "
∑

i,j

Qijp(Fi, Fj; (G, θ)) + o(1).

Therefore, if we choose θ from Θ(|σ|, G) uniformly at random, then its expectation is

non-negative:

0 "
∑

i,j

Eθ∈Θ(|σ|,G)

[
Qijp(Fi, Fj; (G, θ))

]
+ o(1)

=
∑

H∈Ml

(∑

i,j

Eθ∈Θ(|σ|,H)

[
Qijp(Fi, Fj; (H, θ))

])
p(H,G) + o(1).



666 J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari and J. Volec

1

σ0

1 3

2

σ1

1 3

2

σ2

Figure 4. Types used in flag computation.

(Recall that we implicitly assume that l ! 2li − |σ| for each i.) Note that the coefficient of

p(H,G) is determined by σ, X, Q and H . In particular, it is independent of G, so denote

this coefficient by cH (σ, X, Q). Then we have
∑

H∈Ml

cH (σ, X, Q)p(H,G) + o(1) ! 0.

Every choice of σ, X, Q gives one such inequality. We can add the inequalities obtained

for several different types σi, using appropriate Xi and Qi. Denoting cH =
∑

i cH (σi, Xi, Qi),

we obtain
∑

H∈Ml

cH · p(H,G) + o(1) ! 0.

Then together with (2.1) we have

f(G) + o(1) !
∑

H∈Ml

(f(H) − cH ) · p(H,G) ! min
H∈Ml

(f(H) − cH ). (3.3)

By (3.3), if for some choice of (large enough) l and cH we have

min
H∈Ml

(f(H) − cH ) = 1/27, (3.4)

then the proof of Theorem 2.1 is complete.

Proof of Theorem 2.1. We show (3.4) with l = 7, where |M7| = 776. We use three choices

of (σ, X, Q). We use types σ0 : P1, σ1 : P3, and σ2 : P 3, where Pi is a path on i vertices; see

Figure 4.

For σ0, X0 consists of flags in Fσ0
4 , and for σi with i = 1, 2, Xi consists of flags in Fσi

5 .

Here we have |Fσ0
4 | = 20 and |Fσ1

5 | = |Fσ2
5 | = 71. As mentioned earlier, the flag algebra

method is computer-assisted. We use a computer program to find M7,Fσ0
4 ,Fσ1

5 ,Fσ2
5 , and to

compute Eθ p(F, F ′; (H, θ)) for each H ∈ My . Then, finding positive semidefinite matrices

Q0, Q1, Q2 to maximize minH∈M7 (f(H) − cH ) can be done by computer solvers such as

CSDP [8] and SDPA [38]. Unfortunately, solvers can only give an approximate solution.

For this problem, we get 0.0370370369999. In order to get exactly 1/27, we need to round

the matrices Q0, Q1, Q2 found by a computer solver. By rounding we mean finding rational

matrices Q′
0, Q

′
1, Q

′
2, which would make the computations exactly 1/27 when computed

over rational numbers.

To simplify the process of rounding, we reduce the number of variables and constraints

by restricting the set of feasible solutions. For i ∈ {1, 2, 3} and flags F1, F2, denote by

Qi(F1, F2) the entry in Qi corresponding to indices of F1 and F2 in Xi. Since f(H) = f(H)
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for every graph H , a natural restriction is that

f(H) − cH = f(H) − cH (3.5)

for every graph H . This will allow us to consider only one of H,H and thus decrease the

number of constraints from 776 to 388, since there is no self-complementary graph on 7

vertices because the number of possible edges and non-edges is
(
7
2

)
= 21, which is an odd

number.

Since σ1 = σ2, we add the constraints Q1(F1, F2) = Q2(F1, F2) for every F1, F2 ∈ Fσ1
5 .

This makes Q2 completely defined by Q1. Moreover, we add the constraints

Q0(F1, F2) = Q0(F1, F2) = Q0(F1, F2) = Q0(F1, F2)

for every F1, F2 ∈ Fσ0
4 . This reduces the number of entries to round in the symmetric

matrix Q0 from ( 21
2

) to ( 11
2

).

We reduced the number of constraints from 776 to 388, and we reduced the number of

variables from ( 21
2

) + 2( 72
2

) to ( 11
2

) + ( 72
2

). With these reductions, we managed to round

the entries in Q1, Q2 and Q3, and thus we obtained a solution for (3.4).

The rounded matrices as well as programs computing all possible X and performing

the rounding process can be obtained at http://arxiv.org/abs/1411.3024.

We give more details about the rounding step in the Appendix.

In (3.4), we not only have that the minimum of f(H) − cH is 1/27, which proves

Theorem 2.1, but we also have the values of f(H) − cH for each H in M7.

Let L = {H ∈ M7 : f(H) − cH = 1/27}. We listed L in Figure 5. We have the following

proposition for graphs not in L.

Proposition 3.1. Let G be an admissible graph of order n → ∞ such that f(G) = 1/27 +

o(1). If H ∈ M7 \ L, then p(H,G) = o(1).

Proof. Using (3.3), we have that

1

27
+ o(1) = f(G) + o(1) !

∑

H∈Ml

(f(H) − cH ) · p(H,G).

In this section, we have shown that by choosing l = 7 and types σ0, σ1, σ2 we have

min
H∈M7

(f(H) − cH ) = 1/27.

Then, since
∑

H∈Ml

p(H,G) = 1,

we know that if f(H) − cH > 1/27, then p(H,G) = o(1).

Notice that Proposition 3.1 can be stated equivalently as follows.

Proposition 3.2. For every δ > 0 there exists n0 = n0(δ) and ε′ > 0 such that, for every

admissible graph G of order n > n0 with f(G) < 1/27 + ε′, if H ∈ M7 \ L, then p(H,G) < δ.
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Figure 5. Graphs in L. The first eight graphs are induced subgraphs of T3(n) or T 3(n). In order to save space,
a depicted graph H represents both H and H .

Note that it is sufficient to pick

ε′ < δ · min
H∈M7\L

{f(H) − cH − 1/27}.

Proposition 3.2 will help us to get the stability property of admissible graphs G with

f(G) = 1/27 + o(1), which is discussed in the next section.

4. Stability property

In this section we will prove the following stability type statement.

Theorem 4.1. For every ε > 0 there exist n0 and ε′ > 0 such that every admissible graph G

of order n > n0 with f(G) " 1/27 + ε′ is isomorphic to either T3(n) or T3(n), after adding

and/or deleting at most 20εn2 edges.

We will use our flag algebra results from Section 3 and the infinite removal lemma to

prove Theorem 4.1. The infinite removal lemma, proved by Alon and Shapira [2], is a

substantial generalization of the induced removal lemma.

Lemma 4.2 (Infinite Removal Lemma [2]). For any (possibly infinite) family H of graphs

and ε > 0, there exists δ > 0 such that if a graph G on n vertices contains at most δnv(H)
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induced copies of H for every graph H in H, then it is possible to make G induced H-free,

for every H ∈ H, by adding and/or deleting at most εn2 edges.

Proof of Theorem 4.1. Fix a small ε > 0. Let δ be from Lemma 4.2, when applied

with ε and H = (M7 \ L) ∪ {not admissible graphs}. Let ε′ < ε4 and n1 be given by

Proposition 3.2 such that p(H,G) < δ for every H ∈ M7 \ L and G on at least n1 vertices.

Let n0 > n1 such that f(G) > 1/27 − ε′ for all G of order at least n0/2. Notice that every

non-admissible graph H satisfies p(H,G) = 0 for every admissible G.

Let G be an admissible graph of order n > n0 with f(G) " 1/27 + ε′. Now we use

Lemma 4.2 and conclude that by adding and/or deleting at most εn2 edges, every induced

subgraph of G on 7 vertices belongs to L and G is still admissible.

By direct inspection of graphs in L, we have the following two properties of G. Notice

that if all 7-vertex induced subgraphs of G satisfy these two properties, then so does G.

Also notice that a graph H satisfies these two properties if and only if H satisfies them.

Property A: There are no K4 and K4 that share a vertex.

Property B: For every pair of K4 that share at least one vertex, the union of their vertex

sets spans a clique. For every pair of K4 that share at least one vertex, the union of

their vertex sets spans an independent set.

For x ∈ V (G), let (G, x) be the 1-flag where vertex x is the labelled vertex. Then

P (K1
4 , (G, x)) is the number of K4 in G that contain x. Define

F(x, G) = P (K1
4 , (G, x)) + P (K

1
4, (G, x)) and f(x, G) = F(x, G)

/(
v(G) − 1

3

)
.

Then we have

f(G) =

(∑

x

f(x, G)

)/
v(G).

Let G0 = G. For i ! 0, let xi be the vertex with largest f(xi, Gi). If f(xi, Gi) > 1/27 + 2ε′/ε,

we create Gi+1 from Gi by removing vertex xi. If f(xi, Gi) " 1/27 + 2ε′/ε, we define G′ = Gi

and d = i. It is not hard to show (see e.g. the derivation of (4.1.)) that f(Gi) " f(Gi−1),

so f(Gi) " f(G) " 1/27 + ε′. Also notice that the process is not deterministic if there are

more candidates for xi for some i (any choice of xi will work).

Claim 4.3. d < εn.

Proof. Let v = v(Gi−1) and let y denote the vertex deleted from Gi−1. Then

f(Gi−1) − f(Gi) ! 4ε′

εn
, (4.1)
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which follows from the computation

f(Gi−1) − f(Gi) =

∑
x f(x, Gi−1)

v
−

∑
x f(x, Gi)

v − 1

=
f(y, Gi−1) +

∑
x ̸=y f(x, Gi−1)

v
−

∑
x f(x, Gi)

v − 1

=
f(y, Gi−1) + (

∑
x ̸=y F(x, Gi−1))/

(
v−1
3

)

v
−

∑
x f(x, Gi)

v − 1

=
4f(y, Gi−1) +

(
v−2
3

)
(
∑

x F(x, Gi))/(
(
v−2
3

)(
v−1
3

)
)

v
−

∑
x f(x, Gi)

v − 1

=
4f(y, Gi−1) + v−4

v−1

∑
x f(x, Gi)

v
−

∑
x f(x, Gi)

v − 1

=
4(v − 1)f(y, Gi−1) + (v − 4)

∑
x f(x, Gi) − v

∑
x f(x, Gi)

v(v − 1)

=
4f(y, Gi−1) − 4f(Gi)

v

! 4(2ε′/ε − ε′)

n
! 4ε′

εn
.

If follows from n ! n0 that f(H) > 1/27 − ε′ for every admissible graph H on at least

n/2 vertices. However, if d > εn, then for i = εn, f(Gi) < 1/27 + ε′ − 4iε′/εn < 1/27 − ε′,

which is a contradiction since Gi has at least n − εn = (1 − ε)n ! n/2 vertices.

Claim 4.4. The number of vertices x with f(x, G′) < 1/27 − ε is at most εv′, where v′ =

v(G′).

Proof. Let the number of vertices with f(x, G′) < 1/27 − ε be z.

v′f(G′) =
∑

x

f(x, G′) < z

(
1

27
− ε

)
+ (v′ − z)

(
1

27
+

2ε′

ε

)

= −zε + v′ 1

27
+ v′ 2ε

′

ε
− z

2ε′

ε
<

v′

27
+

2v′ε′

ε
− εz.

If z > εv′, then we get

f(G′) <
1

27
+

2ε′

ε
− ε2 <

1

27
− ε′,

which is a contradiction (recall that ε′ < ε4).

Let G′′ be the graph obtained from G′ by removing all such vertices. We have removed

at most εv′ vertices, so

F(x, G′) − F(x, G′′) < εv′
(
v′ − 2

2

)
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for each vertex x ∈ V (G′′). Denote v(G′′) by v′′. We have v′′ ! (1 − ε)v′ and

F(x, G′′) > F(x, G′) − εv′
(
v′ − 2

2

)

!
(

1

27
− ε

)(
v′ − 1

3

)
− εv′

(
v′ − 2

2

)

!
(

1

27
− ε

)
(v′ − 1)(v′ − 2)(v′ − 3)

6
− ε

(v′ − 1)(v′ − 2)(v′ − 3)

1.5

!
(

1

27
− 5ε

)(
v′′ − 1

3

)
.

We know that f(x, G′) " 1/27 + 2ε′/ε. Then, since ε′ < ε4 and v′′ ! (1 − ε)v′, we have

F(x, G′′) " F(x, G′) "
(

1

27
+

2ε′

ε

)(
v′ − 1

3

)
"

(
1

27
+ 5ε

)(
v′′ − 1

3

)
.

This means that for every vertex x ∈ V (G′′), we have
(

1

27
− 5ε

)(
v′′ − 1

3

)
< F(x, G′′) <

(
1

27
+ 5ε

)(
v′′ − 1

3

)
. (4.2)

For x, y ∈ V (G′′), write x ∼ y if x = y or there is a chain of vertex-intersecting K4 or

K4 connecting x to y. Clearly, ∼ is an equivalence relation, and by Property A, each chain

consists of cliques only or independent sets only. By Property B, each ∼-equivalence class

is a clique or an independent set. Let s be the size of the class of x. This means that

F(x, G′′) =
(
s−1
3

)
. It follows from (4.2) that

(
1

3
− 16ε

)
v′′ < s <

(
1

3
+ 16ε

)
v′′, (4.3)

which means each ∼-equivalence class has size at least (1/3 − 16ε)v′′ and at most (1/3 +

16ε)v′′.

Next, we claim that equivalence classes are all cliques or all independent sets. Suppose

on the contrary that G′′[A] is a clique and G′′[B] is an independent set. Without loss of

generality, assume that the edge density between A and B is at least 1/2. Then there exists

a vertex x in B such that |Γ(x) ∩ A| ! |A|/2. Taking a 4-set X ⊂ B containing x and a

3-set Y ⊂ Γ(x) ∩ A, we obtain G′′[X] = K4 and G′′[Y ∪ {x}] = K4. We find a K4 and a

K4 that share a vertex x, contradicting Property A.

Without loss of generality, assume that each equivalence class is an independent set. It

follows from (4.3) that there are exactly three equivalence classes. Denote them by A1, A2

and A3. If there exist an x ∈ Ai and y1, y2, y3 ∈ Aj (i ̸= j) such that none of xyk is an edge,

then x ∼ yk , which would contradict Property B. This means that all but at most 4v′′ of

edges between equivalence classes are in G′′. To get T3(v′′), we need to add these edges

and balance the three sets. In this step we change at most 4n + 16εn2 edges.

We first change at most εn2 edges of G such that G does not contain any H ∈ M7 \ L.

Then we remove at most 2εn vertices to form G′′. Then we change at most 4n + 16εn2

edges to get T3(v′′). Therefore, to get T3(n) from G, we only need to change at most

εn2 + 2εn2 + 4n + 16εn2 " 20εn2 edges, as required.



672 J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari and J. Volec

x

y1 z1

y2

z2

y3

z3
S

Figure 6. The graph S.

5. Exact result

We call u ∈ V (G) a clone of v ∈ V (G) if Γ(u) = Γ(v). In particular, uv is not an edge of G.

Proposition 5.1. Let G be an admissible graph of order n. If we add a clone x′ of some x ∈
V (G) to form a new graph G′ of order n + 1, i.e., ΓG′ (x′) = ΓG(x), then G′ is still admissible.

Proof. The graph G comes from some permutation τ on [n]. Let k be the number in [n]

that corresponds to x. Then we can construct a new permutation τ′ on [n + 1] as follows:

τ′(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ(i) if i " k and τ(i) " τ(k),

τ(i) + 1 if i " k and τ(i) > τ(k),

τ(k) + 1 if i = k + 1,

τ(i − 1) if i > k and τ(i − 1) < τ(k),

τ(i − 1) + 1 if i > k and τ(i − 1) ! τ(k).

The representation graph of τ′ is G′ with k + 1 corresponding to the new vertex x′.

Let S be the 7-vertex graph obtained by gluing three paths xyizi, i = 1, 2, 3, at the

common vertex x; see Figure 6.

Proposition 5.2. The graph S is not admissible.

Proof. Admissible graphs can be alternatively defined as intersection graphs of segments

whose endpoints lie on two parallel lines. For a vertex v in S , denote by s(v) the segment

representing v. Since y1, y2 and y3 form an independent set, segments representing them

do not intersect. On the other hand s(x) intersects all of them. Without loss of generality,

assume that s(y2) is the middle of the three segments in the order they intersect s(x); see

Figure 7. Since z2 is adjacent only to y2, the segment representing z2 intersects only s(y2),

which is clearly impossible.

Alternatively, it is possible to check all admissible graphs on 7 vertices, i.e., M7, and

conclude that S is not among them.

Proof of Theorem 2.2. Let G be an admissible graph of order n with minimum F among

all admissible graphs on n vertices, where n is sufficiently large. Fix ε > 0 sufficiently small.
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s(y1)

s(y2) s(y3)s(x)

Figure 7. Representation of part of S as intersecting segments.

In particular, by Theorem 2.1, we assume n large enough such that f(G) " 1/27 + ε. Let

V = V (G).

By Theorem 4.1, we also assume that we can make G equal to T3(n) by adding or deleting

at most εn2 edges (then a large n is also needed). Take a complete 3-partite graph T on V

such that |W | is minimized, where W = E(T ) △ E(G). From Theorem 4.1 we know that

|W | < εn2 and V can be partitioned into V1, V2, V3 of sizes (1/3 − ε)n < |Vi| < (1/3 + ε)n,

which are the parts of T . Let B = E(G) \ E(T ) and M = E(T ) \ E(G). We call edges in

B bad, in M missing, and in W wrong.

Proposition 5.3. For any x ∈ V we have f(x, G) " 1/27 + 3
2 ε.

Proof. First we prove that for any x, y ∈ V we have

|F(x, G) − F(y, G)| "
(
n − 2

2

)
. (5.1)

Without loss of generality, assume F(x, G) ! F(y, G). Let G′ be obtained from G by

adding a clone of y and removing x. By Proposition 5.1, G′ is an admissible graph. By

the extremality of G we have

0 " F(G′) − F(G) " F(y, G) − F(x, G) +

(
n − 2

2

)
,

which gives (5.1).

Recall that

F(G) =
1

4

∑

x∈V
F(x, G) " F(T3(n)).

Suppose that there exists an x such that f(x, G) > 1/27 + 3
2 ε, i.e.,

F(x, G) >

(
1

27
+

3

2
ε

)(
n − 1

3

)
.

By using (5.1) we have that for every y ∈ V

F(y, G) >

(
1

27
+

3

2
ε

)(
n − 1

3

)
−

(
n − 2

2

)
>

(
1

27
+ ε

)(
n − 1

3

)
.

Hence f(G) > 1/27 + ε, which contradicts our assumption that f(G) " 1/27 + ε.

Lemma 5.4. The graph W , and thus also B and M, has maximum degree less than ηn,

where η = 2ε1/18.



674 J. Balogh, P. Hu, B. Lidický, O. Pikhurko, B. Udvari and J. Volec

Proof. Let x be a vertex in V . Let αi = |Γ(x) ∩ Vi|/|Vi| where V1, V2, V3 are the parts

of T . Let δ = 2ε1/6. If every αi ∈ (δ, 1 − δ) then there are at least δ6(1/3 − ε)6n6 ways to

choose a set U = {y1, y2, y3, z1, z2, z3} with yi ∈ Vi \ Γ(x) − x and zi ∈ Vi ∩ Γ(x) − x. The

number of such sets U which contain a wrong edge is at most
(
n
4

)
|W | < εn6/24. Since

δ6(1/3 − ε)6n6 > εn6/24, there exists U that does not contain any edge of W , which means

U ∪ {x} induces the complement of the non-admissible graph S in G, a contradiction to

Proposition 5.2.

Without loss of generality, we may assume that α1 < δ or α1 > 1 − δ.

If α1 < δ, then the number of copies of K4 via x whose other three vertices are in A1

is at least
(

(1 − δ)(1/3 − ε)n

3

)
! (1 − δ)3

(
1

3
− ε

)3(
n

3

)
!

(
1

27
− ε − δ

)(
n

3

)
.

Thus x has to be connected to almost every vertex in A2 ∪ A3. To be more precise,

assume αi " 1 − η for i = 2 or i = 3. Then we should have
(
η(1/3 − ε)n

3

)
"

(
(1 − αi)|Vi|

3

)
<

(
1

27
+ ε

)(
n

3

)
−

(
1

27
− ε − δ

)(
n

3

)
. (5.2)

However, (5.2) does not hold since η = 2ε1/18, so we know that α2 > 1 − η and α3 > 1 − η.

If α1 > 1 − δ, then

f(x, G) !
( 3∑

i=1

(
(1 − αi)|Vi|

3

)
+ α1α2α3|V1||V2||V3| − εn3

)/(
n

3

)

!
((

(1 − α2)|V2|
3

)
+

(
(1 − α3)|V3|

3

)
+ (1 − δ)α2α3|V1||V2||V3| − εn3

)/(
n

3

)

! (1/3 − ε)3
(
(1 − α2)

3 + (1 − α3)
3 + 6(1 − δ)α2α3

)
− 6ε + o(1)

! (1/3 − ε)3
(
(1 − α2)

3 + (1 − α3)
3 + 5α2α3

)
− 6ε.

Let h(x, y) = (1 − x)3 + (1 − y)3 + 5xy. The minimum value of the polynomial h(x, y) on

[0, 1]2 is 1 with equality if and only if {x, y} = {0, 1}. We know that f(x, G) " 1/27 + 3
2 ε.

Then, by the continuity of h and the compactness of [0, 1]2, {α2, α3} is close to {0, 1}.
Without loss of generality, assume α2 is close to 1 and α3 is close to 0. Let γ = 6ε1/3. If

α2 " 1 − γ or α3 ! γ, then

f(x, G) ! (1/3 − ε)3
(
(1 − α2)

3 + (1 − α3)
3 + 5α2α3

)
− 6ε.

= (1/3 − ε)3(1 + (2 − 5(1 − α2))α3 + 3α2
3 − α3

3 + (1 − α2)
3) − 6ε

! (1/3 − ε)3(1 + α3 + (1 − α2)
3) − 6ε

>
1

27
+

3

2
ε,

which is a contradiction to Proposition 5.3. So α2 > 1 − γ and α3 < γ.

Note that η > δ > γ, so now we know that two of α1, α2, α3 are at least 1 − η and the

other one is less than η. Without loss of generality, we may assume α1 < η, α2 > 1 − η and

α3 > 1 − η. Then we know that x ∈ V1, since otherwise we can move x to V1 and decrease

|W |, which is a contradiction to the choice of T . Thus dW (x) < ηn = 2ε1/18n.
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It follows from Lemma 5.4 that every bad edge xy ∈ B belongs to at least (1/9 − η)n2

copies of K4, because
(

1

3
− ε

)2

n2 − 2ηn

(
1

3
+ ε

)
n =

(
1

9
− 2

3
ε + ε2 − 2η

3
− 2ηε

)
n2 !

(
1

9
− η

)
n2.

On the other hand, if we remove xy from E(G), this would create at most (1/18 + η2)n2

copies of K4, because
(

(1/3 + ε)n

2

)
+

(
ηn

2

)
"

(
1

18
+

ε

3
+

ε2

2
+

η2

2

)
n2 "

(
1

18
+ η2

)
n2.

Also, by ∆(B) < ηn and b = |B| < ηn2, the number of 4-sets that contain at least two bad

edges is at most
(
b

2

)
+ 2b(ηn)n " b2

2
+ 2ηbn2 <

ηbn2

2
+ 2ηbn2 < 3ηbn2.

Thus, if G′ is obtained from G by removing all bad edges of G, it satisfies F(G′) − F(G) < 0

unless b = 0, because

F(G′) − F(G) "
(

1

18
+ η2

)
bn2 −

((
1

9
− η

)
bn2 − 6 · 3ηbn2

)

"
(

− 1

18
+ η2 + 19η

)
bn2 " − bn2

100
.

Clearly, the complete 3-partite graph T can be obtained from G′ by adding all missing

edges between parts. Thus we have P (K4, T ) " P (K4, G
′). Then, since P (K4, T ) = 0 "

P (K4, G
′), the admissible graph T satisfies F(T ) " F(G′) < F(G) unless b = 0. By the

choice of G, we have F(G) " F(T ), so b = 0, which means G is a subgraph of T and G

is a 3-partite graph. Then, since F(G) " F(H) for every H ∈ Mn, we know that G is a

subgraph of T3(n) and F(G) = F(T3(n)).

6. Conclusion

In Theorem 1.4, we verified Conjecture 1.1 for k = 3 and n sufficiently large, and we

fully characterized the set of the extremal configurations. While revising our paper, we

discovered that using a slightly refined set-up of the flag algebra framework, we can also

prove an analogue of Theorem 1.3 for k = 4 and k = 5. We address these two cases in a

forthcoming note.
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Appendix: Rounding approximate solutions to exact solutions

Recall from the proof of Theorem 2.1 that a solution consists of several positive

semidefinite matrices. For example, in our problem, the solution consists of three matrices

Q0, Q1 and Q2. For simplicity, when describing the rounding procedure, we assume that

there is only one matrix. A computer solver can only solve a semidefinite program

numerically and thus we get an approximate solution. Let Q be a t-by-t matrix computed

by a computer solver. To make the solution exact, we need to convert entries in the matrix

to rational numbers. A resulting rounded matrix Q′ must satisfy the following.

Goal 1. Q′ is positive semidefinite.

Goal 2. Q′ gives us the desired number, i.e., see (3.4).

The idea of the rounding is following. For most of entries in Q′ we use a rational

number close to the corresponding entry in Q. The other entries in Q′ will be computed

such that Q′ satisfies Goals 1 and 2.

We will construct a system of linear equations whose variables are entries of Q′ (ignoring

the entries below the main diagonals) and all constants are rational numbers. There are

two types of linear equations in the system, Type 1 and Type 2, which make our solution

achieve Goal 1 and Goal 2 respectively. We again use a computer to solve the linear

system, but unlike a semidefinite program, a system of linear equations can be solved over

rationals.

When we use an entry from Q, it is sufficient in our case if the corresponding entry in

Q′ differs by at most ε = 10−5.

To achieve Goal 1, we want all eigenvalues to be non-negative. We know that Q is

positive semidefinite, so all its eigenvalues are non-negative. If an eigenvalue of Q is a

large positive number compared to ε, then we expect it to be still positive after rounding,

since, as mentioned above, entries of Q are slightly perturbed. But if an eigenvalue of Q is

small, for example, 10−6, then it may become −10−8 after rounding and Q′ would not be

positive semidefinite. To avoid this, we force such eigenvalues to become 0 after rounding.

We do this by adding a constraint to our linear system for every such eigenvalue. Let {Xi}
be the set of eigenvectors of Q whose eigenvalues are smaller than ε1 for some ε1 > 0.

We assume that Xi is close to an eigenvector of Q′ with eigenvalue 0. So we find an

approximate basis {X ′
i} of the linear space generated by {Xi}, and add Q′X ′

i = 0 to our

linear system. These are Type 1 linear equations. Note that entries of Q′ are variables,

so this gives us t linear equations for each X ′
i . Let Xi = [xi,1, . . . , xi,t]. The algorithm of

finding X ′
i is outlined below, which is taken from Baber’s thesis [4].

For each Xi:

Let ℓ be arg maxj |xi,j |.
Set Xi = Xi/xi,ℓ.

For all k ̸= i :

Set Xk = Xk − xk,ℓ · Xi.

Guess X ′
i from Xi by assuming that all entries of X ′

i are rational numbers.
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More details of the algorithm are in Section 2.4.2.2 of [4]. The last step of the algorithm

means that Xi should look good and one can see instantly from Xi what the exact value

is. For example, if one sees 0.33333332, then 1/3 should be guessed.

To achieve Goal 2, we check values of f(H) − cH for all H in Ml . If f(H) − cH is much

larger than 1/27, we hope that it will be still larger than 1/27 after rounding. However,

if f(H) − cH is close to 1/27, a small change on entries of Q could result in f(H) − cH
being less than 1/27, which violates Goal 2. To prevent this, we add a linear equation

f(H) − cH = 1/27 for every H ∈ Ml if f(H) − cH < 1/27 + ε2 for some ε2 > 0. These are

Type 2 linear equations.

The system of k Type 1 and Type 2 linear equations can be written as

Ay = b,

where y = {y1, . . . , ym} corresponds to entries of Q′, A ∈ Qk×m, and b ∈ Qk . Usually, m is

larger than r = rank(A). Without loss of generality, assume that the first r columns of A

are linearly independent. Then A can be written as
[
A′ A′′], where A′ is the first r columns

of A and A′′ is the rest of the columns of A. Let y′ = {y1, . . . , yr} and y′′ = {yr+1, . . . , ym}.
We assign to yi in y′′ a rational number, such that |yi − xi| < ε3, where xi ∈ Q corresponds

to yi and ε3 > 0. This step can be done arbitrarily. For example, let ε3 = 10−5 and keep

the first 5 digits of xi. Then we have the following matrix equation:

A′y′ = b − A′′y′′. (A.1)

Note that the number of equations in (A.1) may be larger than r. So this system may have

no solution. But if it has a solution, then this solution is unique, which gives a matrix over

rational numbers. Then we need to verify if this matrix satisfies Goals 1 and 2. If yes, we

get Q′. If not, we can try to redo the computation with a smaller ε3, or check which of

the goals is violated and enlarge ε1 or ε2 to add more equations to the linear system.

If we are unlucky and the linear system (A.1) has no solution, then it means we

added too many equations. Note that we pick eigenvalues that are smaller than ε1 and

add corresponding Type 1 equations, and pick H with f(H) − cH < 1/27 + ε2 and add

corresponding Type 2 equations. In order to have fewer equations, we may re-pick Type

1 and Type 2 equations with smaller ε1 and ε2.

So far in our rounding procedure, we get Type 1 and Type 2 equations only from Q.

If the target problem has some conjecture structures, we can also get Type 1 and Type 2

equations from those structures.

Take our problem, for example. Let G be an extremal graph on n vertices. By

Proposition 3.1, if p(H,G) > o(1), then f(H) − cH = 1/27, which gives Type 2 equations.

For our problem, this gives the first eight graphs in Figure 5. Unsurprisingly, every H of

these eight graphs satisfy f(H) − cH ≈ 1/27 in Q. So these Type 2 equations are usually

generated from Q by the process described before.

For Type 1 equations, using (3.3), we have

1/27 + o(1) = f(G) + o(1) !
∑

H∈M7

(f(H) − cH ) · p(H,G)
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and

f(G) −
∑

H∈M7

cHp(H,G) =
∑

H∈M7

(f(H) − cH ) · p(H,G) ! min
H∈M7

(f(H) − cH ) = 1/27.

This gives
∑

H∈M7

cHp(H,G) = o(1).

Recall from Section 3 that we use (σi, Xi, Qi) to get cH . Denote Xi = {Fi
j}. For θ ∈ Θ(|σi|, G),

let Yi,θ be the vector whose entries are p(Fi
j , (G, θ)). It follows from (3.2) and the definition

of cH that

o(1) =
∑

H∈M7

cHp(H,G) =
∑

i

Eθ∈Θ(|σi|,G)Y
T
i,θ · Qi · Yi,θ . (A.2)

For each θ ∈ Θ(|σi|, G) we have a vector Yi,θ , but if the conjectured extremal structures
are symmetric in some sense, then there may be only C different Yi,θ , where C is a constant

independent of n. Choose θ from Θ(|σi|, G) uniformly at random. If P [Yi,θ = Yi,φ] > o(1)

for some φ ∈ Θ(|σi|, G), then we have Y T
i,φ · Qi · Yi,φ = 0, and otherwise we do not

have (A.2). Since Qi ≽ 0, this means that Yi,φ is an eigenvector of Qi with eigenvalue

0, giving us Type 1 equations. In our problem, the vectors {Yi,φ} we get from conjectured

extremal structures are in the space generated by {X ′
i}. So there is no need to combine

equations generated from these two methods. Let us mention that, for our problem, we

could not guarantee that the rounded matrix is positive definite by just using Type 1

equations that come from the Turán graph. We also needed Type 1 equations from the

numerical solution.
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